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Question 1

This question provides a condition ensuring that the usual partial derivatives coincide with the distributional partial deriva-
tives.

Prove Lemma 5.21 from the lecture notes: If the dimension n   2 and f 2 C1 (Rn \ {0})\L1
loc (Rn) has usual partial derivatives

@ j f 2 L1
loc (Rn) for each direction 1 … j … n, then also

Z

Rn
@ j f 'dx =°

Z

Rn
f @ j'dx

holds for all' 2D (Rn). Give an example to show that it can fail for dimension n = 1. Show that for dimension n = 1 we instead
have the following: If f 2 C1(R\ {0})\C(R) and the usual derivative f 0 2 L1

loc (R), then

Z

R
f 0'dx =°

Z

R
f '0dx

holds for all ' 2D(R).

Proof. Let ' 2D(R). Without loss of generality we fix j = n. For fixed x1, ..., xn°1, we have the one-dimensional integration by parts
as follows: µZ°"

°1
+

Z1

"

∂
@ f
@xn

'dxn =°
µZ°"

°1
+

Z1

"

∂
f
@'

@xn
dxn ° f '

ØØØØ
xn="

xn=°"

For (x1, ..., xn°1) 6= (0, ...,0), the last term on the RHS vanishes as "! 0 by the continuity of f . Therefore

Z

Rn°1
lim
"&0

f '
ØØØØ

xn="

xn=°"
dxn°1 = 0

since the integrand is zero almost everywhere.

Since ' is compactly supported and @n f is locally integrable, we have @n f ' 2 L1(Rn). By Fubini’s theorem,

Z

Rn

@ f
@xn

'dxn =
Z

Rn°1

µZ

R

@ f
@xn

'dxn

∂
dxn°1

=
Z

Rn°1
lim
"&0

µµZ°"

°1
+

Z1

"

∂
@ f
@xn

'dxn

∂
dxn°1

=°
Z

Rn°1
lim
"&0

µµZ°"

°1
+

Z1

"

∂
@'

@xn
f dxn

∂
dxn°1 °

Z

Rn°1
lim
"&0

f '
ØØØØ

xn="

xn=°"
dxn°1

=°
Z

Rn°1

µZ

R

@'

@xn
f dxn

∂
dxn°1

=°
Z

Rn

@'

@xn
f dxn

For a counter-example in R, consider the function f :R\ {0} !R given by

f (x) =
(

1, x < 0

x, x > 0

Then the usual derivative is given by

f 0(x) =
(

0, x < 0

1, x > 0

Consider a sequence of test functions ('m) µD(R) such that

supp'm µ [°1,1], 0 …'m(x) … 1, 'm(0) = 1, lim
m!1

'm(x) = 0 for x 6= 0

Then we have
Z

R
f '0

m dx +
Z

R
f 0'm dx =

Z0

°1
'0

m dx +
Z1

0
x'0

m dx +
Z1

0
'm dx
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=
Z1

0
'm dx + ('m(0)°'m(°1))+x'm(x)

ØØ1
0 ° ('m(1)°'m(0))

=
Z1

0
'm dx °2

By dominated convergence theorem,

lim
m!1

µZ

R
f '0

m dx +
Z

R
f 0'm dx

∂
=

Z1

0
lim

m!1
'm dx °2 =°2

contradicting that
Z

R
f '0

m dx +
Z

R
f 0'm dx = 0 for all m 2N.

If f 2 C1(R\ {0})\C0(R), then f ' 2 C0(R) for any ' 2D(R). By fundamental theorem of calculus,

µZ°"

°1
+

Z1

"

∂
f 0'dx =°

µZ°"

°1
+

Z1

"

∂
f '0 dx + f (°")'(°")° f (")'(")

By continuity of f ' at x = 0, as "& 0, we have

Z

R
f 0' dx = lim

"&0

µZ°"

°1
+

Z1

"

∂
f 0'dx =° lim

"&0

µZ°"

°1
+

Z1

"

∂
f '0 dx =

Z

R
f '0 dx

Question 2. Boundary values in the sense of distributions for holomorphic functions.

(a) Prove that for each n 2N,

(x + i")°n ! (x + i0)°n in D0(R) as "& 0

where the distribution (x + i0)°n was defined in Problem 2 on Sheet 3.

A holomorphic function f : H !C on the upper half-plane H = {z 2C : Im(z) > 0} is said to be of slow growth if for each
R > 0 there exist m = mR 2N0 and c = cR   0 so

| f (z)|… c
Im(z)m

holds for all z 2 H with |Re(z)|… R and Im(z) < 2.

(b) Prove that if f : H !C is holomorphic of slow growth, then it has a boundary value in the sense of distributions:

h f (x + i0),'i := lim
"&0

Z

R
f (x + i")'(x)dx

exists for all ' 2D(R) and defines a distribution.

[Hint: Assume first that m = 0 above and let F : H ! C be the holomorphic primitive with F (i) = 0. Explain why F has a
continuous extension to the closed upper half-plane H and use this to conclude the proof in this special case. Then use
induction on m.]

Proof. (a) We have shown in Problem 2.(b) on Sheet 3 that for any ' 2D(R),

≠
(x + i0)°n ,'

Æ
= lim
"&0

Z

R

'(x)
(x + i")n dx = lim

"&0

≠
(x + i")°n ,'

Æ

Hence (x + i")°n ! (x + i0)°n in D0(R) as "& 0.

(b) (I cannot see why F has a continuous extension on the real line. Perhaps it has some relation with the boundary corre-
spondence theorem...)
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Question 3. Distributions defined by finite parts.

Recall from Sheet 2 that the distributional derivative of log |x| is the distribution pv
° 1

x

¢
defined by the principal value integral

ø
pv

µ
1
x

∂
,'

¿
:= lim

"&0

µZ°"

°1
+

Z1

"

∂
'(x)

x
dx, ' 2D(R)

In order to represent the higher order derivatives one can use finite parts: Let n 2Nwith n > 1. We then define fp
° 1

xn

¢
for each

' 2D(R) by the finite part integral

ø
fp

µ
1

xn

∂
,'

¿
:=

Z1

°1

'(x)°
n°2X

j=0

'( j )(0)
j !

x j ° '(n°1)(0)
(n °1)!

xn°11(°1,1)(x)

xn dx

(a) Check that hereby fp
° 1

xn

¢
is a well-defined distribution on R. Show that

d
dx

pv
µ

1
x

∂
=° fp

µ
1

x2

∂
and

d
dx

fp
µ

1
xn

∂
=°n fp

µ
1

xn+1

∂

for all n > 1. Is fp
° 1

xn

¢
homogeneous? (See Problem 4 on Sheet 2 for the definition of homogeneity.)

(b) Show that for n > 1 we have xn fp
° 1

xn

¢
= 1 and find the general solution to the equation xnu = 1 in D0(R). What is the

general solution to the equation (x °a)n v = 1 in D0(R) when a 2R\ {0}?

(c) Let p(x) 2C[x] \ {0} be a nontrivial polynomial. Describe the general solution w 2D0(R) to the equation

p(x)w = 1 in D0(R)

Proof. (a) First we check that fp
µ

1
xn

∂
is a well-defined distribution.

•
ø

fp
µ

1
xn

∂
,'

¿
is finite for any ' 2D(R).

Define

√(x) :='(x)°
n°2X
j=0

'( j )(0)
j !

x j ° '(n°1)(0)
(n °1)!

xn°11(°1,1)(x)

Observe that √(k)(0) = 0 for 0 … k … n °1 and √(n)(0) ='(n)(0). Therefore by l’Hôptial’s rule,

lim
x!0

√(x)
xn = lim

x!0

√(n)(x)
n!

= '(n)(0)
n!

Hence √(x)/xn is continuous on R. Suppose that supp'µ [°a, a]. Then for |x| > a, we have

√(x)
xn =

n°2X

j=0

'( j )(0)
j !

1

xn° j

and we know that Z1

a

1

xn° j
dx = 1

n ° j °1
1

an° j°1

is finite for j … n °2. Therefore

ø
fp

µ
1

xn

∂
,'

¿
=

Za

°a

√(x)
xn dx +

n°2X

j=0

'( j )(0)
j !

µZ°a

°1
+

Z+1

a

∂
1

xn° j
dx

is finite.

• It is clear that fp
µ

1
xn

∂
is a linear functional because √(x) is linear in all derivatives of '(x).

• Continuity of fp
µ

1
xn

∂
.

Suppose that {'m} µD(R) and ' 2D(R) such that 'm !' in D(R). Let a > 0 such that supp'm , supp'µ [°a, a].
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Similarly we can define

√m(x) :='m(x)°
n°2X
j=0

'
( j )
m (0)

j !
x j ° '(n°1)

m (0)
(n °1)!

xn°11(°1,1)(x)

Then √m(x) !√(x) as m !1 pointwise (in fact it is also uniform). Since √(x)/xn is bounded on R, by dominated
convergence theorem,

lim
m!1

ø
fp

µ
1

xn

∂
,'m

¿
= lim

m!1

Z

R

√m(x)
xn dx =

Z

R

√(x)
xn dx =

ø
fp

µ
1

xn

∂
,'

¿

Hence fp
µ

1
xn

∂
is continuous in D0(R).

Next, we check that
d

dx
pv

µ
1
x

∂
=° fp

µ
1

x2

∂
by brute force.

°
ø

d
dx

pv
µ

1
x

∂
,'

¿
=

ø
pv

µ
1
x

∂
,'0

¿
= lim
"&0

µZ°"

°1
+

Z1

"

∂
'0(x)

x
dx

= lim
"&0

µ
'(x)

x

ØØØØ
°"

°1
+

Z°"

°1

'(x)
x2 dx + '(x)

x

ØØØØ
1

"
+

Z1

"

'(x)
x2 dx

∂

= lim
"&0

µ
°'(")+'(°")

"
+

µZ°"

°1
+

Z1

"

∂
'(x)

x2 dx
∂

Note that by l’Hôptial’s rule,

lim
"&0

'(")+'(°")°2'(0)
"

= lim
"&0

°
'0(0)°'0(0)

¢
= 0

Therefore

°
ø

d
dx

pv
µ

1
x

∂
,'

¿
= lim
"&0

µ
°2'(0)

"
+

µZ°"

°1
+

Z1

"

∂
'(x)

x2 dx
∂

On the other hand,

ø
fp

µ
1

x2

∂
,'

¿
=

Z

R

'(x)°'(0)°'0(0)x1(°1,1)(x)
x2 dx

= lim
"&0

µZ°"

°1
+

Z1

"

∂
'(x)°'(0)°'0(0)x1(°1,1)(x)

x2 dx

= lim
"&0

µµZ°"

°1
+

Z1

"

∂
'(x)

x2 dx °'(0)
µZ°"

°1
+

Z1

"

∂
1

x2 dx °'0(0)
µZ°"

°1
+

Z1

"

∂
1
x

dx
∂

= lim
"&0

µµZ°"

°1
+

Z1

"

∂
'(x)

x2 dx ° 2'(0)
"

∂

which proves the claim.

Next, we check that
d

dx
fp

µ
1

xn

∂
=°n fp

µ
1

xn+1

∂
. Simply note that

d
dx

√
'(x)°

n°1X
j=0

'( j )(0)
j !

x j ° '(n)(0)
(n)!

xn 1(°1,1)(x)

!
='0(x)°

n°2X
j=0

'( j+1)(0)
j !

x j ° '(n)(0)
(n °1)!

xn°11(°1,1)(x)

Therefore by integration by parts,

ø
d

dx
fp

µ
1

xn

∂
,'

¿
=°

ø
fp

µ
1

xn

∂
,'0

¿
=°

Z

R

1
xn

√
'0(x)°

n°2X
j=0

'( j+1)(0)
j !

x j ° '(n)(0)
(n °1)!

xn°11(°1,1)(x)

!
dx

=° 1
xn

√
'(x)°

n°1X
j=0

'( j )(0)
j !

x j ° '(n)(0)
(n)!

xn 1(°1,1)(x)

!1

°1

°n
Z

R

1
xn+1

√
'(x)°

n°1X
j=0

'( j )(0)
j !

x j ° '(n)(0)
(n)!

xn 1(°1,1)(x)

!
dx

=°n fp
µ

1
xn+1

∂
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Let e'(x) ='(x/r ). Then e'( j )(0) = r° j'( j )(0). The dilated function

e√(x) := e'(x)°
n°2X
j=0

e'( j )(0)
j !

x j ° e'(n°1)(0)
(n °1)!

xn°11(°1,1)(x) ='
≥ x

r

¥
°

n°2X
j=0

'( j )(0)
j !

≥ x
r

¥ j
° '(n°1)(0)

(n °1)!

≥ x
r

¥n°1
1(°1,1)(x) =√

≥ x
r

¥

Hence
ø

dr fp
µ

1
xn

∂
,'

¿
= r°1

ø
fp

µ
1

xn

∂
,d1/r'

¿
= r°1

Z

R

e√(x)
xn dx = r°n°1

Z

R

√(x/r )
(x/r )n dx = r°n

Z

R

√(x)
xn dx =

ø
r°n fp

µ
1

xn

∂
,'

¿

Hence fp
µ

1
xn

∂
is homogeneous of degree °n.

(b) Note that for j < n,
d

dx j
(xn'(x))

ØØØØ
x=0

=
jX

i=0

√
j
i

!
n!
i !

xn°i'( j°i )(0)

ØØØØØ
x=0

= 0

Therefore ø
xn fp

µ
1

xn

∂
,'

¿
=

ø
fp

µ
1

xn

∂
, xn'

¿
=

Z

R

xn'(x)
xn dx =

Z

R
'(x)dx =

≠
1,'

Æ

which implies that xn fp
µ

1
xn

∂
= 1.

To find the solutions of xnu = 1, we consider the equation xnu = 0 instead. The solution u must satisfy suppu = {0}. By
Theorem 5.32, u is a linear combination of the derivatives of the delta function ±0. Note that

D
xn±(k)

0 ,'
E
=

ø
±0, (°1)k d

dxk
(xn'(x))

¿
= (°1)k d

dxk
(xn'(x))

ØØØØ
x=0

= 0

for k < n. For k   n, RHS contains a term proportional to '(0) and hence does not vanish identically for any ' 2D(R).
In summary, the general solution to xnu = 0 is given by

u =
n°1X

k=0
ck±

(k)
0

Hence the general solution to xnu = 1 is given by

u = fp
µ

1
xn

∂
+

n°1X

k=0
ck±

(k)
0

for some c0, ...,cn°1 2R.

For the equation (x °a)n v = 1, we first note that

(x °a)nø°a fp
µ

1
xn

∂
= 1

where ø°a is the translation operation by °a. It is because for ' 2D(R),

ø
(x °a)nø°a fp

µ
1

xn

∂
,'

¿
=

ø
fp

µ
1

xn

∂
, xn'(x +a)

¿
=

Z

R
'(x +a)dx =

Z

R
'(x)dx =

≠
1,'

Æ

Following the similar argument, we deduce that the general solution to (x °a)n v = 1 is given by

v = ø°a fp
µ

1
xn

∂
+

n°1X

k=0
ck±

(k)
a

for some c0, ...,cn°1 2R.
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Question 4

A function f :R!R is convex if for all x0, x1 2R and ∏ 2 (0,1) we have

f (∏x1 + (1°∏)x0) …∏ f (x1)+ (1°∏) f (x0)

A function a :R!R satisfying (1) with equality everywhere is called an affine function.

(a) Show that an affine function must have the form a(x) = a1x+a0 for some constants a0, a1 2R. Show also that a function
f :R!R is convex if and only if it for each compact interval [Æ,Ø] µR has the property:

when a is affine and f (x) … a(x) for x 2 {Æ,Ø}, then f … a on [Æ,Ø]

(b) Show that a convex function f :R!R satisfies the 3 slope inequality:

f (x2)° f (x1)
x2 °x1

… f (x3)° f (x1)
x3 °x1

… f (x3)° f (x2)
x3 °x2

holds for all triples x1 < x2 < x3. Deduce that a convex function must be continuous and that it is differentiable except
for in at most countably many points.

Show that a convex function must be locally Lipschitz continuous: for each r > 0 there exists L = Lr   0 so | f (x)° f (y)|…
L|x ° y | holds for all x, y 2 [°r,r ].

(c) Assume that f :R!R is twice differentiable. Show that f is convex if and only if

f 00(x)   0

holds for all x 2R.

(d) Let u 2D0(R) and assume that u00   0 in D0(R). Show that u is represented by a convex function.

Proof. (a) ª (c) are standard Prelim Analysis questions.

(a) Suppose that f : [°x0, x0] !R satisfies

8x1, x2 2 [°x0, x0] 8∏ 2 [0,1] f (∏x1 + (1°∏)x2) =∏ f (x1)+ (1°∏) f (x2)

Then for x 2 [°x0, x0], let x2 =°x0, x1 = x0, and ∏= 1
2
+ x

2x0
. We have

f (x) =
µ

1
2
+ x

2x0

∂
f (x0)+

µ
1
2
° x

2x0

∂
f (°x0) = f (x0)° f (°x0)

2x0
x + 1

2
( f (x0)+ f (°x0)) = a1x +a0

If a : R! R is affine, then it is affine restricted to [°x0, x0] for any x0 > 0. We deduce that a(x) = a1x + a0 for some
a0, a1 2R.

" =) " Suppose that f : R! R is convex. Let a : R! R be an affine function such that f (Æ) … a(Æ) and f (Ø) … a(Ø). For

x 2 [Æ,Ø], let x1 =Æ, x0 =Ø and ∏= x °Æ
Ø°Æ . Then

f (x) … x °Æ
Ø°Æ f (Æ)+ Ø°x

Ø°Æ f (Ø) … x °Æ
Ø°Æa(Æ)+ Ø°x

Ø°Æa(Ø) = a(x)

Hence f … a on [Æ,Ø].

" (= " Suppose that the converse holds. Then for any [x1, x0] µ R, let a : R! R be an affine function such that a(x1) =
f (x1) and a(x0) = f (x0). Explicitly,

a(x) = f (x0)° f (x1)
x0 °x1

(x °x1)+ f (x1)

Since f … a on [x1, x0], for any ∏ 2 [0,1] we have

f (∏x1 + (1°∏)x0) … a(∏x1 + (1°∏)x0) =∏a(x1)+ (1°∏)a(x0) =∏ f (x1)+ (1°∏) f (x0)

Hence f is convex.
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(b) Consider the affine function a :R!Rwith a(x1) = f (x1) and a(x3) = f (x3). Explicitly,

a(x) = f (x3)° f (x1)
x3 °x1

(x °x1)+ f (x1)

By part (a), f … a on [x1, x3]. In particular,

f (x2) … a(x2) = f (x3)° f (x1)
x3 °x1

(x2 °x1)+ f (x1) =) f (x2)° f (x1)
x2 °x1

… f (x3)° f (x1)
x3 °x1

In addition, we note that

a(x2) = f (x3)° f (x1)
x3 °x1

(x2 °x1)+ f (x1) = f (x3)° f (x1)
x3 °x1

(x2 °x3)+ f (x3)

So f (x2) … a(x2) also implies that
f (x3)° f (x1)

x3 °x1
… f (x3)° f (x2)

x3 °x2

In summary, for x1 < x2 < x3,
f (x2)° f (x1)

x2 °x1
… f (x3)° f (x1)

x3 °x1
… f (x3)° f (x2)

x3 °x2

Let f be a convex function. We fix x0 2R. Consider the function g :R\ {x0} !R defined by

g (x) := g (x)° g (x0)
x °x0

Then by 3 slope inequality g is non-decreasing onR\{x0}. In particular, the one-sided derivatives lim
x%x0

g (x) and lim
x&x0

g (x)

exists. Hence
lim

x%x0
( f (x)° f (x0)) = lim

x&x0
( f (x)° f (x0)) = 0

which implies that lim
x!x0

f (x) = f (x0). Hence f is continuous at x0 2R.

As the one-sided derivatives of f exists everywhere, f 0 can only have jump discontinuities. It follows that f is differen-
tiable except for in at most countably many points.

For r > 0, let

Lr := sup
x2[°r,r ]

| f (r )° f (x)|
r °x

We know that Lr <1 because by 3-slope inequality, for all x < r ,

ØØØØ
f (r )° f (x)

r °x

ØØØØ…
ØØØØ

f (2r )° f (r )
2r ° r

ØØØØ

For x, y with °r … y < x … r , by 3 slope inequality,

| f (x)° f (y)|
|x ° y | … | f (x)° f (r )|

|x ° r | … Lr

Hence | f (x)° f (y)|… Lr |x ° y | for all x, y 2 [°r,r ]. f is locally Lipschitz continuous.

(c) " =) " Suppose that f is a twice differentiable convex function. Fix a,b 2 R with a < b. For x 2 (a,b), by 3 slope
inequality,

f (x)° f (a)
x °a

… f (x)° f (b)
x °b

Therefore

f 0(a) = lim
x!a

f (x)° f (a)
x °a

= inf
x2(a,b)

f (x)° f (a)
x °a

… sup
x2(a,b)

f (x)° f (b)
x °b

= lim
x!b

f (x)° f (b)
x °b

= f 0(b)

Hence f 0 is non-decreasing. We deduce that f 00(x)   0 for all x 2R.

" (= " Suppose that f 00   0. Then f 0 is non-decreasing on R. We fix x0, x2 2 R with x0 < x2. Let ∏ 2 (0,1), and x1 :=
∏x0 + (1°∏)x2.
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Since x0 < x1 < x2, by Lagrange’s mean value theorem, there exists ª 2 (x0, x1) and ≥ 2 (x1, x2) such that

f 0(ª) = f (x1)° f (x0)
x1 °x0

, f 0(≥) = f (x2)° f (x1)
x2 °x1

Then

ª< ≥ =) f 0(ª) … f 0(≥) =) f (x1)° f (x0)
x1 °x0

… f (x2)° f (x1)
x2 °x1

Rearranging the inequality:
(x2 °x0) f (x1) … (x2 °x1) f (x2)+ (x1 °x0) f (x0)

Hence
f (∏x0 + (1°∏)x2) = f (x1) … x1 °x0

x2 °x0
f (x0)+ x2 °x1

x2 °x0
f (x2) =∏ f (x0)+ (1°∏) f (x2)

Hence f is convex.

(d) By Theorem 5.10, u00   0 in D0(R) implies that there exists a increasing function f 2 L1
loc(R) such that u0 = f . Let

F (x) :=
Zx

0
f (t )dt

be a primitve of f in the usual sense. Then F 0 = f in D0(R): for ' 2D(R),

≠
F 0,'

Æ
=°

≠
F,'0Æ=°

Z

R
F (x)'0(x)dt

=°
Z

R

µZx

0
f (t )dt

∂
'0(x)dx

=
Z

R

µZ1

t
°'0(x)dx

∂
f (t )dt (Fubini’s theorem)

=
Z

R
f (t )'(t )dt =

≠
f ,'

Æ

Hence (u °F )0 = 0 in D0(R). By constancy theorem, u °F = c for some c 2R. Hence u = F + c is a regular distribution.

For x0 < x1 < x2, since f is increasing, we have

F (x1)°F (x0)
x1 °x0

= 1
x1 °x0

Zx1

x0

f (t )dt … f (x1°) … f (x1+) … 1
x2 °x1

Zx2

x1

f (t )dt = F (x2)°F (x1)
x2 °x1

By the similar proof in part (c), we deduce that F is convex. Hence u = F + c is represented by a convex function.


