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Topics covered: factorisation of ideals.

Remark. To avoid confusion, the ideal generated by the subset S will be denoted by 〈S〉 instead of (S) throughout this problem
sheet.

Question 1

Prove that the equivalence relation defined in the lectures on the set of non-zero ideals is indeed an equivalence relation.

Proof. For I , J /OK ,
I ∼ J ⇐⇒ ∃α,β ∈OK I 〈α〉 = J

〈
β
〉

• Reflexivity: I = I 〈1〉 ∼ I 〈1〉.
• Symmetry: Obvious from definition.

• Transitivity: Suppose that I ∼ J and J ∼ K . There exists α,β,γ,δ ∈OK such that I 〈α〉 = J
〈
β
〉

and J
〈
γ
〉= K 〈δ〉. Then

I
〈
αγ

〉= I 〈α〉〈γ〉= J
〈
β
〉〈
γ
〉= K 〈δ〉〈β〉= K

〈
βδ

〉
Hence I ∼ K .

We conclude that ∼ is an equivalence relation.

Question 2

Let P be a prime ideal of OK , the ring of integers of a number field K . Show that if α ∈ P,α 6= 0, is chosen so that
∣∣NormK /Q(α)

∣∣
is minimal, then α is an irreducible element. Deduce that if OK is a UFD then every prime ideal is principal, and so OK is a
PID.

Proof. Suppose that α= βγ for some β,γ ∈OK . Since P is prime, we have β ∈ P or γ ∈ P . Without loss of generality let β ∈ P . Since
the norm is multiplicative, we have∣∣NormK |Q(α)

∣∣= ∣∣NormK |Q(β)
∣∣ ∣∣NormK |Q(γ)

∣∣ =⇒ ∣∣NormK |Q(α)
∣∣Ê ∣∣NormK |Q(β)

∣∣
By minimality of the norm of α, we must have∣∣NormK |Q(α)

∣∣= ∣∣NormK |Q(β)
∣∣ =⇒ ∣∣NormK |Q(γ)

∣∣= 1

Hence γ is a unit in OK . We deduce that α is irreducible.

Suppose that OK is a UFD. Then α is also a prime. In particular 〈α〉 is a prime ideal contained in P . Since OK is integral over
Z, 〈α〉∩Z is a prime ideal of Z. But since Z is a PID, 〈α〉∩Z is a maximal ideal of Z, and hence 〈α〉 is a maximal ideal of OK .
We must have 〈α〉 = P . P is a principal ideal. (The ring of integers has Krull dimension 1.)

Next we shall present a proof, which is valid for general integral domains, that the condition that all prime ideals are principal
implies that OK is a PID.

Suppose for contradiction that OK is not a PID. Let S be the set of all non-principal ideals of OK . By assumption S 6=∅. For an
ascending chain {I j : j ∈ J } ⊆ S, it is clear that I := ⋃

{I j : j ∈ J } is an ideal of OK . Suppose that I = 〈x〉 for some x ∈ OK . Then
x ∈ I j for some j ∈ J and hence I = 〈x〉( I j , which is a contradiction. Hence I ∈ S. Now Zorn’s lemma suggests that S has a
maximal element Q. We claim that Q is prime.

Suppose that Q is not prime. Then there exists a,b ∈ OK such that ab ∈ Q and a,b ∉ Q. Note that Q +〈a〉 contains Q and a,
and hence is principal by maximality of Q in S. There exists c ∈OK such that Q +〈a〉 = 〈c〉. Also, note that the ideal quotient
(Q : 〈a〉) := {r ∈ OK : r a ∈Q} contains Q and b, and hence is also principal. There exists d ∈ OK such that (Q : 〈a〉) = 〈d〉. We
claim that Q = 〈cd〉.
Since (Q : 〈a〉) = 〈d〉, we have d ∈ (Q : 〈a〉) and hence ad ∈ Q. Since Q + 〈a〉 = 〈c〉, there exists q ∈ Q and r ∈ R such that
c = q + r a. Then cd = qd + r ad ∈Q. 〈cd〉 ⊆Q. On the other hand, consider s ∈Q. Since Q ⊆ 〈c〉, there exists t ∈ R such that
s = tc. Since a ∈ 〈c〉, there exists u ∈ R such that a = uc. Then t s = utc = ua ∈Q. We have u ∈ (Q : 〈a〉) = 〈d〉. Then there exists
v ∈ R such that t = vd . We have s = tc = vcd ∈ 〈cd〉. Hence Q ⊆ 〈cd〉. We deduce that Q = 〈cd〉 is a principal.
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But Q ∈ S, which is a contradiction. Hence Q is a prime ideal. But by assumption, every prime ideal is principal, which is also
a contradiction. We must have S =∅. We conclude that OK is a PID.

(Alternatively, we can invoke the prime decomposition and write the proof in one line. However this is uninteresting...)

Question 3

The rings Z[
p

6] and Z[
p

7] are PIDs. Exhibit generators for their ideals (3,
p

6), (5,4+p
6), (2,1+p

7)

[Hint: Compute the norm of each of the given ideals of the form (p,α) and find an element β ∈OK of suitable norm.]

Proof. • The first one is simple. By direct observation we claim that
〈

3,
p

6
〉= 〈

3+p
6
〉

.

It is clear that 3+p
6 ∈ 〈

3,
p

6
〉

. On the other hand, we observe that 3 = (3+p
6)(3−p

6) and
p

6 = (
3+p

6
)−3. Hence

3,
p

6 ∈ 〈
3+p

6
〉

.

• Suppose that
〈

5,4+p
6
〉= 〈

a +b
p

6
〉

for some a,b ∈Z. We can compute the norms:

Norm(5) = 25, Norm(4+p
6) = 10, Norm(a +b

p
6) = a2 −6b2

Hence a2 −6b2 | gcd(25,10) = 5. Since
〈

a +b
p

6
〉 6=Z[

p
6], we deduce that a2 −6b2 =±5.

We try a+b
p

6 = 1−p
6. Note that 1−p

6 = 5−(4+p
6) ∈ 〈

5,4+p
6
〉

. On the other hand, we observe that 5 = (1−p
6)(−1−p

6) and 4+p
6 = 5− (1−p

6). Hence
〈

5,4+p
6
〉⊆ 〈

1−p
6
〉

. We deduce that
〈

5,4+p
6
〉= 〈

1−p
6
〉

.

• Suppose that
〈

2,1+p
7
〉= 〈

a +b
p

7
〉

for some a,b ∈Z. We can compute the norms:

Norm(2) = 4, Norm(1+p
7) =−6, Norm(a +b

p
6) = a2 −7b2

Hence a2 −7b2 | gcd(4,−6) = 2. Since
〈

a +b
p

7
〉 6=Z[

p
7], we deduce that a2 −6b2 =±2.

We try a+b
p

7 = 3+p
7. Note that 2 = (3+p

7)(3−p
7) and 1+p

7 = 2+(3+p
7). we deduce that

〈
2,1+p

7
〉= 〈

3+p
7
〉

.

Question 4

Find the prime factorisations of the ideals (3),(5) and (7) in Z[
p−5]. Show that the prime ideal factors of (7) are not principal.

Proof. We follow the procedure outlined in Example 7.4.

For prime p ∈Z, by prime factorisation, there are three possible cases:

〈
p

〉=


P P ∈ Spec(Z[
p−5]); (p inert)

P 2 P ∈ Spec(Z[
p−5]); (p ramifies)

PQ P,Q ∈ Spec(Z[
p−5]), P 6=Q; (p splits)

The minimal polynomial of
p−5 overQ is m(x) = x2 +5.

• When p = 3, we have m(x) ≡ x2 −1 ≡ (x +1)(x −1) mod 3. By Theorem 7.2, we have 〈3〉 = 〈
3,1+p−5

〉〈
3,1−p−5

〉
.

• When p = 5, we have m(x) ≡ x2 mod 5. By Theorem 7.2, we have 〈5〉 = 〈
5,
p−5

〉2 = 〈p−5
〉2

.

• When p = 7, we have m(x) ≡ x2 −2 ≡ (x +3)(x −3) mod 7. By Theorem 7.2, we have 〈7〉 = 〈
7,3+p−5

〉〈
7,3−p−5

〉
. We

shall show that
〈

7,3±p−5
〉

are non-principal. Suppose that they are principal. Then there exists a,b ∈ Z such that〈
a +b

p−5
〉= 〈

7,3±p−5
〉

. The norms

Norm(a +b
p

5) = a2 +5b2, Norm(7) = 49, Norm(3±p−5) = 14

Hence we must have a2 +5b2 = gcd(49,14) = 7. It is clear that the equation has no integer solutions. Hence the prime
factors

〈
7,3±p−5

〉
are non-principal.

 
Nice!
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Question 5

Let K ⊆ L be fields and let I be an ideal of OK . Define I ·OL to be the ideal of OL generated by the products i`, such that i ∈ I ,` ∈
OL . Show that, for any ideals I , J of OK , any n ∈N and any principal ideal (a) = aOK of OK , (I J ) ·OL = (I ·OL) (J ·OL) , I n ·OL =
(I ·OL)n and (a)·OL = aOL (the principal ideal of OL generated by the same element). Let K =Q(

p−13) and let I = (2,
p−13+1).

Show that I 2 = (2) and that I is not principal. Let L =Q(
p−13,

p
2). Show that I ·OL is the principal ideal of OL generated byp

2 (we say that I has been made principal in the extension).

Proof. I 7→ I ·OL is the ideal extension under the ring extension OK →OL .

Suppose that I , J /OK . The elements in (I J ) ·OL are of the form
n∑

k=1
ik jk` for some i1, ..., in ∈ I , j1, ..., jn ∈ J and ` ∈ OL . Each

ik jk` ∈ (I ·OL)(J ·OL). Hence
n∑

k=1
ik jk` ∈ (I ·OL)(J ·OL). On the other hand, the elements of (I ·OL)(J ·OL) are of the form

n∑
k=1

ik`k jk mk for some i1, ..., in ∈ I , j1, ..., jn ∈ J and `1, ...,`n ,m1, ...,mn ∈ OL . It is clear that
n∑

k=1
ik`k jk mk ∈ (I J ) ·OL . We

deduce that (I J ) ·OL = (I ·OL)(J ·OL).

Next, by induction on n, we have (I ·OL)n = I n ·OL for each n ∈N.

For r ∈ aOL , r = a` for some ` ∈OL . Hence r ∈ 〈a〉OL . For r ∈ 〈a〉OL , r = ak` for some k ∈OK and ` ∈OL . But k` ∈OL . Hence
r ∈ aOL . We deduce that aOL = 〈a〉OL .

Now K = Q(
p−13). Since −13 ≡ 3 mod 4, we have OK = Z[

p−13]. Let I = 〈
2,1+p−13

〉
OK

. Suppose that I is principal.

There exists a,b ∈ Z such that I = 〈
a +b

p−13
〉

. Note that NormK |Q(a + b
p−13) = a2 + 13b2 divides NormK |Q(2) = 4 and

NormK |Q(1+p−13) = 14. We must have a2 +13b2 =±2. But it is clear that the equation has no solution. I is not principal.

I 2 =
〈

2,1+p−13
〉
OK

〈
2,1+p−13

〉
OK

=
〈

4,−12+2
p−13,2+2

p−13
〉
OK

⊆ 〈2〉OK

And 2 = 4×4+ (−12+2
p−13)− (2+2

p−13). We deduce that I 2 = 〈2〉OK .

Let L =Q(
p−13,

p
2). Note that 2/

p
2 =p

2 ∈OL , so 2 ∈ 〈p
2
〉
OL

. We claim that α := 1+p−13p
2

∈OL . Indeed,

α= 1+p−13p
2

=⇒ 2α2 = (1+p−13)2 =−12+2
p−13 =⇒ (α2 +6)2 =−13 =⇒ α4 +12α2 +49 = 0

Hence 1+p−13 ∈ 〈p
2
〉
OL

. We deduce that I ·OL ⊆ 〈p
2
〉
OL

. By Proposition 6.23, there exists J/OL such that (I ·OL)J = 〈p
2
〉
OL

.

But we know that (I ·OL)2 = 〈2〉OL = 〈p
2
〉2
OL

. Hence N (I ·OL) = N (
〈p

2
〉
OL

) by multiplicativity of the ideal norm. Hence

N (J ) = 1. We deduce that J =OL and I ·OL = 〈p
2
〉
OL

.

Question 6

Let P,Q be distinct nonzero prime ideals in OK . Show that P +Q =OK and P ∩Q = PQ.

Proof. In Question 2, we have shown that all non-zero prime ideals in OK are maximal (by contracting the ideals to Z). Therefore P
and Q are distinct maximal ideals. Note that P ( P +Q. We must have P +Q =OK . Hence P and Q are coprime. There exists
p ∈ P and q ∈Q such that p +q = 1. For x ∈ P ∩Q, x = xp + xq ∈ PQ. Hence P ∩Q ⊆ PQ. The other direction PQ ⊆ P ∩Q is
immediate by definition.

Question 7

Let d 6≡ 1 mod 4 be a square-free integer and define K := Q(
p

d); so OK = Z[
p

d ]. Let p be a rational prime. Suppose that
d ≡ a2 mod p. Define P := (p, a+p

d),P ′ := (p, a−p
d) ⊆OK . Show that P and P ′ are both prime ideals with N (P ) = N

(
P ′)= p,

and that (p) = PP ′. Show that P = P ′ if and only if p | 2d .

Proof. This question can be answered directly by invoking the Dedekind Theorem (7.2). Here we mimic the proof to give a complete
answer.
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The minimal polynomial of
p

d overQ is m(x) = x2 −d . We have

x2 −d ≡ x2 −a2 ≡ (x −a)(x +a) mod p

Consider the composition of ring homomorphisms ϕ=π◦evpd :

Z[x] Z[
p

d ] (Z/pZ)[
p

d ]
evpd π

We note that kerϕ= 〈
p,m(x)

〉
. By the first isomorphism theorem, we have

(Z/pZ)[
p

d ] ∼= Z〈
p,m(x)

〉 ∼= (Z/pZ)[x]〈
m(x)

〉 = (Z/pZ)[x]〈
(x +a)(x −a)

〉
where m(x) is the image of m(x) under π :Z[x]� (Z/pZ)[x].

The prime ideals of
(Z/pZ)[x]〈

(x +a)(x −a)
〉 are

〈
x +a

〉
and

〈
x −a

〉
, which corresponds to

〈p
d +a

〉
and

〈p
d −a

〉
in (Z/pZ)[

p
d ].

Contracting back to Z[
p

d ], we find that P =
〈

p, a +p
d

〉
and P ′ =

〈
p, a −p

d
〉

are prime ideals of Z[
p

d ].

Therefore
PP ′ =

〈
p, a +

p
d

〉〈
p, a −

p
d

〉
⊆ 〈

p, a2 −d
〉= 〈

p
〉

Hence there exists Q /Z[
p

d ] such that PP ′Q = 〈
p

〉
. Taking norm:

p2 = N
(〈

p
〉)= N (P )N (P ′)N (Q)

Since N (P ), N (P ′) 6= 1, we must have N (P ) = N (P ′) = p and N (Q) = 1. Hence Q =Z[
p

d ] and
〈

p
〉= PP ′.

Suppose that p | 2d . Then p | 2a2. Since p is a prime, then p | 2a. Hence P =
〈

p, a +p
d

〉
=

〈
p,−a +p

d
〉
=

〈
p, a −p

d
〉
= P ′.

Conversely, suppose that P = P ′. Then x −a = x +a in (Z/pZ)[x]. Hence p | 2a. But d = a2. Then p | 2d = 2a2.

Question 8

Let d ≡ 1 mod 4 be a square-free integer, with d 6= 1. Show that the ring Z[
p

d ] is never a UFD.

[Hint: Consider factoring d −1.]

Proof. Suppose that Z[
p

d ] is a UFD. Note that d −1 = (
p

d +1)(
p

d −1).

We claim that 2 ∈Z[
p

d ] is an irreducible. Suppose that 2 = (u + v
p

d)(x + y
p

d) for some u, v, x, y ∈Z. Taking the norm,

4 = (u2 −d v2)(x2 −d y2)

If u + v
p

d and x + y
p

d are non-units, then by unique factorisation in Z, we have x2 −d y2 =±2. Using congruence modulo
4, we have x2 − y2 ≡ 2 mod 4. But this is impossible, as x2, y2 ≡ 0,1 mod 4. Hence either u + v

p
d or x + y

p
d is a unit. We

deduce that 2 is irreducible.

Since Z[
p

d ] is a UFD, 2 is prime in Z[
p

d ]. Note that d −1 ≡ 0 mod 4. So we have 2 | (
p

d +1)(
p

d −1). Then either 2 | pd +1
or 2 | pd −1, both of which are impossible. We conclude that Z[

p
d ] cannot be a UFD.
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