Peize Liu St. Peter's College University of Oxford

Problem Sheet 2

ASO: Multivariable Calculus

Question 1

(a) Show that there exists a real-valued C^1 function g defined on a neighbourhood of the origin of \mathbb{R} such that

$$g(x) = g(x)^3 + 2e^{g(x)}\sin x$$

(b) Show that the equations

$$e^{x} + e^{2y} + e^{3u} + e^{4v} = 4$$

 $e^{x} + e^{y} + e^{u} + e^{v} = 4$

can be solved for u, v in terms of x, y near the origin.

Proof. (a) Let $f(x,y) = y^3 + 2e^y \sin x - y$. We have f(0,0) = 0. We shall show that f is C^1 in a neighbourhood of $(0,0) \in \mathbb{R}^2$. We compute the partial derivatives:

$$\frac{\partial f}{\partial x} = 2 e^y \cos x$$
 $\frac{\partial f}{\partial y} = 3y^2 + 2 e^y \sin x - 1$

 $\partial_x f$ and $\partial_y f$ are continuous everywhere. Then $f \in C^1(\mathbb{R}^2)$. Since $\partial_y f(0,0) = -1 \neq 0$, by the implicit function theorem, there exists a neighbourhood I of 0 and a C^1 function $g: I \to \mathbb{R}$ such that f(x,y) = 0 implies that y = g(x) for $x \in I$. The function g satisfies that $g(x) = g(x)^3 + 2e^{g(x)}\sin x$ for $x \in I$.

(b) Let

$$f_1(x, y, u, v) = e^x + e^{2y} + e^{3u} + e^{4v} - 4$$
 $f_2(x, y, u, v) = e^x + e^y + e^u + e^v - 4$

and $f(u, v, x, y) = \begin{pmatrix} f_1(x, y, u, v) \\ f_2(x, y, u, v) \end{pmatrix}$. First we check that f is C_1 . We compute the partial derivatives:

$$\frac{\partial f_1}{\partial x} = e^x \qquad \qquad \frac{\partial f_1}{\partial y} = 2 e^y \qquad \qquad \frac{\partial f_1}{\partial u} = 3 e^u \qquad \qquad \frac{\partial f_1}{\partial v} = 4 e^v$$

$$\frac{\partial f_2}{\partial x} = e^x \qquad \qquad \frac{\partial f_2}{\partial y} = e^y \qquad \qquad \frac{\partial f_2}{\partial u} = e^u \qquad \qquad \frac{\partial f_2}{\partial v} = e^v$$

All partial derivatives exist and are continuous. Then $\mathbf{f} \in C^1(\mathbb{R}^4)$. At $(0,0,0,0) \in \mathbb{R}^4$: $\mathbf{f}(0,0,0,0) = (0,0)$. The differential map of \mathbf{f} with respect to $\mathbf{y} := (u,v)$ at (0,0,0,0):

$$D_{\boldsymbol{y}}\boldsymbol{f_0} = \begin{pmatrix} 3 & 4 \\ 1 & 1 \end{pmatrix}$$

The map has non-zero determinant so it is invertible. By the implicit function theorem, there exists a open neighbourhood U of (0,0) and a C^1 function $g:U\to\mathbb{R}^2$ such that $f(x,y,u,v)=\mathbf{0}$ implies that (u,v)=g(x,y) for $(x,y)\in U$. The function g solves the equations for u,v in terms of x,y near the origin.

Question 2

By considering the function defined by

$$f(x) = \frac{x}{2} + x^2 \sin\left(\frac{1}{x}\right)$$
 for $x \neq 0$ and $f(0) = 0$

show that the C^1 hypothesis cannot be removed from the statement of the inverse function theorem.

Proof. For this well-known function, we know that it is continuous and differentiable on \mathbb{R} , but its derivative:

$$f'(x) = \begin{cases} \frac{1}{2} + 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0; \\ \frac{1}{2}, & x = 0. \end{cases}$$

is discontinuous at x=0. So $f\notin C^1(I)$ for any neighbourhood I of 0. Suppose that the inverse function theorem applies. Then f is locally invertible at x=0. In particular it is bijective and continuous in some interval I containing 0. By Prelim Analysis we know that f is strictly monotonic in the interval. So its derivative f' has fixed sign in I. But $f'(x)\sim \frac{1}{2}-\cos\frac{1}{x}$ changes sign infinitely many times near x=0, which is a contradiction.

We conclude that the condition of f being C^1 in the inverse function theorem is necessary.

Ouestion 3

Deduce the inverse function theorem from the implicit function theorem.

Proof. Suppose that $\Omega \subset \mathbb{R}^n$ is open and $f \in C^1(\Omega, \mathbb{R}^n)$. Let $x_0 \in \Omega$ and $y_0 = f(x_0)$. Suppose that $Df(x_0)$ is invertible.

Consider $\boldsymbol{g}:\Omega\times\boldsymbol{f}(\Omega)\to\mathbb{R}^n$ given by

$$q(x, y) = f(x) - y$$

We have $D_{\boldsymbol{x}}\boldsymbol{g}(\boldsymbol{x},\boldsymbol{y})=D\boldsymbol{f}(\boldsymbol{x})$ and $D_{\boldsymbol{y}}\boldsymbol{g}(\boldsymbol{x},\boldsymbol{y})=-I_n$. In particular, $\boldsymbol{g}\in C^1(\Omega\times\boldsymbol{f}(\Omega),\mathbb{R}^n)$.

Since $D\mathbf{f}(\mathbf{x}_0)$ is invertible, $D_{\mathbf{x}}\mathbf{g}(\mathbf{x}_0, \mathbf{y}_0)$ is invertible. By the **Implicit Function Theorem**, there exists open neighbourhoods U of y_0 and V of x_0 , and a function $\mathbf{f}^{-1} \in C^1(U, V)$ such that

$$\forall (\boldsymbol{x},\boldsymbol{y}) \in V \times U: \ \boldsymbol{y} = \boldsymbol{f}(\boldsymbol{x}) \iff \boldsymbol{g}(\boldsymbol{x},\boldsymbol{y}) = 0 \iff \boldsymbol{x} = \boldsymbol{f}^{-1}(\boldsymbol{y})$$

We deduce that f is a diffeomorphism on $f^{-1}(U)$. In addition, the differential of f^{-1} at y_0 is given by

$$Df^{-1}(y_0) = -(D_x g(x_0, y_0))^{-1} D_y g(x_0, y_0) = (Df(x_0))^{-1}$$

In this way we have derived the full inverse function theorem from the implicit function theorem.

Question 4

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a C^1 function.

(a) Show that the graph of *f*

$$\{(x, y, z) \in \mathbb{R}^3 : z = f(x, y)\}$$

is a 2-dimensional submanifold of \mathbb{R}^3 .

(b) Identify the normal space to M at a point, (x, y, f(x, y)) and give a basis for the tangent space at that point.

Proof. (a) This is trivial by Proposition 6.3 in the notes.

(b) Let g(x, y, z) = f(x, y) - z. The graph of f is the loci of g in \mathbb{R}^3 . By Proposition 6.8, the tangent space of the manifold at $\mathbf{x} := (x, y, f(x, y))$ is given by

$$T_{\boldsymbol{x}}M = \ker Dg(\boldsymbol{x}) = \ker \left(\frac{\partial f}{\partial x}(\boldsymbol{x}) \quad \frac{\partial f}{\partial y}(\boldsymbol{x}) \quad -1\right) = \left\langle \begin{pmatrix} 1\\0\\\frac{\partial f}{\partial x}(\boldsymbol{x}) \end{pmatrix}, \begin{pmatrix} 0\\1\\\frac{\partial f}{\partial y}(\boldsymbol{x}) \end{pmatrix} \right\rangle$$

The basis of $T_{\boldsymbol{x}}M$ is $\left\{\left(1,0,\frac{\partial f}{\partial x}(\boldsymbol{x})\right)^{\mathrm{T}},\,\left(0,1,\frac{\partial f}{\partial y}(\boldsymbol{x})\right)^{\mathrm{T}}\right\}$.

The normal space at x is simply the orthogonal complement of the tangent space. In this case, the normal space of the manifold is 1-dimensional, generated by the vector

$$\left(0, 1, \frac{\partial f}{\partial y}(\boldsymbol{x})\right) \times \left(1, 0, \frac{\partial f}{\partial x}(\boldsymbol{x})\right) = \left(\frac{\partial f}{\partial x}(\boldsymbol{x}), \frac{\partial f}{\partial y}(\boldsymbol{x}), -1\right)$$

The result is unsurprising.

Question 5

For which values of c does the equation $x^2 + y^2 - z^2 = c$ define a 2-dimensional submanifold of \mathbb{R}^3 ?

Describe the loci defined by the above equation, paying particular attention to any values for which the locus is not a manifold.

Proof. Let $f(x, y, z) = x^2 + y^2 - z^2 - c$. The differential of f at x = (x, y, z) is given by

$$Df(x, y, z) = (2x, 2y, 2z)$$

The set f(x,y,z)=0 is a (C^1) manifold if $\operatorname{rank} Df(x,y,z)=1$ for every (x,y,z) where f(x,y,z)=0. We observe that $\operatorname{rank} Df(x,y,z)ne1 \iff (x,y,z)=(0,0,0)$. Hence f(x,y,z)=0 is a manifold if and only if $f(0,0,0)\neq 0$, which is equivalent to $c\neq 0$.

To describe the loci of the equation, we first note that the equation has azimuthal symmetry. So we change to the cylindrical coordinates, in which the manifold is described by $r^2 - z^2 = c$.

When c=0, the loci $f(r,\theta,z)=r^2-z^2=0$ is a double cone. (0,0,0) is a singularity of the surface. When $c\neq 0$, the loci $f(r,\theta,z)=r^2-z^2-c=0$ is a hyperboloid, and is a sub-manifold of \mathbb{R}^3 .

Question 6

Find the maximum value of

$$g(x_1, ..., x_n) = \prod_{i=1}^{n} x_i$$

subject to the constraint $\sum_{i=1}^{n} x_i = 1$ and the condition that the x_i are non-negative.

Deduce the arithmetic mean / geometeric mean inequality

$$\left(\prod_{i=1}^{n} a_i\right)^{\frac{1}{n}} \leqslant \frac{1}{n} \sum_{i=1}^{n} a_i$$

for non-negative real numbers $a_1, ..., a_n$.

Proof. Let
$$f(x_1,...,x_n) = \sum_{i=1}^n x_i - 1$$
 and $g(x_1,...,x_n) = \prod_{i=1}^n x_i$. It is clearly that $f,g \in C^1(\mathbb{R})$.

Consider $M:=\{\boldsymbol{x}\in\mathbb{R}^n:\ f(\boldsymbol{x})=0,\ x_i>0\}.$ M is an open set in \mathbb{R}^n , and is clearly a submanifold of \mathbb{R}^n . Since \overline{M} is compact and g is continuous, g attains its supremum at some $\boldsymbol{z}\in\overline{M}$. But g=0 on ∂M and g>0 in M. We deduce that $\boldsymbol{z}\in M$.

By the theorem of Lagrange multipliers, there exists $\lambda \in \mathbb{R}$ such that $\nabla g(z) = \lambda \nabla f(z)$. We compute the gradients:

$$\nabla f(\boldsymbol{x}) = (1,...,1)^{\mathrm{T}}$$
 $\nabla g(\boldsymbol{x}) = x_1 \cdots x_n \left(\frac{1}{x_1},...,\frac{1}{x_n}\right)^{\mathrm{T}} = g(\boldsymbol{x}) \left(\frac{1}{x_1},...,\frac{1}{x_n}\right)^{\mathrm{T}}$

Then we obtain that $\frac{g(z)}{z_i} = \lambda$ for each $i \in \{1, ..., n\}$. Therefore $z_1 = \cdots = z_n$. f(z) = 0 implies that $nz_i - 1 = 0$. Hence $z_1 = \cdots = z_n = \frac{1}{n}$. $g(z) = \frac{1}{n^n}$. $\lambda = \frac{1}{n^{n-1}}$.

For any $a_1,...,a_n>0$, we define $b_i:=\frac{a_i}{\sum_{i=1}^n a_i}$ for each i. So $\sum_{i=1}^n b_i=1$. The point $(b_1,...,b_n)\in M$. We have:

$$g(b_1, ..., b_n) \leqslant g(z_1, ..., z_n) = \frac{1}{n^n} \implies \frac{\prod_{i=1}^n a_i}{\left(\sum_{i=1}^n a_i\right)^n} \leqslant \frac{1}{n^n} \implies \left(\prod_{i=1}^n a_i\right)^{\frac{1}{n}} \leqslant \frac{1}{n} \sum_{i=1}^n a_i$$

Hence we obtain the AM-GM inequality.