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Section A: Introductory

Question 1

Let

Hn =

(x1, . . . , xn+1) ∈ Rn+1 :
n∑
j=1

x2j − x2n+1 = −1, xn+1 > 0


and let g be the restriction of

h =

n∑
j=1

dx2j − dx2n+1

on Rn+1 to Hn.

(a) Show that g is a Riemannian metric on Hn.

(b) Let f(x) = Ax be a linear map on Rn+1 given by A = (aij) ∈Mn+1(R) and let

G =

(
In 0

0 −1

)
where In is the n× n identity matrix. Show that f defines an isometry on (Hn, g) if and only if

ATGA = G and an+1,n+1 > 0.

(c) Now let n = 2, L > 0 and α : [0, L]→ H2 be given by α(t) = (sinh t, 0, cosh t). If τα : Tα(0)H2 → Tα(L)H2

is the parallel transport map, compute τα (∂1) and τα (∂2).

Proof. (a) It is clear that h defines a symmetric type-(0, 2) tensor field on Rn+1, and therefore the restriction g
is a symmetric type-(0, 2) tensor field on Hn. It remains to show that g is positive definite.

We can define a diffeomorphism ϕ : Rn → Hn is given by

ϕ(y1, ..., yn) =

y1, ..., yn,
√√√√ n∑

j=1

y2j + 1


Then

ϕ∗g =
n∑
j=1

dy2j − (ϕ∗dxn+1)
2

=

n∑
j=1

dy2j −

 n∑
j=1

yj√∑n
i=1 y

2
i + 1

dyj

2

=
1∑n

i=1 y
2
i + 1

 n∑
j=1

(
1 +

n∑
i=1

y2i − y2j

)
dy2j − 2

n−1∑
j=1

n∑
k=j+1

yjykdyjdyk


We need some linear algebra to show that this is positive definite...

(b) From on now we adopt Einstein’s convention on summation of repeated indices from 1 to n + 1. But
we do not distinguish covariant/contravariant indices by lower/upper indices.
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Note that f∗dxj = ajkdxk. Since h = Gijdx
idxj , we have

f∗h = Gijaikaj`dxkdx` = (A>GA)k`dxkdx`

If f is an isometry on Rn+1, then f∗h = h, which is equivalent to A>GA = G.

Moreover, xn+1 ◦ f(xn+1) = an+1,n+1. f maps the half plane {xn+1 > 0} into itself if and only if
an+1,n+1 > 0.

We deduce that f defines an isometry on Hn if and only if A>GA = G and an+1,n+1 > 0.

(c) We can parameterise H2 by the “hyperbolic spherical coordinates”. Let ψ : (0, 2π)×R→ H2 given by

ψ(θ, φ) := (cos θ sinhφ, sin θ sinhφ, coshφ)

Then

ψ∗g = (− sin θ sinhφdθ + cos θ coshφdφ)2 + (cos θ sinhφdθ + sin θ coshφdφ)2 − sinh2 φdφ2

= dφ2 + sinh2 φ dθ2

Note that α(t) = ψ ◦ β(t), where β(t) = (0, t). Therefore α̇(t) = ψ∗β̇(t) = ∂φ. The Christoffel symbols

Γφφφ =
1

2
gφa (2∂φgaφ − ∂agφφ) =

1

2
gφφ∂φgφφ = 0

Γθφφ =
1

2
gθa (2∂φgaφ − ∂agφφ) = 0

Γφφθ =
1

2
gφa (∂φgaθ + ∂θgaφ − ∂agθφ) = 0

Γθφθ =
1

2
gθa (∂φgaθ + ∂θgaφ − ∂agθφ) =

1

2
gθθ∂φgθθ = cothφ

Suppose that X(t) is a parallel vector field along α. Then ∇φX(t) = 0. In local coordinates we have

dXφ

dt
= 0,

dXθ

dt
+ cothφ(t)Xθ =

dXθ

dt
+Xθ coth t = 0

The solution is given by X(t) = a∂φ +
b

sinh t
∂θ. The push-forward of tangent vectors:

∂φ = coshφ(cos θ∂1 + sin θ∂2) + sinhφ∂3

∂θ = sinhφ(− sin θ∂1 + cos θ∂2)

Hence X(t) = a(cosh t∂1 + sinh t∂3) + b∂2. Hence

τα(∂1) = coshL∂1 + sinhL∂3, τα(∂2) = ∂2

Question 2

Let (M, g) be a connected Riemannian manifold and let M̃ be the universal cover of M .

(a) Show that there exists a unique Riemannian metric g̃ on M̃ such that the covering mapπ : (M̃, g̃) →
(M, g) is a local isometry.

(b) Show that the fundamental group of M acts on (M̃, g̃) by isometries.

Proof. (a) The covering map π : M̃ → M is a local diffeomorphism and hence is an immersion. By Proposition
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1.3, the pull-back g̃ := π ◦ g is a Riemannian metric on M̃ , and therefore π : (M̃, g̃) → (M, g) is a
local isometry. Suppose that h is another Riemannian metric on M̃ such that π : (M̃, h)→ (M, g) is
a local isometry. Then locally h = π∗g = g̃. This holds for any point on M̃ . Hence g̃ = h globally,
and g̃ is unique.

(b) For α ∈ π1(M), α acts on M̃ by a Deck transformation fα : M̃ → M̃ . That is, π ◦ fα = π. Then

g̃ = π∗g = f∗απ
∗g = f∗αg̃

Hence fα is an isometry.

Section B: Core

Question 3

Let (M1, g1) and (M2, g2) be Riemannian manifolds with Levi-Civita connections ∇1 and ∇2 respectively.
Recall that T(p1,p2) (M1 ×M2) ∼= Tp1M1 × Tp2M2 for all (p1, p2) ∈M1 ×M2. Define g on M1 ×M2 by

g(p1,p2) ((X1, X2) , (Y1, Y2)) = (g1)p1 (X1, Y1) + (g2)p2 (X2, Y2) .

(a) Show that g is a Riemannian metric on M1 ×M2.

(b) Show that the Levi-Civita connection ∇ of g on M1 ×M2 satisfies

∇(X1,X2) (Y1, Y2) =
(
(∇1)X1

Y1, (∇2)X2
Y2
)

for all vector fields X1, Y1 on M1 and X2, Y2 on M2.

Proof. (a) Note that the fibre-wise isomorphism of vector spaces implies the global diffeomorphism of bundles
T(M1×M2) ∼= TM1×TM2. So anyX ∈ Γ(T(M1×M2)) must take the form (X1, X2) forX1 ∈ Γ(TM1)

and X2 ∈ Γ(TM2). Let πi : M1 ×M2 →Mi be the projection map. Then g : T(M1 ×M2)× T(M1 ×
M2)→ C∞(M1 ×M2) is given by

g((X1, X2), (Y1, Y2)) = g1(X1, Y1) ◦ π1 + g2(X2, Y2) ◦ π2

We need to show that g is a symmetric type-(0, 2) tensor field. The symmetry is immediate from
definition. To show that it is a tensor field, it suffices to show that g is C∞(M1 ×M2)-linear in each slot
(by Question 1 of Sheet 1, C7.6 General Relativity II ). It is tautological. Let (f1, f2) ∈ C∞(M1 ×M2).
Then

g((f1, f2) · (X1, X2), (Y1, Y2)) = g1(f1X1, Y1) ◦ π1 + g2(f2X2, Y2) ◦ π2
= f1g1(X1, Y1) ◦ π1 + f2g2(X2, Y2) ◦ π2
= (f1 · f2) · (g1(X1, Y1) ◦ π1 + g2(X2, Y2) ◦ π2)
= (f1 · f2)g((X1, X2), (Y1, Y2))

So g is C∞(M1 ×M2)-linear in the first slot. By symmetry it is C∞(M1 ×M2)-linear in the second
slot. Hence g ∈ Γ(S2T∗(M1 ×M2)).

Finally we need to show that g is positive definite. This is also tautological:

g(p1,p2) ((X1, X2) , (Y1, Y2)) = (g1)p1 (X1, Y1) + (g2)p2 (X2, Y2) > 0 + 0 = 0

for (X1, X2), (Y1, Y2) ∈ Γ(T(M1 ×M2)). Hence g is positive. If the equation above is equal to zero,
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by positivity of g1 and g2, we must have

(g1)p1 (X1, Y1) = (g2)p2 (X2, Y2) = 0

Hence X1 = Y1 = 0 and X2 = Y2 = 0. Hence g is definite. We conclude that g is a Riemannian metric
on M1 ×M2.

(b) It suffices to show that ∇ : Γ(T(M1 ×M2))× Γ(T(M1 ×M2))→ Γ(T(M1 ×M2)) defined by

∇(X1,X2)(Y1, Y2) = ((∇1)X1Y1, (∇2)X2Y2)

satisfies the conditions of a Levi-Civita connection. Then we can invoke the fundamental theorem of
Riemannian geometry to deduce that it is the unique Levi-Civita connection on M1 ×M2.

The verification that ∇ is an affine connection on M1 ×M2 is entirely tautological and I would just
assume this. The torsion tensor T of ∇ is given by

T ((X1, X2), (Y1, Y2)) = ∇(X1,X2)(Y1, Y2)−∇(Y1,Y2)(X1, X2)− [(X1, X2), (Y1, Y2)]

= ((∇1)X1Y1, (∇2)X2Y2)− ((∇1)Y1X1, (∇2)Y2X2)− ([X1, Y1], [X2, Y2])

= (T1(X1, Y1), T2(X2, Y2)) = 0

Hence ∇ is torsion-free. Finally,

(Z1, Z2)(g((X1, X2), (Y1, Y2))) = Z1(g1(X1, Y1)) ◦ π1 + Z2(g2(X2, Y2)) ◦ π2
= g1((∇1)Z1X1, Y1) ◦ π1 + g1(X1, (∇1)Z1Y1) ◦ π1
+ g2((∇2)Z2X2, Y2) ◦ π2 + g2(X1, (∇2)Z2Y2) ◦ π2
= g(((∇1)Z1X1, (∇2)Z2X2), (Y1, Y2)) + g((X1, X2), ((∇1)Z1Y1, (∇2)Z2Y2))

= g(∇(Z1,Z2)(X1, X2), (Y1, Y2)) + g((X1, X2),∇(Z1,Z2)(Y1, Y2))

Hence ∇ : Γ(Tr+1
s (M1 ×M2)) → Γ(Tr

s(M1 ×M2)) satisfies ∇g = 0. It is compatible with the metric
g. We conclude that ∇ is the Levi-Civita connection on M1 ×M2.

Question 4

Let
(
H2, h

)
be the upper half-space with the hyperbolic metric

h =
dx21 + dx22

x22
.

(a) Calculate the Christoffel symbols of h in the coordinates (x1, x2) on H2 using the definition or formula
for the Christoffel symbols.

Let α : [0, L]→
(
H2, h

)
be the curve α(t) = (t, 1) and let τα be the parallel transport along α.

(b) Let X0 = ∂2 ∈ T(0,1)H2. Calculate τα (X0) and show that, viewed as a vector in Euclidean R2, it makes
an angle L with the vertical axis.

Let

G = {u : R→ R : u (x1, x2) (t) = x1 + tx2, x1 ∈ R, x2 > 0}

and define a manifold structure on G so that f : G→ H2 given by f (u (x1, x2)) = (x1, x2) is a diffeomorphism.
Define a Riemannian metric g on G by g = f∗h.
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(c) Show that, for all v ∈ G, the map Lv : G→ G given by Lv(u) = v ◦ u is an isometry of g.

Proof. Throughout this question, the Einstein’s convention is abopted. And we carefully distinguish between covari-
ant/cotangential and contravariant/tangential indices.

(a) If h = hijdx
idxj , then we have hij(x) = (x2)−2δij . The inverse matrix is hij(x) = (x2)2δij . The

formula for the Christoffel symbols in terms of the metric (Koszul formula) is given by

Γijk =
1

2
hi` (∂jh`k + ∂kh`j − ∂`hjk)

=
1

2
(x2)2δi`(∂j(x

2)−2δ`k + ∂k(x
2)−2δj` − ∂`(x2)−2δjk)

Note that ∂j((x2)−2) = −2(x2)−3δ2j . Then

Γijk = − 1

x2
(
δikδ2j + δijδ2k − δjkδi2

)
The six Christoffel symbols are given by

Γ1
11 = 0, Γ1

12 = Γ1
21 = − 1

x2
, Γ1

22 = 0, Γ2
11 =

1

x2
, Γ2

12 = Γ2
21 = 0, Γ2

22 = − 1

x2

(b) Let X(t) be the parallel vector field along α(t), that is, ∇α̇(t)X(t) = 0. In local coordinates we have

dXi

dt
+ Γijkα̇

jXk = 0, X(0) = ∂2

Note that α̇(t) = (1, 0). We have the system of first-order ODEs

dX1

dt
−X2(t) = 0,

dX2

dt
+X1(t) = 0, (X1(0), X2(0)) = (0, 1)

By inspection we can write down the unique solution (X1(t), X2(t)) = (sin t, cos t). Therefore the
parallel transport of X0 is τα(X0) = X(L) = sinL∂1 + cosL∂2. It makes an angle L with the vertical
axis x2.

(c) Suppose that v ∈ G is given by v : t 7→ y1 + ty2. Lv : G→ G induces the map Fv : H2 → H2 via the
commutative diagram

G G

H2 H2

Lv

Fv

f f

By construction Lv is an isometry of (G, g) if and only if Fv is an isometry of (H2, h). For u : t 7→
x1+tx2, v◦u : t 7→ y1+(x1+tx2)y2 = y1+x1y2+tx2y2. Hence Fv(x1, x2) = (u1, u2) := (y1+x1y2, x2y2).
The pull-back of the metric is given by

(Fv)
∗h = hij(F

−1
v (x))(Fv)

∗(dxi)(Fv)
∗(dxj) = hij(F

−1
v (x))(y2)−1·(y2)−1dxidxj =

(dx1)2 + (dx2)2

(x2)2
= h

Hence Fv is an isometry.

Section C: Optional
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Question 5

Let S2 be the unit sphere in R3 endowed with the round metric g, let U = S2 \ {(0, 0, 1)} and let ϕ : U → R2

be

ϕ (x1, x2, x3) =
(x1, x2)

1− x3

so that

ϕ−1 (y1, y2) =

(
2y1, 2y2, y

2
1 + y22 − 1

)
y21 + y22 + 1

(a) Show that

(
ϕ−1

)∗
g =

4
(
dy21 + dy22

)(
1 + y21 + y22

)2 .
Let β : [0, 2π]→ R2 be given by β(t) = (cos t, sin t).

(b) Using the fact that ϕ−1 :
(
S2 \ {0, 0, 1}, g

)
→
(
R2,

(
ϕ−1

)∗
g
)
is an isometry or otherwise, show that the

restrictions of the vector fields

y1∂1 + y2∂2 and − y2∂1 + y1∂2

to β are parallel along β with respect to the metric
(
ϕ−1

)∗
g.

Proof.


