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Question 1

(a) Show that there exists a real-valued C1 function g defined on a neighbourhood of the origin of R such that

g(x) = g(x)3 + 2 eg(x) sinx

(b) Show that the equations

ex + e2y + e3u + e4v = 4

ex + ey + eu + ev = 4

can be solved for u, v in terms of x, y near the origin.

Proof. (a) Let f(x, y) = y3 + 2 ey sinx− y. We have f(0, 0) = 0. We shall show that f is C1 in a neighbourhood of (0, 0) ∈ R2.
We compute the partial derivatives:

∂f

∂x
= 2 ey cosx

∂f

∂y
= 3y2 + 2 ey sinx− 1

∂xf and ∂yf are continuous everywhere. Then f ∈ C1(R2). Since ∂yf(0, 0) = −1 6= 0, by the implicit function
theorem, there exists a neighbourhood I of 0 and a C1 function g : I → R such that f(x, y) = 0 implies that
y = g(x) for x ∈ I. The function g satisfies that g(x) = g(x)3 + 2 eg(x) sinx for x ∈ I.

(b) Let

f1(x, y, u, v) = ex + e2y + e3u + e4v −4 f2(x, y, u, v) = ex + ey + eu + ev −4

and f(u, v, x, y) =

(
f1(x, y, u, v)

f2(x, y, u, v)

)
. First we check that f is C1. We compute the partial derivatives:

∂f1
∂x

= ex
∂f1
∂y

= 2 ey
∂f1
∂u

= 3 eu
∂f1
∂v

= 4 ev

∂f2
∂x

= ex
∂f2
∂y

= ey
∂f2
∂u

= eu
∂f2
∂v

= ev

All partial derivatives exist and are continuous. Then f ∈ C1(R4). At (0, 0, 0, 0) ∈ R4: f(0, 0, 0, 0) = (0, 0). The
differential map of f with respect to y := (u, v) at (0, 0, 0, 0):

Dyf0 =

(
3 4

1 1

)
The map has non-zero determinant so it is invertible. By the implicit function theorem, there exists a open neigh-
bourhood U of (0, 0) and a C1 function g : U → R2 such that f(x, y, u, v) = 0 implies that (u, v) = g(x, y) for
(x, y) ∈ U . The function g solves the equations for u, v in terms of x, y near the origin.

Question 2

By considering the function defined by

f(x) =
x

2
+ x2 sin

(
1

x

)
for x 6= 0 and f(0) = 0

show that the C1 hypothesis cannot be removed from the statement of the inverse function theorem.

Proof. For this well-known function, we know that it is continuous and differentiable on R, but its derivative:

f ′(x) =


1

2
+ 2x sin

1

x
− cos

1

x
, x 6= 0;

1

2
, x = 0.
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is discontinuous at x = 0. So f /∈ C1(I) for any neighbourhood I of 0. Suppose that the inverse function theorem
applies. Then f is locally invertible at x = 0. In particular it is bijective and continuous in some interval I containing
0. By Prelim Analysis we know that f is strictly monotonic in the interval. So its derivative f ′ has fixed sign in I. But

f ′(x) ∼ 1

2
− cos

1

x
changes sign infinitely many times near x = 0, which is a contradiction.

We conclude that the condition of f being C1 in the inverse function theorem is necessary.

Question 3

Deduce the inverse function theorem from the implicit function theorem.

Proof. Suppose that Ω ⊂ Rn is open and f ∈ C1(Ω,Rn). Let x0 ∈ Ω and y0 = f(x0). Suppose thatDf(x0) is invertible.

Consider g : Ω× f(Ω)→ Rn given by

g(x,y) = f(x)− y

We haveDxg(x,y) = Df(x) andDyg(x,y) = −In. In particular, g ∈ C1(Ω× f(Ω),Rn).

SinceDf(x0) is invertible,Dxg(x0,y0) is invertible. By the Implicit Function Theorem, there exists open neighbour-
hoods U of y0 and V of x0, and a function f−1 ∈ C1(U, V ) such that

∀(x,y) ∈ V × U : y = f(x) ⇐⇒ g(x,y) = 0 ⇐⇒ x = f−1(y)

We deduce that f is a diffeomorphism on f−1(U). In addition, the differential of f−1 at y0 is given by

Df−1(y0) = − (Dxg(x0,y0))
−1
Dyg(x0,y0) = (Df(x0))

−1

In this way we have derived the full inverse function theorem from the implicit function theorem.

Question 4

Let f : R2 → R be a C1 function.

(a) Show that the graph of f

{(x, y, z) ∈ R3 : z = f(x, y)}

is a 2-dimensional submanifold of R3.

(b) Identify the normal space toM at a point, (x, y, f(x, y)) and give a basis for the tangent space at that point.

Proof. (a) This is trivial by Proposition 6.3 in the notes.

(b) Let g(x, y, z) = f(x, y)−z. The graph of f is the loci of g inR3. By Proposition 6.8, the tangent space of themanifold
at x := (x, y, f(x, y)) is given by

TxM = kerDg(x) = ker

(
∂f

∂x
(x)

∂f

∂y
(x) −1

)
=

〈
1

0
∂f

∂x
(x)

 ,


0

1
∂f

∂y
(x)


〉

The basis of TxM is

{(
1, 0,

∂f

∂x
(x)

)T

,

(
0, 1,

∂f

∂y
(x)

)T
}
.

The normal space at x is simply the orthogonal complement of the tangent space. In this case, the normal space of
the manifold is 1-dimensional, generated by the vector(

0, 1,
∂f

∂y
(x)

)
×
(

1, 0,
∂f

∂x
(x)

)
=

(
∂f

∂x
(x),

∂f

∂y
(x),−1

)
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The result is unsurprising.

Question 5

For which values of c does the equation x2 + y2 − z2 = c define a 2-dimensional submanifold of R3?

Describe the loci defined by the above equation, paying particular attention to any values for which the locus is not a
manifold.

Proof. Let f(x, y, z) = x2 + y2 − z2 − c. The differential of f at x = (x, y, z) is given by

Df(x, y, z) = (2x, 2y, 2z)

The set f(x, y, z) = 0 is a (C1) manifold if rankDf(x, y, z) = 1 for every (x, y, z) where f(x, y, z) = 0. We observe that
rankDf(x, y, z)ne1 ⇐⇒ (x, y, z) = (0, 0, 0). Hence f(x, y, z) = 0 is a manifold if and only if f(0, 0, 0) 6= 0, which is
equivalent to c 6= 0.

To describe the loci of the equation, we first note that the equation has azimuthal symmetry. So we change to the
cylindrical coordinates, in which the manifold is described by r2 − z2 = c.

When c = 0, the loci f(r, θ, z) = r2 − z2 = 0 is a double cone. (0, 0, 0) is a singularity of the surface. When c 6= 0, the loci
f(r, θ, z) = r2 − z2 − c = 0 is a hyperboloid, and is a sub-manifold of R3.

r

z

r2 − z2 = 0

r

z

r2 − z2 = c < 0

r

z

r2 − z2 = c > 0

Question 6

Find the maximum value of

g(x1, ..., xn) =

n∏
i=1

xi

subject to the constraint
n∑

i=1

xi = 1 and the condition that the xi are non-negative.

Deduce the arithmetic mean / geometeric mean inequality

(
n∏

i=1

ai

) 1
n

6
1

n

n∑
i=1

ai

for non-negative real numbers a1, ..., an.

Proof. Let f(x1, ..., xn) =

n∑
i=1

xi − 1 and g(x1, ..., xn) =

n∏
i=1

xi. It is clearly that f, g ∈ C1(R).
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ConsiderM := {x ∈ Rn : f(x) = 0, xi > 0}. M is an open set in Rn, and is clearly a submanifold of Rn. SinceM is
compact and g is continuous, g attains its supremum at some z ∈M . But g = 0 on ∂M and g > 0 inM . We deduce that
z ∈M .

By the theorem of Lagrange multipliers, there exists λ ∈ R such that∇g(z) = λ∇f(z). We compute the gradients:

∇f(x) = (1, ..., 1)T ∇g(x) = x1 · · ·xn
(

1

x1
, ...,

1

xn

)T

= g(x)

(
1

x1
, ...,

1

xn

)T

Then we obtain that
g(z)

zi
= λ for each i ∈ {1, ..., n}. Therefore z1 = · · · = zn. f(z) = 0 implies that nzi − 1 = 0. Hence

z1 = · · · = zn =
1

n
. g(z) =

1

nn
. λ =

1

nn−1
.

For any a1, ..., an > 0, we define bi :=
ai∑n
i=1 ai

for each i. So
n∑

i=1

bi = 1. The point (b1, ..., bn) ∈M . We have:

g(b1, ..., bn) 6 g(z1, ..., zn) =
1

nn
=⇒

∏n
i=1 ai

(
∑n

i=1 ai)
n 6

1

nn
=⇒

(
n∏

i=1

ai

) 1
n

6
1

n

n∑
i=1

ai

Hence we obtain the AM-GM inequality.


