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Question 1
(a) Show that there exists a real-valued C'! function g defined on a neighbourhood of the origin of R such that
g(z) = g(z) +2e9@ sinx
(b) Show that the equations

em+62y+e3u+e4v:4

e +e¥+e'+e’' =4
can be solved for u, v in terms of z, y near the origin.

Proof. (a) Let f(z,y) = > + 2eYsinx — y. We have f(0,0) = 0. We shall show that f is C'! in a neighbourhood of (0, 0) € R2.
We compute the partial derivatives:

a—zQeycosx g:?)yz—i—Qeysinx—l
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9. f and 9, f are continuous everywhere. Then f € C*(R?). Since 9, f(0,0) = —1 # 0, by the implicit function

theorem, there exists a neighbourhood 7 of 0 and a C*! function g : I — R such that f(z,y) = 0 implies that
y = g(x) for 2 € I. The function g satisfies that g(x) = g(x)> + 2e9®) sinz for z € I.

(b) Let
fi(z,y,u,v) = e® + e + e3¢ 4 etV —4 folz,y,u,v) = e® +e¥ +e" +e¥ —4
and f(u,v,z,y) = Hilz,y,u,v) . First we check that f is C;. We compute the partial derivatives:
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All partial derivatives exist and are continuous. Then f € C!(R*). At (0,0,0,0) € R*: £(0,0,0,0) = (0,0). The
differential map of f with respect to y := (u,v) at (0,0,0,0):

()

The map has non-zero determinant so it is invertible. By the implicit function theorem, there exists a open neigh-
bourhood U of (0,0) and a C* function g : U — R? such that f(z,y,u,v) = 0 implies that (u,v) = g(z,y) for
(x,y) € U. The function g solves the equations for u, v in terms of z, y near the origin. O

Question 2
By considering the function defined by
flx) = g + 22 sin (1> forx # 0and f(0) =0
xZ

show that the C! hypothesis cannot be removed from the statement of the inverse function theorem.

Proof. For this well-known function, we know that it is continuous and differentiable on R, but its derivative:
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5, x = 0.



is discontinuous at z = 0. So f ¢ C'(I) for any neighbourhood I of 0. Suppose that the inverse function theorem
applies. Then f is locally invertible at z = 0. In particular it is bijective and continuous in some interval I containing
0. By Prelim Analysis we know that f is strictly monotonic in the interval. So its derivative f’ has fixed sign in I. But

fl(x) ~ 5 ~cos— changes sign infinitely many times near z = 0, which is a contradiction.
X

We conclude that the condition of f being C'! in the inverse function theorem is necessary. O

Question 3

Deduce the inverse function theorem from the implicit function theorem.

Proof. Suppose that Q C R" is open and f € C1(2,R"). Let ¢y € Q and yo = f (o). Suppose that D f(x) is invertible.
Consider g : Q x f(Q2) — R™ given by
g(@,y) = f(z) -y
We have D,g(z,y) = Df(x) and Dyg(z,y) = —I,,. In particular, g € C'(Q x f(Q),R").

Since D f(x) is invertible, D, g(xo, yo) is invertible. By the Implicit Function Theorem, there exists open neighbour-
hoods U of yy and V of z(, and a function f~! € C'(U, V) such that

V(z,y) eV xU: y=f(z) < g(z,y) =0 <= z=f"'(y)
We deduce that f is a diffeomorphism on £~ (U). In addition, the differential of £~ at y, is given by
Df~*(yo) = — (Dag(®o,y0)) " Dyg(@o, yo) = (Df (o))~

In this way we have derived the full inverse function theorem from the implicit function theorem. O

Question 4
Let f : R2 — R be a C'! function.
(a) Show that the graph of f
{(z,9,2) eR?: 2z = f(z,y)}
is a 2-dimensional submanifold of R3.

(b) Identify the normal space to M at a point, (x,y, f(z,y)) and give a basis for the tangent space at that point.

Proof. (a) This is trivial by Proposition 6.3 in the notes.

(b) Letg(z,y, 2) = f(z,y)—z. The graph of f is the loci of g in R3. By Proposition 6.8, the tangent space of the manifold
atx := (z,y, f(z,y)) is given by
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B L (0f, of B )
TeM = ker Dg(x) = ker (81(:1:) 8—y(x) —1) = < 8f0( | ) 8f( | >
2] \oy®

T T
The basis of T, M is {(1,0,3?:@)) , (071,25(9:)) }

The normal space at x is simply the orthogonal complement of the tangent space. In this case, the normal space of
the manifold is 1-dimensional, generated by the vector
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The result is unsurprising.

Question 5

For which values of ¢ does the equation 22 + y? — 22 = ¢ define a 2-dimensional submanifold of R3?

Describe the loci defined by the above equation, paying particular attention to any values for which the locus is not a

manifold.

Proof. Let f(x,y,2) = 22 + y* — 2? — c. The differential of f at x = (z, v, 2) is given by

Df(x,y,2) = (22, 2y,22)

The set f(x,y,z) = 0is a (C') manifold if rank D f(z,y, z) = 1 for every (z,y, z) where f(z,y,z) = 0. We observe that
rank Df(z,y,z)nel < (x,y,2z) = (0,0,0). Hence f(z,y,z) = 0 is a manifold if and only if f(0,0,0) # 0, which is

equivalent to ¢ # 0.

To describe the loci of the equation, we first note that the equation has azimuthal symmetry. So we change to the

cylindrical coordinates, in which the manifold is described by r2 — 22 = c.

When ¢ = 0, the loci f(r,0,2) = r? — 22 = 0 is a double cone. (0,0,0) is a singularity of the surface. When ¢ # 0, the loci

f(r,0,2z) =% — 22 — ¢ = 0 is a hyperboloid, and is a sub-manifold of R3.
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Question 6

Find the maximum value of

g(‘rlv 7xn) - H Z;

n
subject to the constraint Z z; = 1 and the condition that the z; are non-negative.

i=1

Deduce the arithmetic mean / geometeric mean inequality

= n
(H Clz‘) < %Z a;
i=1

i=1

for non-negative real numbers ay, ..., a,.

Proof. Let f(x1,...,2n) = Z x; —land g(z1,...,z,) = H z;. It is clearly that f, g € C*(R).

i=1 i=1

r2—22=¢c>0




Consider M := {x € R" : f(z) = 0, z; > 0}. M is an open set in R", and is clearly a submanifold of R". Since M is
compact and g is continuous, g attains its supremum at some z € M. But g = 0 on M and g > 0 in M. We deduce that
ze M.

By the theorem of Lagrange multipliers, there exists A € R such that Vg(z) = AV f(z). We compute the gradients:

Vi@ = (LT V@) =1 (1 _“71>T:g(m) (1 1>T

1 g 1 @,
Then we obtain that 9(2) = Aforeachi € {1,...,n}. Therefore z; = --- = z,. f(z) = 0 implies that nz; — 1 = 0. Hence
Zi
1 1 1
==y = =—. A= .
1 < n g(Z) nm" nn—1

27?77; for each i. So Z b; = 1. The pOil’lt (bl, . bn) € M. We have:
i=1 i i=1

For any ay, ...,a, > 0, we define b; :=

n

3=

n" (X im @i
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1
n n
ai) < E a;
i—1

Hence we obtain the AM-GM inequality. O

1 " ; 1
g(b1, b)) < g(21,0y2n) = — = M < — = (
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