A

Peize Liu
St. Peter’s College
University of Oxford

Problem Sheet 3
B3.3: Algebraic Number Theory

28 February, 2021


 
A


Topics covered: factorisation of ideals.

Remark. To avoid confusion, the ideal generated by the subset S will be denoted by (S) instead of (S) throughout this problem

sheet.

Question 1

Prove that the equivalence relation defined in the lectures on the set of non-zero ideals is indeed an equivalence relation.

Proof. For I, ] <0k,

A

I~] < 3Ja,fe0k I{a)=J(B)
o Reflexivity: I =1(1) ~I(1).
¢ Symmetry: Obvious from definition.

» Transitivity: Suppose that I ~ J and J ~ K. There exists a, ,,8 € Ok such that I (a) = J{f) and J(y) = K(6). Then

I{ay) = Ka)(y) = J(B){r) = K®)(B) = K(pd)

Hence I ~ K.
We conclude that ~ is an equivalence relation. O
Question 2

Let P be a prime ideal of Ok, the ring of integers of a number field K. Show that if & € B a # 0, is chosen so that |NormK/@(a)|
is minimal, then « is an irreducible element. Deduce that if Gk is a UFD then every prime ideal is principal, and so Ok is a
PID.

Proof. Suppose that a = By for some S,y € Ok. Since P is prime, we have € P or y € P. Without loss of generality let § € P. Since

A

the norm is multiplicative, we have
|N0rmK|@(a)| = |N0rmK|Q(ﬁ)| |N0rmK|@(y)| = |NorrnK|@(a)| = |N0rmm@(ﬁ)|
By minimality of the norm of &, we must have
|Normgg(a)| = [Normgg(f)| = |Normgg(y)| =1

Hence y is a unit in Ox. We deduce that « is irreducible.

Suppose that Ok is a UFD. Then « is also a prime. In particular (@) is a prime ideal contained in P. Since O is integral over
Z, {a) N Z is a prime ideal of Z. But since Z is a PID, (@) N Z is a maximal ideal of Z, and hence (a) is a maximal ideal of O.
We must have (@) = P. P is a principal ideal. (The ring of integers has Krull dimension 1.)

Next we shall present a proof, which is valid for general integral domains, that the condition that all prime ideals are principal
implies that O is a PID.

Suppose for contradiction that Ok is not a PID. Let S be the set of all non-principal ideals of Ok. By assumption S # &. For an
ascending chain {I; : j € J} £ S, itis clear that I := U{/; : j € J} is an ideal of Ok. Suppose that I = (x) for some x € Og. Then
x € I for some j € J and hence I = (x) C I}, which is a contradiction. Hence I € S. Now Zorn’s lemma suggests that S has a
maximal element Q. We claim that Q is prime.

Suppose that Q is not prime. Then there exists a, b € O such that ab € Q and a, b ¢ Q. Note that Q + (a) contains Q and a,
and hence is principal by maximality of Q in S. There exists ¢ € Ok such that Q + {(a) = (c). Also, note that the ideal quotient
(Q:{a) :={r € Ok : rae Q} contains Q and b, and hence is also principal. There exists d € O such that (Q: {(a)) = (d). We
claim that Q = {cd).

Since (Q: (a)) = (d), we have d € (Q : (a)) and hence ad € Q. Since Q + (a) = {c), there exists g € Q and r € R such that
c=qg+ra. Then cd = qd+rad € Q. {cd) < Q. On the other hand, consider s € Q. Since Q < {c), there exists ¢ € R such that
s =tc. Since a € {c), there exists u € R such that a = uc. Then ts = utc = ua € Q. We have u € (Q : {(a)) = (d). Then there exists
v € Rsuch that t = vd. We have s = tc = ved € {cd). Hence Q < {cd). We deduce that Q = {cd) is a principal.
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But Q € S, which is a contradiction. Hence Q is a prime ideal. But by assumption, every prime ideal is principal, which is also
a contradiction. We must have S = @. We conclude that Ok is a PID.

(Alternatively, we can invoke the prime decomposition and write the proof in one line. However this is uninteresting...) O
Nice!

Question 3
The rings Z[v/6] and Z[v/7] are PIDs. Exhibit generators for their ideals (3, v/6), (5,4 + v/6), (2,1 + /7)

[Hint: Compute the norm of each of the given ideals of the form (p, &) and find an element 8 € Ok of suitable norm.]

Proof. e The first one is simple. By direct observation we claim that (3, vV6) = (3 + v/6).

It is clear that 3+ v/6 € <3, \/6> On the other hand, we observe that 3 = (3+ v6)(3 — v/6) and v6 = (3 + \/é) —3. Hence
3,V6€(3+V6).

Suppose that (5,4 + v/6) = (a+ bv/6) for some a, b € Z. We can compute the norms:

A Norm(5) =25, Norm(4+v6)=10,  Norm(a+bv6) = a* - 6b*

Hence a® - 6b* | gcd(25,10) = 5. Since (a + bv/6) # Z[V/6], we deduce that a® — 6b* = +5.

We try a+bv/6 = 1-V/6. Note that 1-v/6 = 5—(4+V/6) € (5,4 + v/6). On the other hand, we observe that 5 = (1-/6)(-1-
v6) and 4+ V6 =5— (1 — v/6). Hence (5,4 +v6) < (1 — v/6). We deduce that (5,4 +v6) = (1 - v/6).

* Suppose that (2,1+/7) = {a+ bV/7) for some a, b € Z. We can compute the norms:
Norm(2) = 4, Norm(1 + V7) = -6, Norm(a + bv6) = a® — 7b*

Hence a? — 7b* | gcd(4, —6) = 2. Since {a + bv/7) # Z[V/7], we deduce that a® — 6b* = +2.
We try a+bv/7 = 3+V/7. Note that 2 = (3+V7)(3-v7) and 1+ V7 = 2+ (3+/7). we deduce that (2,1 + v7) = (3+ V7). O

Question 4
Find the prime factorisations of the ideals (3),(5) and (7) in Z[v/—5]. Show that the prime ideal factors of (7) are not principal.

Proof. We follow the procedure outlined in Example 7.4.

For prime p € Z, by prime factorisation, there are three possible cases:

A P P € Spec(Z[V=5)); (p inert)
(p)=1 pP? Pe Spec(Z[\/—_S]); (p ramifies)
PQ PQe Spec(Z[\/—_S]), P #£Q; (p splits)

The minimal polynomial of v/=5 over Q is m(x) = x> +5.
» When p =3, we have m(x) = x> =1 = (x + 1)(x — 1) mod 3. By Theorem 7.2, we have (3) = (3,1 +v/-5)(3,1—v/=5).
« When p =5, we have m(x) = x2 mod 5. By Theorem 7.2, we have (5) = (5,v/=5)" = (y/=5)’.

» When p = 7, we have m(x) = x> =2 = (x + 3)(x — 3) mod 7. By Theorem 7.2, we have (7) = (7,3 + v-5)(7,3 - v/-5). We
shall show that (7,3 + v/=5) are non-principal. Suppose that they are principal. Then there exists a,b € Z such that

(a+bv-5)=(7,3+v-5). The norms
Norm(a+bv5) =a?+5b%, Norm(7)=49, Norm(3+Vv—-5)=14

Hence we must have a? + 5b* = gcd (49, 14) = 7. It is clear that the equation has no integer solutions. Hence the prime
factors (7,3 + v/=5) are non-principal. 0


 
Nice!
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Question 5

Let K < Lbe fields and let I be an ideal of 0. Define -0 to be the ideal of G generated by the products i¢, suchthatie I,¢ €
O'1. Show that, for any ideals I, J of Ok, any n € N and any principal ideal (a) = a®k of Ok, (I])-Op = (I1-Or) (J-Op),I"- O =
(I-G1)" and (a)-Or = a0, (the principal ideal of @} generated by the same element). Let K = Q(v/—13) and let I = (2,v/~13+1).
Show that I? = (2) and that I is not principal. Let L = Q(v/~13,v/2). Show that I -@; is the principal ideal of @} generated by
V2 (we say that I has been made principal in the extension).

Proof. I— I-0y is the ideal extension under the ring extension Ox — Oy.

n
Suppose that I, ] <Ok. The elements in (I]) - Oy, are of the form Z irji? for some iy,...,in €I, ji,..., jn € Jand ¢ € Or. Each
k=1

n
ixjxl € (I-Op)(J-Or). Hence Z ixjx€ € (I-Op)(J-Or). On the other hand, the elements of (I-Op)(J- O1) are of the form

k=1
n

n
Y ikl jemy for some iy,...in € I, j1,.., ju € J and 1,...,0p, my,..,mpy € Op. It is clear that )_ixlyjrmi € (1)) - Op. We
= k=1
deduce that (IJ)- O = (I-O1)(J - Or).

Next, by induction on n, we have (I- 0;)" = I"- 0 for each n e N.

Forr € a0y, r = al for some ¢ € O;. Hence r € {a) Or. For r € {a) O;, r = ak¥ for some k € Og and ¢ € O;. But k¢ € O;. Hence
r € a0®r. We deduce that a0y = (a) Or.

Now K = Q(v/—13). Since —13 = 3 mod 4, we have Og = Z[v—13]. Let I = (2,1+ \/—13>@K. Suppose that I is principal.
There exists a,b € Z such that I = (a+bv—13). Note that Normgg(a+ bv/—13) = a® + 13b* divides Normg g(2) = 4 and
Normgjg(1 + v'—13) = 14. We must have a® +13b? = +2. But it is clear that the equation has no solution. I is not principal.

2= <2,1+ \/—_13>@K <2,1 + \/—_13> - <4,—12+2\/—_13,2+2\/—_13>@K <20,

Ok

And2=4x4+(-12+2v/—13) — (2 + 2v/—13). We deduce that I? = (2) oy -

1+v-13
Let L =Q(v/—13,v2). Note that2/v2=v2€ 01,502 € (\/§>@L . We claim that a := —5 € 0. Indeed,
1+v=13
a= —; = 2a?=(1+v-13)2=-12+2V-13 = (@®+6)°=-13 = a*+12a%*+49=0

Hence 1+V/~13 € (V2),, . We deduce that I-Op = (v'2) ;, . By Proposition 6.23, there exists J <0y, such that (I-0p)] = (v2) 5, .
But we know that (I-0p)? = (2)4, = <\/§>2@L Hence N(I-0r) = N( \/E)@L) by multiplicativity of the ideal norm. Hence
N(J) = 1. We deduce that J = 0 andI-@L:(\/i>@L. O

Question 6

Let B, Q be distinct nonzero prime ideals in 0. Show that P+ Q =0g and PN Q = PQ.

Proof. In Question 2, we have shown that all non-zero prime ideals in Ox are maximal (by contracting the ideals to Z). Therefore P

A

and Q are distinct maximal ideals. Note that P C P + Q. We must have P + Q = Og. Hence P and Q are coprime. There exists
pePandgeQsuchthatp+g=1.Forxe PnQ, x=xp+xq € PQ. Hence PN Q < PQ. The other direction PQ<c PN Q is
immediate by definition. O

Question 7

Let d # 1 mod 4 be a square-free integer and define K := Q(Vd); so Gx = Z[Vd). Let p be a rational prime. Suppose that
d = a® mod p. Define P := (p,a+Vd),P':= (p,a—V'd) < Ox. Show that P and P’ are both prime ideals with N(P) = N (P') = p,
and that (p) = PP'. Show that P = P’ if and only if p | 2d.

Proof. This question can be answered directly by invoking the Dedekind Theorem (7.2). Here we mimic the proof to give a complete

B answer.
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The minimal polynomial of Vd over Q is m(x) = x* — d. We have
x*—d=x*-a*=(x-a)(x+a) mod p

Consider the composition of ring homomorphisms ¢ =woev,

eVya 7
Z[x] —= ZIVd) —=— (Z/ p2)[Vd]

We note that ker¢ = (p, m(x)). By the first isomorphism theorem, we have

Z ___@pDlxl __ @IpD)x]
(pmx) (M) (F+aE-a)

@ZIpp)Vd) =

where m(x) is the image of m(x) under 7 : Z[x] — (Z/ pZ)[x].
(Z1p2)[x]

(G+raGE-d)

Contracting back to Z[Vd], we find that P = <p, a+ \/2> and P’ = <p, a— \/ﬁ> are prime ideals of Z[Vd].

The prime ideals of are (x+a) and (X — @), which corresponds to <\/2+ a> and <\/E— a> in (Z/pz)[Vd].

Therefore

PP’:<p,a+\/3><p,a—\/ﬁ>§(p,az—d>:<p>
Hence there exists Q <Z[V/d] such that PP'Q = (p). Taking norm:
p*=N((p)) = NPIN(PN(Q)
Since N(P), N(P') # 1, we must have N(P) = N(P") = p and N(Q) = 1. Hence Q = Z[Vd] and (p)=PP.

Suppose that p | 2d. Then p | 2a?. Since p is a prime, then p | 2a. Hence P = <p,a+ \/E> = <p,—a+ \/3> = <p,a— \/E> =P.
Conversely, suppose that P = P'. Then X~ @ =X+ d in (Z/ pZ)[x]. Hence p | 2a. But d = a®. Then p | 2d = 2a°. O

Question 8

Let d =1 mod 4 be a square-free integer, with d # 1. Show that the ring Z [\/ﬁ] is never a UFD.

[Hint: Consider factoringd —1.]

Proof. Suppose that Z[Vd] is a UFD. Note thatd — 1 = (vVd + 1) (Vd - 1).

We claim that 2 € Z[V/d] is an irreducible. Suppose that 2 = (1 + vV/d)(x + yv/d) for some u, v, x, y € Z. Taking the norm,
4= (u2 - dl/z)(x2 - dyz)

A If u+ vV/d and x + yv/d are non-units, then by unique factorisation in Z, we have x?> — dy? = +2. Using congruence modulo
4, we have x*> — y? = 2 mod 4. But this is impossible, as x>, > = 0,1 mod 4. Hence either u + vv/d or x + yV/d is a unit. We
deduce that 2 is irreducible.

Since Z[v/d] is a UFD, 2 is prime in Z[Vd]. Note that d —1 = 0 mod 4. So we have 2 | (v/d +1)(v/d — 1). Then either 2 | Vd + 1
or2|vd -1, both of which are impossible. We conclude that Z[Vd] cannot be a UFD. O
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