Peize Liu St. Peter's College University of Oxford

Problem Sheet 4 B4.3: Distribution Theory

Question 1

This question provides a condition ensuring that the usual partial derivatives coincide with the distributional partial derivatives

Prove Lemma 5.21 from the lecture notes: If the dimension $n \ge 2$ and $f \in C^1(\mathbb{R}^n \setminus \{0\}) \cap L^1_{loc}(\mathbb{R}^n)$ has usual partial derivatives $\partial_j f \in L^1_{loc}(\mathbb{R}^n)$ for each direction $1 \le j \le n$, then also

$$\int_{\mathbb{R}^n} \partial_j f \varphi \, \mathrm{d}x = -\int_{\mathbb{R}^n} f \partial_j \varphi \, \mathrm{d}x$$

holds for all $\varphi \in \mathcal{D}(\mathbb{R}^n)$. Give an example to show that it can fail for dimension n = 1. Show that for dimension n = 1 we instead have the following: If $f \in C^1(\mathbb{R} \setminus \{0\}) \cap C(\mathbb{R})$ and the usual derivative $f' \in L^1_{loc}(\mathbb{R})$, then

$$\int_{\mathbb{R}} f' \varphi \, \mathrm{d}x = -\int_{\mathbb{R}} f \varphi' \, \mathrm{d}x$$

holds for all $\varphi \in \mathcal{D}(\mathbb{R})$.

Proof. Let $\varphi \in \mathcal{D}(\mathbb{R})$. Without loss of generality we fix j = n. For fixed $x_1, ..., x_{n-1}$, we have the one-dimensional integration by parts as follows:

$$\left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty}\right) \frac{\partial f}{\partial x_n} \varphi \, \mathrm{d}x_n = -\left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty}\right) f \frac{\partial \varphi}{\partial x_n} \, \mathrm{d}x_n - f \varphi \bigg|_{x_n = -\varepsilon}^{x_n = \varepsilon}$$

For $(x_1,...,x_{n-1}) \neq (0,...,0)$, the last term on the RHS vanishes as $\varepsilon \to 0$ by the continuity of f. Therefore

$$\int_{\mathbb{R}^{n-1}} \lim_{\varepsilon \searrow 0} f\varphi \bigg|_{x_n = -\varepsilon}^{x_n = \varepsilon} dx^{n-1} = 0$$

since the integrand is zero almost everywhere.

Since φ is compactly supported and $\partial_n f$ is locally integrable, we have $\partial_n f \varphi \in L^1(\mathbb{R}^n)$. By Fubini's theorem,

$$\int_{\mathbb{R}^{n}} \frac{\partial f}{\partial x_{n}} \varphi \, \mathrm{d}x^{n} = \int_{\mathbb{R}^{n-1}} \left(\int_{\mathbb{R}} \frac{\partial f}{\partial x_{n}} \varphi \, \mathrm{d}x_{n} \right) \mathrm{d}x^{n-1} \\
= \int_{\mathbb{R}^{n-1}} \lim_{\varepsilon \searrow 0} \left(\left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \right) \frac{\partial f}{\partial x_{n}} \varphi \, \mathrm{d}x_{n} \right) \mathrm{d}x^{n-1} \\
= -\int_{\mathbb{R}^{n-1}} \lim_{\varepsilon \searrow 0} \left(\left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \right) \frac{\partial \varphi}{\partial x_{n}} f \, \mathrm{d}x_{n} \right) \mathrm{d}x^{n-1} - \int_{\mathbb{R}^{n-1}} \lim_{\varepsilon \searrow 0} f \varphi \Big|_{x_{n} = -\varepsilon}^{x_{n} = \varepsilon} \mathrm{d}x^{n-1} \\
= -\int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}} \frac{\partial \varphi}{\partial x_{n}} f \, \mathrm{d}x_{n} \right) \mathrm{d}x^{n-1} \\
= -\int_{\mathbb{R}^{n}} \frac{\partial \varphi}{\partial x_{n}} f \, \mathrm{d}x^{n}$$

For a counter-example in \mathbb{R} , consider the function $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 1, & x < 0 \\ x, & x > 0 \end{cases}$$

Then the usual derivative is given by

$$f'(x) = \begin{cases} 0, & x < 0 \\ 1, & x > 0 \end{cases}$$

Consider a sequence of test functions $(\varphi_m) \subseteq \mathcal{D}(\mathbb{R})$ such that

$$\operatorname{supp} \varphi_m \subseteq [-1,1], \qquad 0 \leq \varphi_m(x) \leq 1, \qquad \varphi_m(0) = 1, \qquad \lim_{m \to \infty} \varphi_m(x) = 0 \text{ for } x \neq 0$$

Then we have

$$\int_{\mathbb{R}} f \varphi'_m \, dx + \int_{\mathbb{R}} f' \varphi_m \, dx = \int_{-1}^0 \varphi'_m \, dx + \int_0^1 x \varphi'_m \, dx + \int_0^1 \varphi_m \, dx$$

$$= \int_{0}^{1} \varphi_{m} dx + (\varphi_{m}(0) - \varphi_{m}(-1)) + x\varphi_{m}(x) \Big|_{0}^{1} - (\varphi_{m}(1) - \varphi_{m}(0))$$

$$= \int_{0}^{1} \varphi_{m} dx - 2$$

By dominated convergence theorem,

$$\lim_{m\to\infty} \left(\int_{\mathbb{R}} f \varphi_m' \, \mathrm{d}x + \int_{\mathbb{R}} f' \varphi_m \, \mathrm{d}x \right) = \int_0^1 \lim_{m\to\infty} \varphi_m \, \mathrm{d}x - 2 = -2$$
 contradicting that
$$\int_{\mathbb{R}} f \varphi_m' \, \mathrm{d}x + \int_{\mathbb{R}} f' \varphi_m \, \mathrm{d}x = 0 \text{ for all } m \in \mathbb{N}.$$

If $f \in C^1(\mathbb{R} \cap \{0\}) \cap C^0(\mathbb{R})$, then $f \varphi \in C^0(\mathbb{R})$ for any $\varphi \in \mathcal{D}(\mathbb{R})$. By fundamental theorem of calculus,

$$\left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty}\right) f' \varphi \, \mathrm{d}x = -\left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty}\right) f \varphi' \, \mathrm{d}x + f(-\varepsilon) \varphi(-\varepsilon) - f(\varepsilon) \varphi(\varepsilon)$$

By continuity of $f\varphi$ at x=0, as $\varepsilon \setminus 0$, we have

$$\int_{\mathbb{R}} f' \varphi \, dx = \lim_{\varepsilon \searrow 0} \left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \right) f' \varphi \, dx = -\lim_{\varepsilon \searrow 0} \left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \right) f \varphi' \, dx = \int_{\mathbb{R}} f \varphi' \, dx$$

Question 2. Boundary values in the sense of distributions for holomorphic functions.

(a) Prove that for each $n \in \mathbb{N}$,

$$(x+i\varepsilon)^{-n} \to (x+i0)^{-n}$$
 in $\mathcal{D}'(\mathbb{R})$ as $\varepsilon \setminus 0$

where the distribution $(x+i0)^{-n}$ was defined in Problem 2 on Sheet 3.

A holomorphic function $f: H \to \mathbb{C}$ on the upper half-plane $H = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ is said to be of slow growth if for each R > 0 there exist $m = m_R \in \mathbb{N}_0$ and $c = c_R \ge 0$ so

$$|f(z)| \leq \frac{c}{\mathrm{Im}(z)^m}$$

holds for all $z \in H$ with $|\text{Re}(z)| \le R$ and Im(z) < 2.

(b) Prove that if $f: H \to \mathbb{C}$ is holomorphic of slow growth, then it has a boundary value in the sense of distributions:

$$\langle f(x+i0), \varphi \rangle := \lim_{\varepsilon \searrow 0} \int_{\mathbb{R}} f(x+i\varepsilon) \varphi(x) dx / \int_{\mathbb{R}} \int_{\mathbb{R}} f(x+i\varepsilon) \varphi(x) dx / \int_{\mathbb{R}} \int_{\mathbb{R}} f(x+i\varepsilon) \varphi(x) dx / \int_{\mathbb{R}} f(x) dx / \int_{\mathbb{R$$

exists for all $\varphi \in \mathcal{D}(\mathbb{R})$ and defines a distribution.

[Hint: Assume first that m=0 above and let $F: H \to \mathbb{C}$ be the holomorphic pylimitive with F(i)=0. Explain why F has a continuous extension to the closed upper half-plane \overline{H} and use this to conclude the proof in this special case. Then use induction on m.]

(a) We have shown in Problem 2.(b) on Sheet 3 that for any $\varphi \in \mathcal{D}(\mathbb{R})$, Proof.

$$\langle (x+\mathrm{i}0)^{-n}, \varphi \rangle = \lim_{\varepsilon \searrow 0} \int_{\mathbb{R}} \frac{\varphi(x)}{(x+\mathrm{i}\varepsilon)^n} \, \mathrm{d}x = \lim_{\varepsilon \searrow 0} \langle (x+\mathrm{i}\varepsilon)^{-n}, \varphi \rangle$$

$$+\mathrm{i}0)^{-n} \text{ in } \mathcal{D}'(\mathbb{R}) \text{ as } \varepsilon \searrow 0.$$

Hence $(x+i\varepsilon)^{-n} \to (x+i0)^{-n}$ in $\mathcal{D}'(\mathbb{R})$ as $\varepsilon \setminus 0$.

(b) (I cannot see why F has a continuous extension on the real line. Perhaps it has some relation with the boundary correspondence theorem...)

Importanately there were lots of restrictions on 9 for this... Consider (x+i0) as a derivative of Log(x+i0) which is limit of Log(x+i2) which we differentiate n-times to get something like (x+i2) etc...

Question 3. Distributions defined by finite parts.

Recall from Sheet 2 that the distributional derivative of $\log |x|$ is the distribution pv $(\frac{1}{x})$ defined by the principal value integral

$$\left\langle \operatorname{pv}\left(\frac{1}{x}\right), \varphi \right\rangle := \lim_{\varepsilon \searrow 0} \left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \right) \frac{\varphi(x)}{x} \, \mathrm{d}x, \quad \varphi \in \mathcal{D}(\mathbb{R})$$

In order to represent the higher order derivatives one can use finite parts: Let $n \in \mathbb{N}$ with n > 1. We then define $\operatorname{fp}\left(\frac{1}{x^n}\right)$ for each $\varphi \in \mathcal{D}(\mathbb{R})$ by the finite part integral

$$\left\langle \operatorname{fp}\left(\frac{1}{x^{n}}\right), \varphi \right\rangle := \int_{-\infty}^{\infty} \frac{\varphi(x) - \sum_{j=0}^{n-2} \frac{\varphi^{(j)}(0)}{j!} x^{j} - \frac{\varphi^{(n-1)}(0)}{(n-1)!} x^{n-1} \mathbf{1}_{(-1,1)}(x)}{x^{n}} \, \mathrm{d}x$$

(a) Check that hereby $\operatorname{fp}\left(\frac{1}{x^n}\right)$ is a well-defined distribution on \mathbb{R} . Show that

$$\frac{\mathrm{d}}{\mathrm{d}x}\operatorname{pv}\left(\frac{1}{x}\right) = -\operatorname{fp}\left(\frac{1}{x^2}\right)$$
 and $\frac{\mathrm{d}}{\mathrm{d}x}\operatorname{fp}\left(\frac{1}{x^n}\right) = -n\operatorname{fp}\left(\frac{1}{x^{n+1}}\right)$

for all n > 1. Is fp $(\frac{1}{r^n})$ homogeneous? (See Problem 4 on Sheet 2 for the definition of homogeneity.)

- (b) Show that for n > 1 we have $x^n \operatorname{fp}\left(\frac{1}{x^n}\right) = 1$ and find the general solution to the equation $x^n u = 1$ in $\mathscr{D}'(\mathbb{R})$. What is the general solution to the equation $(x-a)^n v = 1$ in $\mathcal{D}'(\mathbb{R})$ when $a \in \mathbb{R} \setminus \{0\}$?
- (c) Let $p(x) \in \mathbb{C}[x] \setminus \{0\}$ be a nontrivial polynomial. Describe the general solution $w \in \mathcal{D}'(\mathbb{R})$ to the equation

$$p(x)w = 1$$
 in $\mathcal{D}'(\mathbb{R})$

Proof. (a) First we check that $\operatorname{fp}\left(\frac{1}{x^n}\right)$ is a well-defined distribution. • $\left\langle \operatorname{fp}\left(\frac{1}{x^n}\right), \varphi \right\rangle$ is finite for any $\varphi \in \mathscr{D}(\mathbb{R})$.

Define

$$\psi(x) := \varphi(x) - \sum_{j=0}^{n-2} \frac{\varphi^{(j)}(0)}{j!} x^j - \frac{\varphi^{(n-1)}(0)}{(n-1)!} x^{n-1} \mathbf{1}_{(-1,1)}(x)$$

Observe that $\psi^{(k)}(0) = 0$ for $0 \le k \le n-1$ and $\psi^{(n)}(0) = \varphi^{(n)}(0)$. Therefore by l'Hôptial's rule

$$\lim_{x \to 0} \frac{\psi(x)}{x^n} = \lim_{x \to 0} \frac{\psi^{(n)}(x)}{n!} = \frac{\varphi^{(n)}(0)}{n!}$$

Hence $\psi(x)/x^n$ is continuous on \mathbb{R} . Suppose that supp $\varphi \subseteq [-a, a]$. Then for |x| > a, we have

$$\frac{\psi(x)}{x^n} = \sum_{j=0}^{n-2} \frac{\varphi^{(j)}(0)}{j!} \frac{1}{x^{n-j}}$$

and we know that

$$\int_{a}^{\infty} \frac{1}{x^{n-j}} \, \mathrm{d}x = \frac{1}{n-j-1} \frac{1}{a^{n-j-1}}$$

is finite for $j \le n-2$. Therefore

$$\left\langle \operatorname{fp}\left(\frac{1}{x^n}\right), \varphi \right\rangle = \int_{-a}^{a} \frac{\psi(x)}{x^n} \, \mathrm{d}x + \sum_{j=0}^{n-2} \frac{\varphi^{(j)}(0)}{j!} \left(\int_{-\infty}^{-a} + \int_{a}^{+\infty}\right) \frac{1}{x^{n-j}} \, \mathrm{d}x$$

is finite.

- It is clear that $\operatorname{fp}\left(\frac{1}{x^n}\right)$ is a linear functional because $\psi(x)$ is linear in all derivatives of $\varphi(x)$.
- Continuity of fp $\left(\frac{1}{r^n}\right)$.

Suppose that $\{\varphi_m\}\subseteq \mathcal{D}(\mathbb{R})$ and $\varphi\in \mathcal{D}(\mathbb{R})$ such that $\varphi_m\to \varphi$ in $\mathcal{D}(\mathbb{R})$. Let a>0 such that $\sup \varphi_m$, $\sup \varphi\subseteq [-a,a]$.

Similarly we can define

$$\psi_m(x) := \varphi_m(x) - \sum_{j=0}^{n-2} \frac{\varphi_m^{(j)}(0)}{j!} x^j - \frac{\varphi_m^{(n-1)}(0)}{(n-1)!} x^{n-1} \mathbf{1}_{(-1,1)}(x)$$

Then $\psi_m(x) \to \psi(x)$ as $m \to \infty$ pointwise (in fact it is also uniform). Since $\psi(x)/x^n$ is bounded on \mathbb{R} , by dominated convergence theorem,

$$\lim_{m \to \infty} \left\langle \operatorname{fp}\left(\frac{1}{x^n}\right), \varphi_m \right\rangle = \lim_{m \to \infty} \int_{\mathbb{R}} \frac{\psi_m(x)}{x^n} \, \mathrm{d}x = \int_{\mathbb{R}} \frac{\psi(x)}{x^n} \, \mathrm{d}x = \left\langle \operatorname{fp}\left(\frac{1}{x^n}\right), \varphi \right\rangle$$

Hence $\operatorname{fp}\left(\frac{1}{x^n}\right)$ is continuous in $\mathscr{D}'(\mathbb{R})$.

Next, we check that $\frac{d}{dx} \operatorname{pv}\left(\frac{1}{x}\right) = -\operatorname{fp}\left(\frac{1}{x^2}\right)$ by brute force

$$\begin{split} -\left\langle \frac{\mathrm{d}}{\mathrm{d}x} \operatorname{pv} \left(\frac{1}{x} \right), \varphi \right\rangle &= \left\langle \operatorname{pv} \left(\frac{1}{x} \right), \varphi' \right\rangle = \lim_{\varepsilon \searrow 0} \left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \right) \frac{\varphi'(x)}{x} \, \mathrm{d}x \\ &= \lim_{\varepsilon \searrow 0} \left(\frac{\varphi(x)}{x} \Big|_{-\infty}^{-\varepsilon} + \int_{-\infty}^{-\varepsilon} \frac{\varphi(x)}{x^2} \, \mathrm{d}x + \frac{\varphi(x)}{x} \Big|_{\varepsilon}^{\infty} + \int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x^2} \, \mathrm{d}x \right) \\ &= \lim_{\varepsilon \searrow 0} \left(-\frac{\varphi(\varepsilon) + \varphi(-\varepsilon)}{\varepsilon} + \left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \right) \frac{\varphi(x)}{x^2} \, \mathrm{d}x \right) \end{split}$$

Note that by l'Hôptial's rule,

$$\lim_{\varepsilon \searrow 0} \frac{\varphi(\varepsilon) + \varphi(-\varepsilon) - 2\varphi(0)}{\varepsilon} = \lim_{\varepsilon \searrow 0} (\varphi'(0) - \varphi'(0)) = 0$$

Therefore

$$-\left\langle \frac{\mathrm{d}}{\mathrm{d}x} \operatorname{pv}\left(\frac{1}{x}\right), \varphi \right\rangle = \lim_{\varepsilon \searrow 0} \left(-\frac{2\varphi(0)}{\varepsilon} + \left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty}\right) \frac{\varphi(x)}{x^2} \, \mathrm{d}x\right)$$

On the other hand,

$$\begin{split} \left\langle \operatorname{fp}\left(\frac{1}{x^2}\right), \varphi \right\rangle &= \int_{\mathbb{R}} \frac{\varphi(x) - \varphi(0) - \varphi'(0) x \mathbf{1}_{(-1,1)}(x)}{x^2} \, \mathrm{d}x \\ &= \lim_{\varepsilon \searrow 0} \left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \right) \frac{\varphi(x) - \varphi(0) - \varphi'(0) x \mathbf{1}_{(-1,1)}(x)}{x^2} \, \mathrm{d}x \\ &= \lim_{\varepsilon \searrow 0} \left(\left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \right) \frac{\varphi(x)}{x^2} \, \mathrm{d}x - \varphi(0) \left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \right) \frac{1}{x^2} \, \mathrm{d}x - \varphi'(0) \left(\int_{-1}^{-\varepsilon} + \int_{\varepsilon}^{1} \right) \frac{1}{x} \, \mathrm{d}x \right) \\ &= \lim_{\varepsilon \searrow 0} \left(\left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \right) \frac{\varphi(x)}{x^2} \, \mathrm{d}x - \frac{2\varphi(0)}{\varepsilon} \right) \end{split}$$

which proves the claim.

Next, we check that $\frac{\mathrm{d}}{\mathrm{d}x}\operatorname{fp}\left(\frac{1}{x^n}\right) = -n\operatorname{fp}\left(\frac{1}{x^{n+1}}\right)$. Simply note that

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\varphi(x) - \sum_{j=0}^{n-1} \frac{\varphi^{(j)}(0)}{j!} x^j - \frac{\varphi^{(n)}(0)}{(n)!} x^n \mathbf{1}_{(-1,1)}(x) \right) = \varphi'(x) - \sum_{j=0}^{n-2} \frac{\varphi^{(j+1)}(0)}{j!} x^j - \frac{\varphi^{(n)}(0)}{(n-1)!} x^{n-1} \mathbf{1}_{(-1,1)}(x)$$

Therefore by integration by parts,

$$\left\langle \frac{\mathrm{d}}{\mathrm{d}x} \operatorname{fp}\left(\frac{1}{x^{n}}\right), \varphi \right\rangle = -\left\langle \operatorname{fp}\left(\frac{1}{x^{n}}\right), \varphi' \right\rangle = -\int_{\mathbb{R}} \frac{1}{x^{n}} \left(\varphi'(x) - \sum_{j=0}^{n-2} \frac{\varphi^{(j+1)}(0)}{j!} x^{j} - \frac{\varphi^{(n)}(0)}{(n-1)!} x^{n-1} \mathbf{1}_{(-1,1)}(x) \right) \mathrm{d}x$$

$$= -\frac{1}{x^{n}} \left(\varphi(x) - \sum_{j=0}^{n-1} \frac{\varphi^{(j)}(0)}{j!} x^{j} - \frac{\varphi^{(n)}(0)}{(n)!} x^{n} \mathbf{1}_{(-1,1)}(x) \right)_{-\infty}^{\infty}$$

$$- n \int_{\mathbb{R}} \frac{1}{x^{n+1}} \left(\varphi(x) - \sum_{j=0}^{n-1} \frac{\varphi^{(j)}(0)}{j!} x^{j} - \frac{\varphi^{(n)}(0)}{(n)!} x^{n} \mathbf{1}_{(-1,1)}(x) \right) \mathrm{d}x$$

$$= -n \operatorname{fp}\left(\frac{1}{x^{n+1}}\right)$$

Let $\widetilde{\varphi}(x) = \varphi(x/r)$. Then $\widetilde{\varphi}^{(j)}(0) = r^{-j}\varphi^{(j)}(0)$. The dilated function

$$\widetilde{\psi}(x) := \widetilde{\varphi}(x) - \sum_{j=0}^{n-2} \frac{\widetilde{\varphi}^{(j)}(0)}{j!} x^j - \frac{\widetilde{\varphi}^{(n-1)}(0)}{(n-1)!} x^{n-1} \mathbf{1}_{(-1,1)}(x) = \varphi\left(\frac{x}{r}\right) - \sum_{j=0}^{n-2} \frac{\varphi^{(j)}(0)}{j!} \left(\frac{x}{r}\right)^j - \frac{\varphi^{(n-1)}(0)}{(n-1)!} \left(\frac{x}{r}\right)^{n-1} \mathbf{1}_{(-1,1)}(x) = \psi\left(\frac{x}{r}\right) - \frac{\varphi^{(n-1)}(0)}{(n-1)!} \left(\frac{x}{r}\right)^{n-1} \mathbf{1}_{(-1,1)}(x) = \psi\left(\frac{x}{r}\right) - \frac{\varphi^{(n-1)}(0)}{(n-1)!} \left(\frac{x}{r}\right)^{n-1} \mathbf{1}_{(-1,1)}(x) = \psi\left(\frac{x}{r}\right) - \frac{\varphi^{(n-1)}(0)}{(n-1)!} \left(\frac{x}{r}\right)^{n-1} \mathbf{1}_{(-1,1)}(x) = \psi\left(\frac{x}{r}\right)$$

Hence

$$\left\langle d_r \operatorname{fp}\left(\frac{1}{x^n}\right), \varphi \right\rangle = r^{-1} \left\langle \operatorname{fp}\left(\frac{1}{x^n}\right), d_{1/r} \varphi \right\rangle = r^{-1} \int_{\mathbb{R}} \frac{\widetilde{\psi}(x)}{x^n} \mathrm{d}x = r^{-n-1} \int_{\mathbb{R}} \frac{\psi(x/r)}{(x/r)^n} \, \mathrm{d}x = r^{-n} \int_{\mathbb{R}} \frac{\psi(x)}{x^n} \, \mathrm{d}x = \left\langle r^{-n} \operatorname{fp}\left(\frac{1}{x^n}\right), \varphi \right\rangle$$

Hence $\operatorname{fp}\left(\frac{1}{x^n}\right)$ is homogeneous of degree -n.

Much easier to just use the worlds of sneet 2 for this?

(b) Note that for j < n,

$$\frac{\mathrm{d}}{\mathrm{d}x^{j}}(x^{n}\varphi(x))\bigg|_{x=0} = \sum_{i=0}^{j} \binom{j}{i} \frac{n!}{i!} x^{n-i} \varphi^{(j-i)}(0)\bigg|_{x=0} = 0$$

Therefore

$$\left\langle x^n \operatorname{fp}\left(\frac{1}{x^n}\right), \varphi \right\rangle = \left\langle \operatorname{fp}\left(\frac{1}{x^n}\right), x^n \varphi \right\rangle = \int_{\mathbb{R}} \frac{x^n \varphi(x)}{x^n} \, \mathrm{d}x = \int_{\mathbb{R}} \varphi(x) \, \mathrm{d}x = \left\langle 1, \varphi \right\rangle$$

which implies that $x^n \operatorname{fp}\left(\frac{1}{x^n}\right) = 1$.

To find the solutions of $x^n u = 1$, we consider the equation $x^n u = 0$ instead. The solution u must satisfy supp $u = \{0\}$. By Theorem 5.32, u is a linear combination of the derivatives of the delta function δ_0 . Note that

$$\left\langle x^n \delta_0^{(k)}, \varphi \right\rangle = \left\langle \delta_0, (-1)^k \frac{\mathrm{d}}{\mathrm{d} x^k} (x^n \varphi(x)) \right\rangle = (-1)^k \left. \frac{\mathrm{d}}{\mathrm{d} x^k} (x^n \varphi(x)) \right|_{x=0} = 0$$

for k < n. For $k \ge n$, RHS contains a term proportional to $\varphi(0)$ and hence does not vanish identically for any $\varphi \in \mathcal{D}(\mathbb{R})$. In summary, the general solution to $x^n u = 0$ is given by

$$u = \sum_{k=0}^{n-1} c_k \delta_0^{(k)}$$

Hence the general solution to $x^n u = 1$ is given by

$$u = \operatorname{fp}\left(\frac{1}{x^n}\right) + \sum_{k=0}^{n-1} c_k \delta_0^{(k)}$$

for some $c_0, ..., c_{n-1} \in \mathbb{R}$.

For the equation $(x - a)^n v = 1$, we first note that

$$(x-a)^n \tau_{-a} \operatorname{fp}\left(\frac{1}{x^n}\right) = 1$$

where τ_{-a} is the translation operation by -a. It is because for $\varphi \in \mathcal{D}(\mathbb{R})$,

$$\left\langle (x-a)^n \tau_{-a} \operatorname{fp}\left(\frac{1}{x^n}\right), \varphi \right\rangle = \left\langle \operatorname{fp}\left(\frac{1}{x^n}\right), x^n \varphi(x+a) \right\rangle = \int_{\mathbb{R}} \varphi(x+a) \, \mathrm{d}x = \int_{\mathbb{R}} \varphi(x) \, \mathrm{d}x = \left\langle 1, \varphi \right\rangle$$

Following the similar argument, we deduce that the general solution to $(x-a)^n v = 1$ is given by

$$v = \tau_{-a} \operatorname{fp}\left(\frac{1}{x^n}\right) + \sum_{k=0}^{n-1} c_k \delta_a^{(k)}$$

for some $c_0, ..., c_{n-1} \in \mathbb{R}$.

Question 4

A function $f: \mathbb{R} \to \mathbb{R}$ is *convex* if for all $x_0, x_1 \in \mathbb{R}$ and $\lambda \in (0, 1)$ we have

$$f(\lambda x_1 + (1 - \lambda)x_0) \le \lambda f(x_1) + (1 - \lambda)f(x_0)$$

A function $a: \mathbb{R} \to \mathbb{R}$ satisfying (1) with equality everywhere is called an *affine function*.

(a) Show that an affine function must have the form $a(x) = a_1x + a_0$ for some constants $a_0, a_1 \in \mathbb{R}$. Show also that a function $f: \mathbb{R} \to \mathbb{R}$ is convex if and only if it for each compact interval $[\alpha, \beta] \subseteq \mathbb{R}$ has the property:

when a is affine and $f(x) \le a(x)$ for $x \in \{\alpha, \beta\}$, then $f \le a$ on $[\alpha, \beta]$

(b) Show that a convex function $f : \mathbb{R} \to \mathbb{R}$ satisfies the 3 slope inequality:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

holds for all triples $x_1 < x_2 < x_3$. Deduce that a convex function must be continuous and that it is differentiable except for in at most countably many points.

Show that a convex function must be locally Lipschitz continuous: for each r > 0 there exists $L = L_r \ge 0$ so $|f(x) - f(y)| \le 1$ L|x - y| holds for all $x, y \in [-r, r]$.

(c) Assume that $f: \mathbb{R} \to \mathbb{R}$ is twice differentiable. Show that f is convex if and only if

$$f''(x) \ge 0$$

holds for all $x \in \mathbb{R}$.

(d) Let $u \in \mathcal{D}'(\mathbb{R})$ and assume that $u'' \ge 0$ in $\mathcal{D}'(\mathbb{R})$. Show that u is represented by a convex function.

Proof. (a) \sim (c) are standard Prelim Analysis questions.

(a) Suppose that $f: [-x_0, x_0] \to \mathbb{R}$ satisfies

$$\forall \, x_1, x_2 \in [-x_0, x_0] \,\, \forall \, \lambda \in [0, 1] \quad f(\lambda x_1 + (1 - \lambda) x_2) = \lambda f(x_1) + (1 - \lambda) f(x_2)$$

Then for $x \in [-x_0, x_0]$, let $x_2 = -x_0$, $x_1 = x_0$, and $\lambda = \frac{1}{2} + \frac{x}{2x_0}$. We have

$$f(x) = \left(\frac{1}{2} + \frac{x}{2x_0}\right)f(x_0) + \left(\frac{1}{2} - \frac{x}{2x_0}\right)f(-x_0) = \frac{f(x_0) - f(-x_0)}{2x_0}x + \frac{1}{2}(f(x_0) + f(-x_0)) = a_1x + a_0$$

If $a: \mathbb{R} \to \mathbb{R}$ is affine, then it is affine restricted to $[-x_0, x_0]$ for any $x_0 > 0$. We deduce that $a(x) = a_1x + a_0$ for some

 $a_0, a_1 \in \mathbb{R}$. On $[X_0, X_0]$. Now explain why α_1, α_0 are unchange. " \Rightarrow " Suppose that $f : \mathbb{R} \to \mathbb{R}$ is convex. Let $a : \mathbb{R} \to \mathbb{R}$ be an affine function such that $f(\alpha) \leq a(\alpha)$ and $f(\beta) \leq a(\beta)$. For $x \in [\alpha, \beta]$, let $x_1 = \alpha$, $x_0 = \beta$ and $\lambda = \frac{x - \alpha}{\beta - \alpha}$. Then

$$f(x) \le \frac{x - \alpha}{\beta - \alpha} f(\alpha) + \frac{\beta - x}{\beta - \alpha} f(\beta) \le \frac{x - \alpha}{\beta - \alpha} a(\alpha) + \frac{\beta - x}{\beta - \alpha} a(\beta) = a(x)$$

Hence $f \le a$ on $[\alpha, \beta]$.

" \leftarrow " Suppose that the converse holds. Then for any $[x_1, x_0] \subseteq \mathbb{R}$, let $a : \mathbb{R} \to \mathbb{R}$ be an affine function such that $a(x_1) =$ $f(x_1)$ and $a(x_0) = f(x_0)$. Explicitly,

$$a(x) = \frac{f(x_0) - f(x_1)}{x_0 - x_1}(x - x_1) + f(x_1)$$

Since $f \le a$ on $[x_1, x_0]$, for any $\lambda \in [0, 1]$ we have

$$f(\lambda x_1 + (1 - \lambda)x_0) \le a(\lambda x_1 + (1 - \lambda)x_0) = \lambda a(x_1) + (1 - \lambda)a(x_0) = \lambda f(x_1) + (1 - \lambda)f(x_0)$$

Hence f is convex.

mon dong

(b) Consider the affine function $a: \mathbb{R} \to \mathbb{R}$ with $a(x_1) = f(x_1)$ and $a(x_3) = f(x_3)$. Explicitly,

$$a(x) = \frac{f(x_3) - f(x_1)}{x_3 - x_1}(x - x_1) + f(x_1)$$

By part (a), $f \le a$ on $[x_1, x_3]$. In particular,

$$f(x_2) \le a(x_2) = \frac{f(x_3) - f(x_1)}{x_3 - x_1}(x_2 - x_1) + f(x_1) \implies \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1}$$

In addition, we note that

$$a(x_2) = \frac{f(x_3) - f(x_1)}{x_3 - x_1}(x_2 - x_1) + f(x_1) = \frac{f(x_3) - f(x_1)}{x_3 - x_1}(x_2 - x_3) + f(x_3)$$

So $f(x_2) \le a(x_2)$ also implies that

$$\frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

In summary, for $x_1 < x_2 < x_3$,

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

Let *f* be a convex function. We fix $x_0 \in \mathbb{R}$. Consider the function $g : \mathbb{R} \setminus \{x_0\} \to \mathbb{R}$ defined by

$$g(x) := \frac{g(x) - g(x_0)}{x - x_0}$$

Then by 3 slope inequality g is non-decreasing on $\mathbb{R}\setminus\{x_0\}$. In particular, the one-sided derivatives $\lim_{x\nearrow x_0}g(x)$ and $\lim_{x\searrow x_0}g(x)$ exists. Hence

$$\lim_{x \nearrow x_0} (f(x) - f(x_0)) = \lim_{x \searrow x_0} (f(x) - f(x_0)) = 0$$

which implies that $\lim_{x \to x_0} f(x) = f(x_0)$. Hence f is continuous at $x_0 \in \mathbb{R}$.

As the one-sided derivatives of f exists everywhere, f' can only have jump discontinuities. It follows that f is differentiable except for in at most countably many points.

For r > 0, let

$$L_r := \sup_{x \in [-r,r]} \frac{|f(r) - f(x)|}{r - x}$$

We know that $L_r < \infty$ because by 3-slope inequality, for all x < r,

$$\left| \frac{f(r) - f(x)}{r - x} \right| \le \left| \frac{f(2r) - f(r)}{2r - r} \right|$$

For x, y with $-r \le y < x \le r$, by 3 slope inequality,

$$\frac{|f(x) - f(y)|}{|x - y|} \le \frac{|f(x) - f(r)|}{|x - r|} \le L_r$$

Hence $|f(x) - f(y)| \le L_r |x - y|$ for all $x, y \in [-r, r]$. f is locally Lipschitz continuous.

(c) " \Longrightarrow " Suppose that f is a twice differentiable convex function. Fix $a, b \in \mathbb{R}$ with a < b. For $x \in (a, b)$, by 3 slope inequality,

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(x) - f(b)}{x - b}$$

Therefore

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \inf_{x \in (a,b)} \frac{f(x) - f(a)}{x - a} \le \sup_{x \in (a,b)} \frac{f(x) - f(b)}{x - b} = \lim_{x \to b} \frac{f(x) - f(b)}{x - b} = f'(b)$$

Hence f' is non-decreasing. We deduce that $f''(x) \ge 0$ for all $x \in \mathbb{R}$

" \Leftarrow " Suppose that $f'' \ge 0$. Then f' is non-decreasing on \mathbb{R} . We fix $x_0, x_2 \in \mathbb{R}$ with $x_0 < x_2$. Let $\lambda \in (0,1)$, and $x_1 := \lambda x_0 + (1 - \lambda) x_2$.

Since $x_0 < x_1 < x_2$, by Lagrange's mean value theorem, there exists $\xi \in (x_0, x_1)$ and $\zeta \in (x_1, x_2)$ such that

$$f'(\xi) = \frac{f(x_1) - f(x_0)}{x_1 - x_0}, \qquad f'(\zeta) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Then

$$\xi < \zeta \implies f'(\xi) \le f'(\zeta) \implies \frac{f(x_1) - f(x_0)}{x_1 - x_0} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Rearranging the inequality:

$$(x_2 - x_0) f(x_1) \le (x_2 - x_1) f(x_2) + (x_1 - x_0) f(x_0)$$

Hence

$$f(\lambda x_0 + (1 - \lambda)x_2) = f(x_1) \le \frac{x_1 - x_0}{x_2 - x_0} f(x_0) + \frac{x_2 - x_1}{x_2 - x_0} f(x_2) = \lambda f(x_0) + (1 - \lambda)f(x_2)$$

Hence f is convex.

(d) By Theorem 5.10, $u'' \ge 0$ in $\mathcal{D}'(\mathbb{R})$ implies that there exists a increasing function $f \in L^1_{loc}(\mathbb{R})$ such that u' = f. Let

$$F(x) := \int_0^x f(t) dt$$

$$\lim_{t \to \infty} \mathcal{D}'(\mathbb{R}) : \text{ for } a \in \mathcal{D}(\mathbb{R})$$

be a primitve of f in the usual sense. Then F' = f in $\mathcal{D}'(\mathbb{R})$: for $\varphi \in \mathcal{D}(\mathbb{R})$,

$$\langle F', \varphi \rangle = -\langle F, \varphi' \rangle = -\int_{\mathbb{R}} F(x) \varphi'(x) \, dt$$

$$= -\int_{\mathbb{R}} \left(\int_{0}^{x} f(t) \, dt \right) \varphi'(x) \, dx$$

$$= \int_{\mathbb{R}} \left(\int_{t}^{\infty} -\varphi'(x) \, dx \right) f(t) \, dt$$

$$= \int_{\mathbb{R}} f(t) \varphi(t) \, dt = \langle f, \varphi \rangle$$
(Fubini's theorem)

Hence (u-F)'=0 in $\mathcal{D}'(\mathbb{R})$. By constancy theorem, u-F=c for some $c\in\mathbb{R}$. Hence u=F+c is a regular distribution.

For $x_0 < x_1 < x_2$, since f is increasing, we have

$$\frac{F(x_1) - F(x_0)}{x_1 - x_0} = \frac{1}{x_1 - x_0} \int_{x_0}^{x_1} f(t) \, \mathrm{d}t \le f(x_1 -) \le f(x_1 +) \le \frac{1}{x_2 - x_1} \int_{x_1}^{x_2} f(t) \, \mathrm{d}t = \frac{F(x_2) - F(x_1)}{x_2 - x_1}$$

By the similar proof in part (c), we deduce that F is convex. Hence u = F + c is represented by a convex function.

I take issue with the just line which I nave highlighted - I don't think that you can assume this.

Instead try replicating proof from LN where you consider by the form of a show a first of the of a show a first order. Then let a 200+.