

# **Problem Sheet 3**

**B3.3: Algebraic Number Theory** 

Topics covered: factorisation of ideals.

**Remark.** To avoid confusion, the ideal generated by the subset S will be denoted by  $\langle S \rangle$  instead of  $\langle S \rangle$  throughout this problem sheet.

#### **Question 1**

Prove that the equivalence relation defined in the lectures on the set of non-zero ideals is indeed an equivalence relation.

*Proof.* For  $I, J \triangleleft \mathcal{O}_K$ ,

$$I \sim J \iff \exists \alpha, \beta \in \mathcal{O}_K \ I \langle \alpha \rangle = J \langle \beta \rangle$$

- Reflexivity:  $I = I \langle 1 \rangle \sim I \langle 1 \rangle$ .
- Symmetry: Obvious from definition.



• Transitivity: Suppose that  $I \sim J$  and  $J \sim K$ . There exists  $\alpha, \beta, \gamma, \delta \in \mathcal{O}_K$  such that  $I \langle \alpha \rangle = J \langle \beta \rangle$  and  $J \langle \gamma \rangle = K \langle \delta \rangle$ . Then

$$I\langle \alpha \gamma \rangle = I\langle \alpha \rangle \langle \gamma \rangle = J\langle \beta \rangle \langle \gamma \rangle = K\langle \delta \rangle \langle \beta \rangle = K\langle \beta \delta \rangle$$

Hence  $I \sim K$ .

We conclude that  $\sim$  is an equivalence relation.

# Question 2

Let P be a prime ideal of  $\mathcal{O}_K$ , the ring of integers of a number field K. Show that if  $\alpha \in P$ ,  $\alpha \neq 0$ , is chosen so that  $|\operatorname{Norm}_{K/\mathbb{Q}}(\alpha)|$  is minimal, then  $\alpha$  is an irreducible element. Deduce that if  $\mathcal{O}_K$  is a UFD then every prime ideal is principal, and so  $\mathcal{O}_K$  is a PID.

*Proof.* Suppose that  $\alpha = \beta \gamma$  for some  $\beta, \gamma \in \mathcal{O}_K$ . Since P is prime, we have  $\beta \in P$  or  $\gamma \in P$ . Without loss of generality let  $\beta \in P$ . Since the norm is multiplicative, we have

$$\left|\operatorname{Norm}_{K|\mathbb{Q}}(\alpha)\right| = \left|\operatorname{Norm}_{K|\mathbb{Q}}(\beta)\right| \left|\operatorname{Norm}_{K|\mathbb{Q}}(\gamma)\right| \implies \left|\operatorname{Norm}_{K|\mathbb{Q}}(\alpha)\right| \geqslant \left|\operatorname{Norm}_{K|\mathbb{Q}}(\beta)\right|$$



By minimality of the norm of  $\alpha$ , we must have

$$|\operatorname{Norm}_{K|\mathbb{Q}}(\alpha)| = |\operatorname{Norm}_{K|\mathbb{Q}}(\beta)| \Longrightarrow |\operatorname{Norm}_{K|\mathbb{Q}}(\gamma)| = 1$$

Hence  $\gamma$  is a unit in  $\mathcal{O}_K$ . We deduce that  $\alpha$  is irreducible.

Suppose that  $\mathcal{O}_K$  is a UFD. Then  $\alpha$  is also a prime. In particular  $\langle \alpha \rangle$  is a prime ideal contained in P. Since  $\mathcal{O}_K$  is integral over  $\mathbb{Z}$ ,  $\langle \alpha \rangle \cap \mathbb{Z}$  is a prime ideal of  $\mathbb{Z}$ . But since  $\mathbb{Z}$  is a PID,  $\langle \alpha \rangle \cap \mathbb{Z}$  is a maximal ideal of  $\mathbb{Z}$ , and hence  $\langle \alpha \rangle$  is a maximal ideal of  $\mathcal{O}_K$ . We must have  $\langle \alpha \rangle = P$ . P is a principal ideal. (*The ring of integers has Krull dimension 1.*)

Next we shall present a proof, which is valid for general integral domains, that the condition that all prime ideals are principal implies that  $\mathcal{O}_K$  is a PID.

Suppose for contradiction that  $\mathcal{O}_K$  is not a PID. Let S be the set of all non-principal ideals of  $\mathcal{O}_K$ . By assumption  $S \neq \emptyset$ . For an ascending chain  $\{I_j: j \in J\} \subseteq S$ , it is clear that  $I:=\bigcup \{I_j: j \in J\}$  is an ideal of  $\mathcal{O}_K$ . Suppose that  $I=\langle x\rangle$  for some  $x \in \mathcal{O}_K$ . Then  $x \in I_j$  for some  $j \in J$  and hence  $I=\langle x\rangle \subsetneq I_j$ , which is a contradiction. Hence  $I \in S$ . Now Zorn's lemma suggests that S has a maximal element Q. We claim that Q is prime.

Suppose that Q is not prime. Then there exists  $a,b\in \mathcal{O}_K$  such that  $ab\in Q$  and  $a,b\notin Q$ . Note that  $Q+\langle a\rangle$  contains Q and a, and hence is principal by maximality of Q in S. There exists  $c\in \mathcal{O}_K$  such that  $Q+\langle a\rangle=\langle c\rangle$ . Also, note that the ideal quotient  $(Q:\langle a\rangle):=\{r\in \mathcal{O}_K: ra\in Q\}$  contains Q and b, and hence is also principal. There exists  $d\in \mathcal{O}_K$  such that  $(Q:\langle a\rangle)=\langle d\rangle$ . We claim that  $Q=\langle cd\rangle$ .

Since  $(Q:\langle a\rangle)=\langle d\rangle$ , we have  $d\in (Q:\langle a\rangle)$  and hence  $ad\in Q$ . Since  $Q+\langle a\rangle=\langle c\rangle$ , there exists  $q\in Q$  and  $r\in R$  such that c=q+ra. Then  $cd=qd+rad\in Q$ .  $\langle cd\rangle\subseteq Q$ . On the other hand, consider  $s\in Q$ . Since  $Q\subseteq \langle c\rangle$ , there exists  $t\in R$  such that s=tc. Since  $a\in \langle c\rangle$ , there exists  $u\in R$  such that a=uc. Then  $ts=utc=ua\in Q$ . We have  $u\in (Q:\langle a\rangle)=\langle d\rangle$ . Then there exists  $v\in R$  such that t=vd. We have  $s=tc=vcd\in \langle cd\rangle$ . Hence  $s=tc=vcd\in \langle cd\rangle$ . We deduce that  $s=tc=vcd\in \langle cd\rangle$ .

But  $Q \in S$ , which is a contradiction. Hence Q is a prime ideal. But by assumption, every prime ideal is principal, which is also a contradiction. We must have  $S = \emptyset$ . We conclude that  $\mathcal{O}_K$  is a PID.

(Alternatively, we can invoke the prime decomposition and write the proof in one line. However this is uninteresting...)

Nice!

## **Question 3**

The rings  $\mathbb{Z}[\sqrt{6}]$  and  $\mathbb{Z}[\sqrt{7}]$  are PIDs. Exhibit generators for their ideals  $(3, \sqrt{6}), (5, 4 + \sqrt{6}), (2, 1 + \sqrt{7})$ 

[Hint: Compute the norm of each of the given ideals of the form  $(p, \alpha)$  and find an element  $\beta \in \mathcal{O}_K$  of suitable norm.]

Proof.

- The first one is simple. By direct observation we claim that  $\langle 3, \sqrt{6} \rangle = \langle 3 + \sqrt{6} \rangle$ . It is clear that  $3 + \sqrt{6} \in \langle 3, \sqrt{6} \rangle$ . On the other hand, we observe that  $3 = (3 + \sqrt{6})(3 - \sqrt{6})$  and  $\sqrt{6} = (3 + \sqrt{6}) - 3$ . Hence  $3, \sqrt{6} \in \langle 3 + \sqrt{6} \rangle$ .
- Suppose that  $\langle 5, 4 + \sqrt{6} \rangle = \langle a + b\sqrt{6} \rangle$  for some  $a, b \in \mathbb{Z}$ . We can compute the norms:



Norm(5) = 25, Norm(4 + 
$$\sqrt{6}$$
) = 10, Norm(a +  $b\sqrt{6}$ ) =  $a^2 - 6b^2$ 

Hence  $a^2 - 6b^2 | \gcd(25, 10) = 5$ . Since  $(a + b\sqrt{6}) \neq \mathbb{Z}[\sqrt{6}]$ , we deduce that  $a^2 - 6b^2 = \pm 5$ .

We try  $a+b\sqrt{6}=1-\sqrt{6}$ . Note that  $1-\sqrt{6}=5-(4+\sqrt{6})\in\langle 5,4+\sqrt{6}\rangle$ . On the other hand, we observe that  $5=(1-\sqrt{6})(-1-\sqrt{6})$  and  $4+\sqrt{6}=5-(1-\sqrt{6})$ . Hence  $\langle 5,4+\sqrt{6}\rangle\subseteq\langle 1-\sqrt{6}\rangle$ . We deduce that  $\langle 5,4+\sqrt{6}\rangle=\langle 1-\sqrt{6}\rangle$ .

• Suppose that  $\langle 2, 1 + \sqrt{7} \rangle = \langle a + b\sqrt{7} \rangle$  for some  $a, b \in \mathbb{Z}$ . We can compute the norms:

Norm(2) = 4, Norm(1 + 
$$\sqrt{7}$$
) = -6, Norm( $a + b\sqrt{6}$ ) =  $a^2 - 7b^2$ 

Hence  $a^2 - 7b^2 \mid \gcd(4, -6) = 2$ . Since  $\langle a + b\sqrt{7} \rangle \neq \mathbb{Z}[\sqrt{7}]$ , we deduce that  $a^2 - 6b^2 = \pm 2$ .

We try  $a+b\sqrt{7}=3+\sqrt{7}$ . Note that  $2=(3+\sqrt{7})(3-\sqrt{7})$  and  $1+\sqrt{7}=2+(3+\sqrt{7})$ . we deduce that  $\langle 2,1+\sqrt{7}\rangle=\langle 3+\sqrt{7}\rangle$ .  $\square$ 

### **Question 4**

Find the prime factorisations of the ideals (3),(5) and (7) in  $\mathbb{Z}[\sqrt{-5}]$ . Show that the prime ideal factors of (7) are not principal.

*Proof.* We follow the procedure outlined in Example 7.4.

For prime  $p \in \mathbb{Z}$ , by prime factorisation, there are three possible cases:



$$\langle p \rangle = \begin{cases} P & P \in \operatorname{Spec}(\mathbb{Z}[\sqrt{-5}]); & (p \text{ inert}) \\ P^2 & P \in \operatorname{Spec}(\mathbb{Z}[\sqrt{-5}]); & (p \text{ ramifies}) \\ PQ & P, Q \in \operatorname{Spec}(\mathbb{Z}[\sqrt{-5}]), P \neq Q; & (p \text{ splits}) \end{cases}$$

The minimal polynomial of  $\sqrt{-5}$  over  $\mathbb O$  is  $m(x) = x^2 + 5$ .

- When p = 3, we have  $m(x) \equiv x^2 1 \equiv (x+1)(x-1) \mod 3$ . By Theorem 7.2, we have  $\langle 3 \rangle = \langle 3, 1 + \sqrt{-5} \rangle \langle 3, 1 \sqrt{-5} \rangle$ .
- When p = 5, we have  $m(x) \equiv x^2 \mod 5$ . By Theorem 7.2, we have  $\langle 5 \rangle = \langle 5, \sqrt{-5} \rangle^2 = \langle \sqrt{-5} \rangle^2$ .
- When p = 7, we have  $m(x) \equiv x^2 2 \equiv (x+3)(x-3) \mod 7$ . By Theorem 7.2, we have  $\langle 7 \rangle = \langle 7, 3 + \sqrt{-5} \rangle \langle 7, 3 \sqrt{-5} \rangle$ . We shall show that  $\langle 7, 3 \pm \sqrt{-5} \rangle$  are non-principal. Suppose that they are principal. Then there exists  $a, b \in \mathbb{Z}$  such that  $\langle a + b\sqrt{-5} \rangle = \langle 7, 3 \pm \sqrt{-5} \rangle$ . The norms

Norm
$$(a + b\sqrt{5}) = a^2 + 5b^2$$
, Norm $(7) = 49$ , Norm $(3 \pm \sqrt{-5}) = 14$ 

Hence we must have  $a^2 + 5b^2 = \gcd(49, 14) = 7$ . It is clear that the equation has no integer solutions. Hence the prime factors  $\langle 7, 3 \pm \sqrt{-5} \rangle$  are non-principal.

#### **Question 5**

Let  $K \subseteq L$  be fields and let I be an ideal of  $\mathcal{O}_K$ . Define  $I \cdot \mathcal{O}_L$  to be the ideal of  $\mathcal{O}_L$  generated by the products  $i\ell$ , such that  $i \in I$ ,  $\ell \in \mathcal{O}_L$ . Show that, for any ideals I, J of  $\mathcal{O}_K$ , any  $n \in \mathbb{N}$  and any principal ideal  $(a) = a\mathcal{O}_K$  of  $\mathcal{O}_K$ ,  $(IJ) \cdot \mathcal{O}_L = (I \cdot \mathcal{O}_L) (J \cdot \mathcal{O}_L)$ ,  $I^n \cdot \mathcal{O}_L = (I \cdot \mathcal{O}_L)^n$  and  $(a) \cdot \mathcal{O}_L = a\mathcal{O}_L$  (the principal ideal of  $\mathcal{O}_L$  generated by the same element). Let  $K = \mathbb{Q}(\sqrt{-13})$  and let  $I = (2, \sqrt{-13} + 1)$ . Show that  $I^2 = (2)$  and that I is not principal. Let  $L = \mathbb{Q}(\sqrt{-13}, \sqrt{2})$ . Show that  $I \cdot \mathcal{O}_L$  is the principal ideal of  $\mathcal{O}_L$  generated by  $\sqrt{2}$  (we say that I has been  $made\ principal\$ in the extension).

*Proof.*  $I \mapsto I \cdot \mathcal{O}_L$  is the *ideal extension* under the ring extension  $\mathcal{O}_K \to \mathcal{O}_L$ .

Suppose that  $I, J \triangleleft \mathcal{O}_K$ . The elements in  $(IJ) \cdot \mathcal{O}_L$  are of the form  $\sum_{k=1}^n i_k j_k \ell$  for some  $i_1, ..., i_n \in I$ ,  $j_1, ..., j_n \in J$  and  $\ell \in \mathcal{O}_L$ . Each  $i_k j_k \ell \in (I \cdot \mathcal{O}_L)(J \cdot \mathcal{O}_L)$ . Hence  $\sum_{k=1}^n i_k j_k \ell \in (I \cdot \mathcal{O}_L)(J \cdot \mathcal{O}_L)$ . On the other hand, the elements of  $(I \cdot \mathcal{O}_L)(J \cdot \mathcal{O}_L)$  are of the form  $\sum_{k=1}^n i_k \ell_k j_k m_k$  for some  $i_1, ..., i_n \in I$ ,  $j_1, ..., j_n \in J$  and  $\ell_1, ..., \ell_n, m_1, ..., m_n \in \mathcal{O}_L$ . It is clear that  $\sum_{k=1}^n i_k \ell_k j_k m_k \in (IJ) \cdot \mathcal{O}_L$ . We deduce that  $(IJ) \cdot \mathcal{O}_L = (I \cdot \mathcal{O}_L)(J \cdot \mathcal{O}_L)$ .

Next, by induction on n, we have  $(I \cdot \mathcal{O}_L)^n = I^n \cdot \mathcal{O}_L$  for each  $n \in \mathbb{N}$ .



For  $r \in a\mathcal{O}_L$ ,  $r = a\ell$  for some  $\ell \in \mathcal{O}_L$ . Hence  $r \in \langle a \rangle \mathcal{O}_L$ . For  $r \in \langle a \rangle \mathcal{O}_L$ ,  $r = ak\ell$  for some  $k \in \mathcal{O}_K$  and  $\ell \in \mathcal{O}_L$ . But  $k\ell \in \mathcal{O}_L$ . Hence  $r \in a\mathcal{O}_L$ . We deduce that  $a\mathcal{O}_L = \langle a \rangle \mathcal{O}_L$ .

Now  $K = \mathbb{Q}(\sqrt{-13})$ . Since  $-13 \equiv 3 \mod 4$ , we have  $\mathcal{O}_K = \mathbb{Z}[\sqrt{-13}]$ . Let  $I = \langle 2, 1 + \sqrt{-13} \rangle_{\mathcal{O}_K}$ . Suppose that I is principal. There exists  $a, b \in \mathbb{Z}$  such that  $I = \langle a + b\sqrt{-13} \rangle$ . Note that  $\operatorname{Norm}_{K|\mathbb{Q}}(a + b\sqrt{-13}) = a^2 + 13b^2$  divides  $\operatorname{Norm}_{K|\mathbb{Q}}(2) = 4$  and  $\operatorname{Norm}_{K|\mathbb{Q}}(1 + \sqrt{-13}) = 14$ . We must have  $a^2 + 13b^2 = \pm 2$ . But it is clear that the equation has no solution. I is not principal.

$$I^2 = \left\langle 2, 1 + \sqrt{-13} \right\rangle_{\mathcal{O}_K} \left\langle 2, 1 + \sqrt{-13} \right\rangle_{\mathcal{O}_K} = \left\langle 4, -12 + 2\sqrt{-13}, 2 + 2\sqrt{-13} \right\rangle_{\mathcal{O}_K} \subseteq \left\langle 2 \right\rangle_{\mathcal{O}_K}$$

And  $2 = 4 \times 4 + (-12 + 2\sqrt{-13}) - (2 + 2\sqrt{-13})$ . We deduce that  $I^2 = \langle 2 \rangle_{\mathcal{O}_K}$ .

Let  $L = \mathbb{Q}(\sqrt{-13}, \sqrt{2})$ . Note that  $2/\sqrt{2} = \sqrt{2} \in \mathcal{O}_L$ , so  $2 \in \langle \sqrt{2} \rangle_{\mathcal{O}_L}$ . We claim that  $\alpha := \frac{1 + \sqrt{-13}}{\sqrt{2}} \in \mathcal{O}_L$ . Indeed,

$$\alpha = \frac{1 + \sqrt{-13}}{\sqrt{2}} \implies 2\alpha^2 = (1 + \sqrt{-13})^2 = -12 + 2\sqrt{-13} \implies (\alpha^2 + 6)^2 = -13 \implies \alpha^4 + 12\alpha^2 + 49 = 0$$

Hence  $1+\sqrt{-13}\in \left\langle \sqrt{2}\right\rangle_{\mathcal{O}_L}$ . We deduce that  $I\cdot\mathcal{O}_L\subseteq \left\langle \sqrt{2}\right\rangle_{\mathcal{O}_L}$ . By Proposition 6.23, there exists  $J\lhd\mathcal{O}_L$  such that  $(I\cdot\mathcal{O}_L)J=\left\langle \sqrt{2}\right\rangle_{\mathcal{O}_L}$ . But we know that  $(I\cdot\mathcal{O}_L)^2=\left\langle 2\right\rangle_{\mathcal{O}_L}=\left\langle \sqrt{2}\right\rangle_{\mathcal{O}_L}^2$ . Hence  $N(I\cdot\mathcal{O}_L)=N(\left\langle \sqrt{2}\right\rangle_{\mathcal{O}_L})$  by multiplicativity of the ideal norm. Hence N(J)=1. We deduce that  $J=\mathcal{O}_L$  and  $I\cdot\mathcal{O}_L=\left\langle \sqrt{2}\right\rangle_{\mathcal{O}_L}$ .

#### **Question 6**

Let P,Q be distinct nonzero prime ideals in  $\mathcal{O}_K$ . Show that  $P+Q=\mathcal{O}_K$  and  $P\cap Q=PQ$ .

*Proof.* In Question 2, we have shown that all non-zero prime ideals in  $\mathcal{O}_K$  are maximal (by contracting the ideals to  $\mathbb{Z}$ ). Therefore P and Q are distinct maximal ideals. Note that  $P \subsetneq P + Q$ . We must have  $P + Q = \mathcal{O}_K$ . Hence P and Q are coprime. There exists  $p \in P$  and  $q \in Q$  such that p + q = 1. For  $x \in P \cap Q$ ,  $x = xp + xq \in PQ$ . Hence  $P \cap Q \subseteq PQ$ . The other direction  $PQ \subseteq P \cap Q$  is immediate by definition. □

#### **Question 7**

Let  $d \not\equiv 1 \mod 4$  be a square-free integer and define  $K := \mathbb{Q}(\sqrt{d})$ ; so  $\mathcal{O}_K = \mathbb{Z}[\sqrt{d}]$ . Let p be a rational prime. Suppose that  $d \equiv a^2 \mod p$ . Define  $P := (p, a + \sqrt{d}), P' := (p, a - \sqrt{d}) \subseteq \mathcal{O}_K$ . Show that P and P' are both prime ideals with N(P) = N(P') = p, and that (p) = PP'. Show that P = P' if and only if  $p \mid 2d$ .

*Proof.* This question can be answered directly by invoking the Dedekind Theorem (7.2). Here we mimic the proof to give a complete answer.

The minimal polynomial of  $\sqrt{d}$  over  $\mathbb{Q}$  is  $m(x) = x^2 - d$ . We have

$$x^2 - d \equiv x^2 - a^2 \equiv (x - a)(x + a) \bmod p$$

Consider the composition of ring homomorphisms  $\varphi = \pi \circ \text{ev}_{\sqrt{d}}$ :

$$\mathbb{Z}[x] \xrightarrow{\operatorname{ev}_{\sqrt{d}}} \mathbb{Z}[\sqrt{d}] \xrightarrow{\pi} \mathbb{Z}[\sqrt{d}]$$

We note that  $\ker \varphi = \langle p, m(x) \rangle$ . By the first isomorphism theorem, we have

$$(\mathbb{Z}/p\mathbb{Z})[\sqrt{d}] \cong \frac{\mathbb{Z}}{\langle p, m(x) \rangle} \cong \frac{(\mathbb{Z}/p\mathbb{Z})[x]}{\langle \overline{m}(x) \rangle} = \frac{(\mathbb{Z}/p\mathbb{Z})[x]}{\langle (\overline{x} + \overline{a})(\overline{x} - \overline{a}) \rangle}$$

where  $\overline{m}(x)$  is the image of m(x) under  $\pi : \mathbb{Z}[x] \rightarrow (\mathbb{Z}/p\mathbb{Z})[x]$ .

The prime ideals of  $\frac{(\mathbb{Z}/p\mathbb{Z})[x]}{\langle (\overline{x}+\overline{a})(\overline{x}-\overline{a}) \rangle}$  are  $\langle \overline{x}+\overline{a} \rangle$  and  $\langle \overline{x}-\overline{a} \rangle$ , which corresponds to  $\langle \sqrt{d}+a \rangle$  and  $\langle \sqrt{d}-a \rangle$  in  $(\mathbb{Z}/p\mathbb{Z})[\sqrt{d}]$ .

Contracting back to  $\mathbb{Z}[\sqrt{d}]$ , we find that  $P = \langle p, a + \sqrt{d} \rangle$  and  $P' = \langle p, a - \sqrt{d} \rangle$  are prime ideals of  $\mathbb{Z}[\sqrt{d}]$ .

Therefore

$$PP' = \langle p, a + \sqrt{d} \rangle \langle p, a - \sqrt{d} \rangle \subseteq \langle p, a^2 - d \rangle = \langle p \rangle$$

Hence there exists  $Q \triangleleft \mathbb{Z}[\sqrt{d}]$  such that  $PP'Q = \langle p \rangle$ . Taking norm:

$$p^2 = N(\langle p \rangle) = N(P)N(P')N(Q)$$

Since N(P),  $N(P') \neq 1$ , we must have N(P) = N(P') = p and N(Q) = 1. Hence  $Q = \mathbb{Z}[\sqrt{d}]$  and  $\langle p \rangle = PP'$ .

Suppose that  $p \mid 2d$ . Then  $p \mid 2a^2$ . Since p is a prime, then  $p \mid 2a$ . Hence  $P = \left\langle p, a + \sqrt{d} \right\rangle = \left\langle p, -a + \sqrt{d} \right\rangle = \left\langle p, a - \sqrt{d} \right\rangle = P'$ . Conversely, suppose that P = P'. Then  $\overline{x} - \overline{a} = \overline{x} + \overline{a}$  in  $(\mathbb{Z}/p\mathbb{Z})[x]$ . Hence  $p \mid 2a$ . But  $d = a^2$ . Then  $p \mid 2d = 2a^2$ .

# **Question 8**

Let  $d \equiv 1 \mod 4$  be a square-free integer, with  $d \neq 1$ . Show that the ring  $\mathbb{Z}[\sqrt{d}]$  is never a UFD.

[*Hint: Consider factoring* d - 1.]

*Proof.* Suppose that  $\mathbb{Z}[\sqrt{d}]$  is a UFD. Note that  $d-1=(\sqrt{d}+1)(\sqrt{d}-1)$ .

We claim that  $2 \in \mathbb{Z}[\sqrt{d}]$  is an irreducible. Suppose that  $2 = (u + v\sqrt{d})(x + y\sqrt{d})$  for some  $u, v, x, y \in \mathbb{Z}$ . Taking the norm,

$$4 = (u^2 - dv^2)(x^2 - dv^2)$$



A If  $u + v\sqrt{d}$  and  $x + y\sqrt{d}$  are non-units, then by unique factorisation in  $\mathbb{Z}$ , we have  $x^2 - dy^2 = \pm 2$ . Using congruence modulo 4, we have  $x^2 - y^2 \equiv 2 \mod 4$ . But this is impossible, as  $x^2, y^2 \equiv 0, 1 \mod 4$ . Hence either  $u + v\sqrt{d}$  or  $x + y\sqrt{d}$  is a unit. We deduce that 2 is irreducible.

Since  $\mathbb{Z}[\sqrt{d}]$  is a UFD, 2 is prime in  $\mathbb{Z}[\sqrt{d}]$ . Note that  $d-1 \equiv 0 \mod 4$ . So we have  $2 \mid (\sqrt{d}+1)(\sqrt{d}-1)$ . Then either  $2 \mid \sqrt{d}+1$ or  $2 | \sqrt{d} - 1$ , both of which are impossible. We conclude that  $\mathbb{Z}[\sqrt{d}]$  cannot be a UFD.