

Peize Liu St. Peter's College University of Oxford

Problem Sheet 1

C3.11: Riemannian Geometry

Section A: Introductory

Question 1

Let

$$\mathcal{H}^{n} = \left\{ (x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : \sum_{j=1}^{n} x_{j}^{2} - x_{n+1}^{2} = -1, x_{n+1} > 0 \right\}$$

and let g be the restriction of

$$h = \sum_{j=1}^{n} dx_{j}^{2} - dx_{n+1}^{2}$$

on \mathbb{R}^{n+1} to \mathcal{H}^n .

- (a) Show that g is a Riemannian metric on \mathcal{H}^n .
- (b) Let f(x) = Ax be a linear map on \mathbb{R}^{n+1} given by $A = (a_{ij}) \in M_{n+1}(\mathbb{R})$ and let

$$G = \left(\begin{array}{cc} I_n & 0\\ 0 & -1 \end{array}\right)$$

where I_n is the $n \times n$ identity matrix. Show that f defines an isometry on (\mathcal{H}^n, g) if and only if

$$A^{\mathrm{T}}GA = G$$
 and $a_{n+1,n+1} > 0$.

- (c) Now let n = 2, L > 0 and $\alpha : [0, L] \to \mathcal{H}^2$ be given by $\alpha(t) = (\sinh t, 0, \cosh t)$. If $\tau_{\alpha} : T_{\alpha(0)}\mathcal{H}^2 \to T_{\alpha(L)}\mathcal{H}^2$ is the parallel transport map, compute $\tau_{\alpha}(\partial_1)$ and $\tau_{\alpha}(\partial_2)$.
- *Proof.* (a) It is clear that h defines a symmetric type-(0,2) tensor field on \mathbb{R}^{n+1} , and therefore the restriction g is a symmetric type-(0,2) tensor field on \mathcal{H}^n . It remains to show that g is positive definite.

We can define a diffeomorphism $\varphi: \mathbb{R}^n \to \mathcal{H}^n$ is given by

$$\varphi(y_1, ..., y_n) = \left(y_1, ..., y_n, \sqrt{\sum_{j=1}^n y_j^2 + 1}\right)$$

Then

$$\varphi^* g = \sum_{j=1}^n \mathrm{d} y_j^2 - (\varphi^* \mathrm{d} x_{n+1})^2$$

$$= \sum_{j=1}^n \mathrm{d} y_j^2 - \left(\sum_{j=1}^n \frac{y_j}{\sqrt{\sum_{i=1}^n y_i^2 + 1}} \mathrm{d} y_j\right)^2$$

$$= \frac{1}{\sum_{i=1}^n y_i^2 + 1} \left(\sum_{j=1}^n \left(1 + \sum_{i=1}^n y_i^2 - y_j^2\right) \mathrm{d} y_j^2 - 2\sum_{j=1}^{n-1} \sum_{k=j+1}^n y_j y_k \mathrm{d} y_j \mathrm{d} y_k\right)$$

We need some linear algebra to show that this is positive definite...

(b) From on now we adopt Einstein's convention on summation of repeated indices from 1 to n + 1. But we do not distinguish covariant/contravariant indices by lower/upper indices.

Note that $f^* dx_j = a_{jk} dx_k$. Since $h = G_{ij} dx^i dx^j$, we have

$$f^*h = G_{ij}a_{ik}a_{j\ell}\mathrm{d}x_k\mathrm{d}x_\ell = (A^\top GA)_{k\ell}\mathrm{d}x_k\mathrm{d}x_\ell$$

If f is an isometry on \mathbb{R}^{n+1} , then $f^*h = h$, which is equivalent to $A^{\top}GA = G$.

Moreover, $x_{n+1} \circ f(x_{n+1}) = a_{n+1,n+1}$. f maps the half plane $\{x_{n+1} > 0\}$ into itself if and only if $a_{n+1,n+1} > 0$.

We deduce that f defines an isometry on \mathcal{H}^n if and only if $A^{\top}GA = G$ and $a_{n+1,n+1} > 0$.

(c) We can parameterise \mathcal{H}^2 by the "hyperbolic spherical coordinates". Let $\psi:(0,2\pi)\times\mathbb{R}\to\mathcal{H}^2$ given by

$$\psi(\theta,\phi):=(\cos\theta\sinh\phi,\sin\theta\sinh\phi,\cosh\phi)$$

Then

$$\psi^* g = (-\sin\theta \sinh\phi d\theta + \cos\theta \cosh\phi d\phi)^2 + (\cos\theta \sinh\phi d\theta + \sin\theta \cosh\phi d\phi)^2 - \sinh^2\phi d\phi^2$$
$$= d\phi^2 + \sinh^2\phi d\theta^2$$

Note that $\alpha(t) = \psi \circ \beta(t)$, where $\beta(t) = (0, t)$. Therefore $\dot{\alpha}(t) = \psi_* \dot{\beta}(t) = \partial_{\phi}$. The Christoffel symbols

$$\begin{split} \Gamma^{\phi}_{\phi\phi} &= \frac{1}{2} g^{\phi a} \left(2 \partial_{\phi} g_{a\phi} - \partial_{a} g_{\phi\phi} \right) = \frac{1}{2} g^{\phi\phi} \partial_{\phi} g_{\phi\phi} = 0 \\ \Gamma^{\theta}_{\phi\phi} &= \frac{1}{2} g^{\theta a} \left(2 \partial_{\phi} g_{a\phi} - \partial_{a} g_{\phi\phi} \right) = 0 \\ \Gamma^{\phi}_{\phi\theta} &= \frac{1}{2} g^{\phi a} \left(\partial_{\phi} g_{a\theta} + \partial_{\theta} g_{a\phi} - \partial_{a} g_{\theta\phi} \right) = 0 \\ \Gamma^{\theta}_{\phi\theta} &= \frac{1}{2} g^{\theta a} \left(\partial_{\phi} g_{a\theta} + \partial_{\theta} g_{a\phi} - \partial_{a} g_{\theta\phi} \right) = \frac{1}{2} g^{\theta\theta} \partial_{\phi} g_{\theta\theta} = \coth \phi \end{split}$$

Suppose that X(t) is a parallel vector field along α . Then $\nabla_{\phi}X(t)=0$. In local coordinates we have

$$\frac{\mathrm{d}X^{\phi}}{\mathrm{d}t} = 0, \qquad \frac{\mathrm{d}X^{\theta}}{\mathrm{d}t} + \coth\phi(t)X^{\theta} = \frac{\mathrm{d}X^{\theta}}{\mathrm{d}t} + X^{\theta}\coth t = 0$$

The solution is given by $X(t) = a\partial_{\phi} + \frac{b}{\sinh t}\partial_{\theta}$. The push-forward of tangent vectors:

$$\partial_{\phi} = \cosh \phi (\cos \theta \partial_1 + \sin \theta \partial_2) + \sinh \phi \partial_3$$
$$\partial_{\theta} = \sinh \phi (-\sin \theta \partial_1 + \cos \theta \partial_2)$$

Hence $X(t) = a(\cosh t\partial_1 + \sinh t\partial_3) + b\partial_2$. Hence

$$\tau_{\alpha}(\partial_1) = \cosh L \, \partial_1 + \sinh L \, \partial_3, \qquad \tau_{\alpha}(\partial_2) = \partial_2$$

Question 2

Let (M,g) be a connected Riemannian manifold and let \widetilde{M} be the universal cover of M.

- (a) Show that there exists a unique Riemannian metric \widetilde{g} on \widetilde{M} such that the covering map $\pi: (\widetilde{M}, \widetilde{g}) \to (M, g)$ is a local isometry.
- (b) Show that the fundamental group of M acts on $(\widetilde{M}, \widetilde{g})$ by isometries.

Proof. (a) The covering map $\pi: \widetilde{M} \to M$ is a local diffeomorphism and hence is an immersion. By Proposition

1.3, the pull-back $\widetilde{g} := \pi \circ g$ is a Riemannian metric on \widetilde{M} , and therefore $\pi : (\widetilde{M}, \widetilde{g}) \to (M, g)$ is a local isometry. Suppose that h is another Riemannian metric on \widetilde{M} such that $\pi : (\widetilde{M}, h) \to (M, g)$ is a local isometry. Then locally $h = \pi^* g = \widetilde{g}$. This holds for any point on \widetilde{M} . Hence $\widetilde{g} = h$ globally, and \widetilde{g} is unique.

(b) For $\alpha \in \pi_1(M)$, α acts on \widetilde{M} by a Deck transformation $f_\alpha : \widetilde{M} \to \widetilde{M}$. That is, $\pi \circ f_\alpha = \pi$. Then

$$\widetilde{g} = \pi^* g = f_{\alpha}^* \pi^* g = f_{\alpha}^* \widetilde{g}$$

Hence f_{α} is an isometry.

Section B: Core

Question 3

Let (M_1, g_1) and (M_2, g_2) be Riemannian manifolds with Levi-Civita connections ∇_1 and ∇_2 respectively. Recall that $T_{(p_1,p_2)}(M_1 \times M_2) \cong T_{p_1}M_1 \times T_{p_2}M_2$ for all $(p_1,p_2) \in M_1 \times M_2$. Define g on $M_1 \times M_2$ by

$$g_{(p_1,p_2)}\left(\left(X_1,X_2\right),\left(Y_1,Y_2\right)\right) = \left(g_1\right)_{p_1}\left(X_1,Y_1\right) + \left(g_2\right)_{p_2}\left(X_2,Y_2\right).$$

- (a) Show that g is a Riemannian metric on $M_1 \times M_2$.
- (b) Show that the Levi-Civita connection ∇ of g on $M_1 \times M_2$ satisfies

$$\nabla_{(X_1,X_2)}(Y_1,Y_2) = ((\nabla_1)_{X_1} Y_1, (\nabla_2)_{X_2} Y_2)$$

for all vector fields X_1, Y_1 on M_1 and X_2, Y_2 on M_2 .

Proof. (a) Note that the fibre-wise isomorphism of vector spaces implies the global diffeomorphism of bundles $T(M_1 \times M_2) \cong TM_1 \times TM_2$. So any $X \in \Gamma(T(M_1 \times M_2))$ must take the form (X_1, X_2) for $X_1 \in \Gamma(TM_1)$ and $X_2 \in \Gamma(TM_2)$. Let $\pi_i : M_1 \times M_2 \to M_i$ be the projection map. Then $g: T(M_1 \times M_2) \times T(M_1 \times M_2) \to C^{\infty}(M_1 \times M_2)$ is given by

$$g((X_1, X_2), (Y_1, Y_2)) = g_1(X_1, Y_1) \circ \pi_1 + g_2(X_2, Y_2) \circ \pi_2 \quad \text{if it is a substitute of the same in the state of the same in the same in$$

We need to show that g is a symmetric type-(0,2) tensor field. The symmetry is immediate from definition. To show that it is a tensor field, it suffices to show that g is $C^{\infty}(M_1 \times M_2)$ -linear in each slot (by Question 1 of Sheet 1, C7.6 General Relativity II). It is tautological. Let $(f_1, f_2) \in C^{\infty}(M_1 \times M_2)$. Then

$$g((f_1, f_2) \cdot (X_1, X_2), (Y_1, Y_2)) = g_1(f_1X_1, Y_1) \circ \pi_1 + g_2(f_2X_2, Y_2) \circ \pi_2$$

$$= f_1g_1(X_1, Y_1) \circ \pi_1 + f_2g_2(X_2, Y_2) \circ \pi_2$$

$$= (f_1 \cdot f_2) \cdot (g_1(X_1, Y_1) \circ \pi_1 + g_2(X_2, Y_2) \circ \pi_2)$$

$$= (f_1 \cdot f_2)g((X_1, X_2), (Y_1, Y_2))$$

So g is $C^{\infty}(M_1 \times M_2)$ -linear in the first slot. By symmetry it is $C^{\infty}(M_1 \times M_2)$ -linear in the second slot. Hence $g \in \Gamma(S^2T^*(M_1 \times M_2))$.

Finally we need to show that g is positive definite. This is also tautological:

$$g_{(p_1,p_2)}\left(\left(X_1,X_2\right),\left(Y_1,Y_2\right)\right) = \left(g_1\right)_{p_1}\left(X_1,Y_1\right) + \left(g_2\right)_{p_2}\left(X_2,Y_2\right) \geqslant 0 + 0 = 0$$

for $(X_1, X_2), (Y_1, Y_2) \in \Gamma(T(M_1 \times M_2))$. Hence g is positive. If the equation above is equal to zero,

by positivity of g_1 and g_2 , we must have

$$(g_1)_{p_1}(X_1, Y_1) = (g_2)_{p_2}(X_2, Y_2) = 0$$

Hence $X_1 = Y_1 = 0$ and $X_2 = Y_2 = 0$. Hence g is definite. We conclude that g is a Riemannian metric on $M_1 \times M_2$.

(b) It suffices to show that $\nabla : \Gamma(T(M_1 \times M_2)) \times \Gamma(T(M_1 \times M_2)) \to \Gamma(T(M_1 \times M_2))$ defined by

$$\nabla_{(X_1,X_2)}(Y_1,Y_2) = ((\nabla_1)_{X_1}Y_1,(\nabla_2)_{X_2}Y_2)$$

satisfies the conditions of a Levi-Civita connection. Then we can invoke the fundamental theorem of Riemannian geometry to deduce that it is the unique Levi-Civita connection on $M_1 \times M_2$.

The verification that ∇ is an affine connection on $M_1 \times M_2$ is entirely tautological and I would just

assume this. The torsion tensor
$$T$$
 of ∇ is given by you need to define it for vertor fields like $X = \{X_1, X_2\}$ with $X_1 \in \pi_1^*$ This that is the v.f. $X_1 \in \{X_1, X_2\}$ with $X_2 \in \pi_1^*$ This that is the v.f. $X_1 \in \{X_1, X_2\}$ with $X_2 \in \pi_1^*$ This that is the v.f. $X_1 \in \{X_1, X_2\}$ with $X_2 \in \pi_1^*$ This that is the v.f. $X_1 \in \{X_1, X_2\}$ with $X_2 \in \pi_1^*$ That is the v.f. $X_2 \in \{X_1, X_2\}$ with $X_2 \in \pi_1^*$ That is the v.f. $X_1 \in \{X_1, X_2\}$ with $X_2 \in \pi_1^*$ That is the v.f. $X_2 \in \{X_1, X_2\}$ depends on both the coordinates $X_1 \in \{X_1, X_2\}$ and $X_2 \in \{X_1, X_2\}$ with $X_2 \in \pi_1^*$ That is the v.f. $X_2 \in \{X_1, X_2\}$ depends on both the coordinates $X_1 \in \{X_1, X_2\}$ with $X_2 \in \{X_1, X_2\}$ of $\{X_1, X_2\}$ and $\{X_1, X_2\}$ with $\{X_1, X_2\}$ depends on both the coordinates $\{X_1, X_2\}$ and $\{X_1, X_2\}$ with $\{X_1, X_2\}$ depends on both the coordinates $\{X_1, X_2\}$ and $\{X_1, X_2\}$ with $\{X_1, X_2\}$ depends on both the coordinates $\{X_1, X_2\}$ and $\{X_1, X_2\}$ with $\{X_1, X_2\}$ depends on both the coordinates $\{X_1, X_2\}$ for $\{X_1, X_2\}$ with $\{X_1, X_2\}$ and $\{X_1, X_2\}$ that is the v.f. $\{X_1, X_2\}$ depends on both the coordinates $\{X_1, X_2\}$ and $\{X_1, X_2\}$ for $\{X_1, X_2\}$ for $\{X_1, X_2\}$ and $\{X_1, X_2\}$ for $\{X_1, X_2\}$ for $\{X_1, X_2\}$ and $\{X_1, X_2\}$ for $\{$

Hence ∇ is torsion-free. Finally,

$$\begin{split} (Z_1,Z_2)(g((X_1,X_2),(Y_1,Y_2))) &= Z_1(g_1(X_1,Y_1)) \circ \pi_1 + Z_2(g_2(X_2,Y_2)) \circ \pi_2 \\ &= g_1((\nabla_1)_{Z_1}X_1,Y_1) \circ \pi_1 + g_1(X_1,(\nabla_1)_{Z_1}Y_1) \circ \pi_1 \\ &+ g_2((\nabla_2)_{Z_2}X_2,Y_2) \circ \pi_2 + g_2(X_1,(\nabla_2)_{Z_2}Y_2) \circ \pi_2 \\ &= g(((\nabla_1)_{Z_1}X_1,(\nabla_2)_{Z_2}X_2),(Y_1,Y_2)) + g((X_1,X_2),((\nabla_1)_{Z_1}Y_1,(\nabla_2)_{Z_2}Y_2)) \\ &= g(\nabla_{(Z_1,Z_2)}(X_1,X_2),(Y_1,Y_2)) + g((X_1,X_2),\nabla_{(Z_1,Z_2)}(Y_1,Y_2)) \end{split}$$

Hence $\nabla : \Gamma(T_s^{r+1}(M_1 \times M_2)) \to \Gamma(T_s^r(M_1 \times M_2))$ satisfies $\nabla g = 0$. It is compatible with the metric g. We conclude that ∇ is the Levi-Civita connection on $M_1 \times M_2$.

Question 4

Let (H^2, h) be the upper half-space with the hyperbolic metric

$$h = \frac{\mathrm{d}x_1^2 + \mathrm{d}x_2^2}{x_2^2}.$$

(a) Calculate the Christoffel symbols of h in the coordinates (x_1, x_2) on H^2 using the definition or formula for the Christoffel symbols.

Let $\alpha:[0,L]\to (H^2,h)$ be the curve $\alpha(t)=(t,1)$ and let τ_α be the parallel transport along α .

(b) Let $X_0 = \partial_2 \in T_{(0,1)}H^2$. Calculate $\tau_{\alpha}(X_0)$ and show that, viewed as a vector in Euclidean \mathbb{R}^2 , it makes an angle L with the vertical axis.

Let

$$G = \{u : \mathbb{R} \to \mathbb{R} : u(x_1, x_2)(t) = x_1 + tx_2, x_1 \in \mathbb{R}, x_2 > 0\}$$

and define a manifold structure on G so that $f: G \to H^2$ given by $f(u(x_1, x_2)) = (x_1, x_2)$ is a diffeomorphism. Define a Riemannian metric g on G by $g = f^*h$.

- (c) Show that, for all $v \in G$, the map $L_v : G \to G$ given by $L_v(u) = v \circ u$ is an isometry of g.
- Proof. Throughout this question, the Einstein's convention is abopted. And we carefully distinguish between covariant/cotangential and contravariant/tangential indices.
 - (a) If $h = h_{ij} dx^i dx^j$, then we have $h_{ij}(x) = (x^2)^{-2} \delta_{ij}$. The inverse matrix is $h^{ij}(x) = (x^2)^2 \delta^{ij}$. The formula for the Christoffel symbols in terms of the metric (Koszul formula) is given by

$$\Gamma_{jk}^{i} = \frac{1}{2} h^{i\ell} (\partial_{j} h_{\ell k} + \partial_{k} h_{\ell j} - \partial_{\ell} h_{jk})$$

$$= \frac{1}{2} (x^{2})^{2} \delta^{i\ell} (\partial_{j} (x^{2})^{-2} \delta_{\ell k} + \partial_{k} (x^{2})^{-2} \delta_{j\ell} - \partial_{\ell} (x^{2})^{-2} \delta_{jk})$$

Note that $\partial_j((x^2)^{-2}) = -2(x^2)^{-3}\delta_{2j}$. Then

$$\Gamma^{i}_{jk} = -\frac{1}{x^2} \left(\delta^{i}_{k} \delta_{2j} + \delta^{i}_{j} \delta_{2k} - \delta_{jk} \delta^{i}_{2} \right)$$

The six Christoffel symbols are given by

$$\Gamma^1_{11} = 0, \qquad \Gamma^1_{12} = \Gamma^1_{21} = -\frac{1}{x^2}, \qquad \Gamma^1_{22} = 0, \qquad \Gamma^2_{11} = \frac{1}{x^2}, \qquad \Gamma^2_{12} = \Gamma^2_{21} = 0, \qquad \Gamma^2_{22} = -\frac{1}{x^2}$$

(b) Let X(t) be the parallel vector field along $\alpha(t)$, that is, $\nabla_{\dot{\alpha}(t)}X(t)=0$. In local coordinates we have

$$\frac{\mathrm{d}X^i}{\mathrm{d}t} + \Gamma^i_{jk}\dot{\alpha}^j X^k = 0, \qquad X(0) = \partial_2$$

Note that $\dot{\alpha}(t) = (1,0)$. We have the system of first-order ODEs

$$\frac{\mathrm{d}X^1}{\mathrm{d}t} - X^2(t) = 0, \qquad \frac{\mathrm{d}X^2}{\mathrm{d}t} + X^1(t) = 0, \qquad (X^1(0), X^2(0)) = (0, 1)$$

By inspection we can write down the unique solution $(X^1(t), X^2(t)) = (\sin t, \cos t)$. Therefore the parallel transport of X_0 is $\tau_{\alpha}(X_0) = X(L) = \sin L\partial_1 + \cos L\partial_2$. It makes an angle L with the vertical axis x^2 .

(c) Suppose that $v \in G$ is given by $v: t \mapsto y^1 + ty^2$. $L_v: G \to G$ induces the map $F_v: H^2 \to H^2$ via the commutative diagram

$$G \xrightarrow{L_v} G$$

$$f \downarrow \qquad \qquad \downarrow f$$

$$H^2 \xrightarrow{F_v} H^2$$

By construction L_v is an isometry of (G, g) if and only if F_v is an isometry of (H^2, h) . For $u: t \mapsto x^1 + tx^2$, $v \circ u: t \mapsto y^1 + (x^1 + tx^2)y^2 = y^1 + x^1y^2 + tx^2y^2$. Hence $F_v(x^1, x^2) = (u^1, u^2) := (y^1 + x^1y^2, x^2y^2)$. The pull-back of the metric is given by

$$(F_v)^*h = h_{ij}(F_v^{-1}(x))(F_v)^*(\mathrm{d}x^i)(F_v)^*(\mathrm{d}x^j) = h_{ij}(F_v^{-1}(x))(y^2)^{-1} \cdot (y^2)^{-1} \mathrm{d}x^i \mathrm{d}x^j = \frac{(\mathrm{d}x^1)^2 + (\mathrm{d}x^2)^2}{(x^2)^2} = h$$

Hence F_v is an isometry.

Section C: Optional

Question 5

Let S^2 be the unit sphere in \mathbb{R}^3 endowed with the round metric g, let $U = S^2 \setminus \{(0,0,1)\}$ and let $\varphi : U \to \mathbb{R}^2$ be

$$\varphi(x_1, x_2, x_3) = \frac{(x_1, x_2)}{1 - x_3}$$

so that

$$\varphi^{-1}(y_1, y_2) = \frac{\left(2y_1, 2y_2, y_1^2 + y_2^2 - 1\right)}{y_1^2 + y_2^2 + 1}$$

(a) Show that

$$(\varphi^{-1})^* g = \frac{4(dy_1^2 + dy_2^2)}{(1 + y_1^2 + y_2^2)^2}.$$

Let $\beta: [0, 2\pi] \to \mathbb{R}^2$ be given by $\beta(t) = (\cos t, \sin t)$.

(b) Using the fact that $\varphi^{-1}: (S^2 \setminus \{0,0,1\}, g) \to (\mathbb{R}^2, (\varphi^{-1})^* g)$ is an isometry or otherwise, show that the restrictions of the vector fields

$$y_1\partial_1 + y_2\partial_2$$
 and $-y_2\partial_1 + y_1\partial_2$

to β are parallel along β with respect to the metric $(\varphi^{-1})^* g$.

Proof.