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Question 1

This question provides a condition ensuring that the usual partial derivatives coincide with the distributional partial deriva-
tives.

Prove Lemma 5.21 from the lecture notes: If the dimension n = 2 and f € C' (R"\ {0}) "L} (R") has usual partial derivatives

0jf€ L10C (R™) for each direction 1 < j < n, then also

loc
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holds for all ¢ € & (R™). Give an example to show that it can fail for dimension n = 1. Show that for dimension n = 1 we instead
have the following: If f € C'®\ {0}) N C(R) and the usual derivative f' € L} (R), then

| froax=-[ ro'ax
R R
holds for all ¢ € Z(R). /

Proof. Let ¢ € Z(R). Without loss of generality we fix j = n. For fixed x1, ..., x,—1, we have the one-dimensional integration by parts
=€

as follows: . of . 5 .
- o0 - [e.0] (p n
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For (x1,..., xp-1) # (0,...,0), the last term on the RHS vanishes as € — 0 by the continuity of f. Therefore

fRn_l y{r(l)ftp

Xn=¢
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Xp=—€

since the integrand is zero almost everywhere.

Since ¢ is compactly supported and d,, f is locally integrable, we have d,, f € L (R"). By Fubini's theorem,
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For a counter-example in R, consider the function f : R\ {0} — R given by

1, x<0
f(x)={
x;

x>0

Then the usual derivative is given by

f’( ) 0, x<0
X) =

1, x>0
Consider a sequence of test functions (¢ ;) € 2 (R) such that

supp@, < [-1,1], O<sppx) <1, ©m0) =1, Wllim Om(x)=0forx#0
—00

Then we have

0 1 1
fRf(p'm dx+fRf’(pm dxzfl(p;n dx+f0 x@h, dx+f0 @mdx



1
=f0 Pm dx+((pm(0)_(,0m(_1))+x§0m(x)|(1)_((,0m(1)_(,0m(0))

1
= [ Pm dx-2 /
0
By dominated convergence theorem, /
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If f € CL(RN {0}) N C°(R), then f¢ € CO(R) for any ¢ € D (R). By fundamental theorem of calculus, ) M

(f_:+f:o)f'<ﬂdx=-(f_:+f:o)ftp' dx + f(=€)p(—€) - f(e)p(e) ﬁc@c

W
By continuity of f¢ at x =0, as £ \, 0, we have “(“o / '# 0

X
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contradicting thatf foh, dx +f f'omdx=0forall meN.
R R

Question 2. Boundary values in the sense of distributions for holomorphic functions.

(a) Prove that for each neN,
(x+ie) ™" = (x+i0)"" InD'(R) as e\ 0

where the distribution (x +i0) " was defined in Problem 2 on Sheet 3.

A holomorphic function f: H — C on the upper half-plane H = {z € C: Im(z) > 0} is said to be of slow growth if for each

R >0thereexist m=mpreNgand c=cg =0s0 0&
[ ORS
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S
holds for all z€ H with |Re(z)| < R and Im(z) < 2. & Q)g,

(b) Prove thatif f: H — Cis holomorphic of slow growth, then it has a boundary valye in the sense of distributions:
(f(x+i0),¢) := limf fx+ig)p(x)dx
eN0JR

exists for all ¢ € Z(R) and defines a distribution.

[Hint: Assume first that m = 0 above and let F : H — C be the holomorphic piimitive with F(i) = 0. Explain why F has a

continuous extension to the closed upper half-plane H and use this to concliide the proof in this special case. Then use
induction on m.]

Proof. (a) We have shown in Problem 2.(b) on Sheet 3 that for any ¢ € Z (R),
-

, e - o@
X {Cr+i0)7 ,(p)—?{% R(x+i£)"dx_tlfl{.n (erio™9) N\\\ g\"pb,\

— (x+i0)""in @' (R) as € \, 0. & / :

(b) (I cannot see why F has a continuous extension on the real line. Perhaps it has some relation with the boundary corre-
spondence theorem...)

Hence (x +ig)™"
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Question 3. Distributions defined by finite parts.

Recall from Sheet 2 that the distributional derivative of log|x] is the distribution pv( ) defined by the principal value integral

(2o}t [ e

In order to represent the higher order derivatives one can use finite parts: Let n € N with 7 > 1. We then define fp (i,,) for each
¢ € D (R) by the finite part integral

(])(0) . n=1) (@)

1 oo . - .
<fp(ﬁ)"”>‘=f_m P dx
(a) Check that hereby fp (ln) is a well-defined distribution on R. Show that
d 1 1 d 1 1
el e b B P Rl

foralln>1.Isfp ( ) homogeneous? (See Problem 4 on Sheet 2 for the definition of homogeneity.)

(b) Show that for n > 1 we have x"fp (=) = 1 and find the general solution to the equation x"u = 1 in @'(R). What is the
general solution to the equation (x— a@)"v =1 in @'(R) when a € R\ {0}?

(c) Let p(x) € C[x]\ {0} be a nontrivial polynomial. Describe the general solution w € @'(R) to the equation

p(x)w=1in D' (R)
1
Proof. (a) First we check that fp ( ) is a well-defined distribution.

1
. <fp (F),(p> is finite for any ¢ € 2 (R).

Define
§) (n-1) b\kk K
4 (O) % (0) n-1
Y(x):=@x) - Z x! - X7 1, (x) ~ CK
(n—1)! coN \\L
Observe that X (0) = 0 for 0 < k < n—1 and ¥ (0) = ¢ (0). Therefore by I'Hoptial’s rul Y =

S
VW P e ’TOJ"K\G(
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Hence y(x)/x" is continuous on R. Suppose that supp ¢ < [—a, a]. Then for |x| > a, we have & M
w(x) "igo”')(m 1 oM WA

x" _j=0 jvooxn-i W\
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is finite for j < n— 2. Therefore
1 a n-2 ,,(j) 0 -a +00 1
I NI e e I A o
x" _a X" = j! oo Ja x—J

is finite.
1

e Itis clear that fp ( ) is a linear functional because ¥ (x) is linear in all derivatives of ¢(x).

and we know that

1
* Continuity of fp (ﬁ)

Suppose that {¢,} € D (R) and ¢ € D (R) such that ¢,;, — ¢ in D (R). Let a > 0 such that supp ¢,,,,supp¢ < [—a, al.



Similarly we can define

n-2 (]) 0 . (n-1) 0

X" 11,n(x)

i (n—1)!
Then v, (x) — w(x) as m — oo pointwise (in fact it is als6/ uniform)/Since ¥ (x)/x" is bounded on R, by dominated
convergence theorem, ‘000-“‘3

lim <fp(xln) >_11 w’”(x) - Md —<fP(x—1n)"P> /

m—oo m—oo

1
Hence fp ( ) is continuous in &' (R).

d 1
Next, we check that = pv (—) =-1p ( ) by brute force.
X X
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Note that by 'Hoptial’s rule,
p(e) + (=€) —2¢(0)
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On the other hand,
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-
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which proves the claim.

d 1 1 .
Next, we check that i fp (F) =-nfp ( TS ) Simply note that

n-2 (P(j+1) 0) x]_ ~ (p(n) (0)

n-1
! CESTRERI

() 0 i (n) 0 ,

Therefore by integration by parts,
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(b)

Let ¢(x) = @(x/r). Then (ﬁ(j) 0) = r’f(p(j) (0). The dilated function

n=2 50) G0 n=2 oW i D -
o @0 . @ 0) (X @V 0) (x\i @ (0) (x\n-1 e
v '_q)(x)_jzo IR 1“1’1)(X)“p(7)_jz() ! ;) - CE 5 remw=v(])

Hence

()= (o) e [ o[ e )
Hence fp (%) is homogeneous of degree —n. mlmsei,;@w h \7\j ww;:\\?&

Note that for j < n,

4 )
dxf x=0 i=0

Therefore . . o)
x"p(x
(o) (o3 =8 et
S . 1
which implies that x" fp (F) =1 /

To find the solutions of x"u = 1, we consider the equation x"u = 0 instead. The solution u must satisfy supp u = {0}. By
Theorem 5.32, u is a linear combination of the derivatives of the delta function §,. Note that

=0

x=0

d d
® 0\ k ok
<x”50 ,<p> = <5o, (-1 o (x"<p(x))> =(-1 o (x"(x))

for k < n. For k = n, RHS contains a term proportional to ¢(0) and hence does not vanish identically for any ¢ € & (R).
In summary, the general solution to x" u = 0 is given by

n-1 r
u= Z cké(() )
k=0
Hence the general solution to x"u = 1 is given by

1 n—1 ®
u=fp| —|+ Y by
X k=0

For the equation (x — a)" v = 1, we first note that

for some ¢y, ...,c;—1 €R.
n 1
(x—a)'tqfp|—|=1
X
where 7_, is the translation operation by —a. It is because for ¢ € 2 (R),

<(x—a)"1_afp(in),(p>:<fp(in),x"(p(x+a)>:f(p(x+a)dx:f(p(x)dx:(l,(p)
x X R R

Following the similar argument, we deduce that the general solution to (x — a)" v = 1 is given by

1 n-1 K
V= T_afp(—n) + Z cké‘;)
x k=0

for some ¢y, ...,c;—1 €R. O



Question 4

A function f: R — R is convex if for all xy, x; € Rand A € (0,1) we have
fAx1+A=-Vxp) <Af(x)+ A =A) f (x0)

A function a: R — R satisfying (1) with equality everywhere is called an affine function.

(a) Show that an affine function must have the form a(x) = a; x + ag for some constants ag, a; € R. Show also that a function
f:R— Ris convex if and only if it for each compact interval [a, ] < R has the property:

when a is affine and f(x) < a(x) for x € {a, B}, then f < aon [a, B]

(b) Show that a convex function f : R — R satisfies the 3 slope inequality:

fx2)—=f(x1) - fx3)=f(x1) - f(x3) = f(x2)

X2 — X1 X3 — X1 X3 — X2

holds for all triples x; < x» < x3. Deduce that a convex function must be continuous and that it is differentiable except
for in at most countably many points.

Show that a convex function must be locally Lipschitz continuous: for each r > 0 there exists L= L, =2 0so | f(x) - f(y)| <
Lix—ylholds forall x,y € [-r1,1].

(c) Assume that f: R — Ris twice differentiable. Show that f is convex if and only if

" =0
holds for all x € R. i
(d) Let u€ 2'(R) and assume that ©” = 0 in @'(R). Show that « is represented by a convex function. oggj\rds
Proof. (a) ~ (c) are standard Prelim Analysis questions. \)JJJ\ ,\
(a) Suppose that f: [—xp, xo] — R satisfies ‘83 +°
Vx1,x€l=x0, %] VA€[0,1] fAx1+(1-A)x2) =Af(x1) +(1-A)f(x2) QJ-
o\

1 X
Then for x € [—xg, xp], let x, = —xg, X1 = X9, and A = 3 + pr We have
X0

1

1 X X
f) = (E'FE)f(XO)"'(——Z—xO)f(—XO)

_ fxo) = f(=x0)
2 B 0

1
ox x+ E(f(xo)+f(—xo)):a1x+ao

If a: R — R is affine, then it is affine restricted to [—xg, xo] for any xo > 0. We deduce that a(x) = a;x + ay for some

anare® oW\ £ %o, %) Now X Qloum. Wy o 00 OL wnOAenoL &
"= " Suppose that f :R — R is convex. Let a: R — R be an affine function such that f(a) < a(a) and f(8) < a(f). For
xela,PBl,letx;=a,xp=LFand 1 = u. Then

a
x—a B—x “a B—x 3 /
fx)< ﬂ_af(a)+ﬁ_af(ﬁ) ﬁ_aa(a)+ﬂ_aa(ﬁ)—a(x)
Hence f < aon [a,fl. /

" < " Suppose that the converse }’myr@n for any [x1, x9] € R, let a : R — R be an affine function such that a(x;) =

=

f(x1) and a(xp) = f(xp). Explicitly,

a(x)

= f(xw;x(xﬂ(X—xl)+f(x1)

Xo — X1

Since f < a on [x7, xp], for any A € [0, 1] we have

fAx1+ 1 -Vxp) < alAx; + (A -Vxg)=Aalx) + (1 —AN)a(xg) = Af(x) + (1 —A) f(x0)

Hence f is conyeX.



(b) Consider the affine function a: R — R with a(x;) = f(x1) and a(x3) = f(x3). Explicitly,

a(x)

_ f(x3) —x(xl) (= x1)+ flx)

X3 — X1

By part (a), f < a on [x, x3]. In particular,

Fl2) < alx) = fx3) = f(x1) (o= x1) + fx)) = fx2) = f(x1) < f(x3) = f(x1) /
3

X3 — X1 X2 — X1 X3 — X1

In addition, we note that

f(x3) = f(x1) (tp—x1) + flx1) = f(x3) —ic(xl) x
- X1

X3 — X1 X3

a(xp) = 2 —X3) + f(x3)

So f(x2) < a(xy) also implies that

fuy—fun<fum—fug

X3 — X1 X3 — X2

In summary, for x; < x2 < x3, /
fx2) = f(x1) - fx3) = f(x1) - fx3) = f(x2)

X2 — X1 X3 — X1 X3 — X2

Let f be a convex function. We fix xo € R. Consider the function g: R\ {xp} — R defined by

_ 8(x) - g(xo)
- X=X

gx):

Then by 3 slope inequality g is non-decreasing on R\ {xp}. In particular, the one-sided derivatives li/rn g(x) and li\m g(x)
X,/ Xo X N\Xo

exists. Hence

lim (f(x) = f(x0)) = lim (f(x) - f(x0)) =0
x /" Xo X\ Xo
which implies that xhn,} f(x) = f(xp). Hence f is continuous at xp € R. /
— X0

As the one-sided derivatives of f e‘xi)swts?rywhere, f' can only have jump discon:[iyd‘é It follows that f is differen-

tiable except for in at most countablyshany points.

Forr >0, let
L= Sm}lfU%—fuN
xe[-r,r) r—x

We know that L, < oo because by 3-slope inequality, for all x < r,

~f(r)—f(x)< fern-fm

r—x 2r—r

For x, y with —r < y < x < r, by 3 slope inequality,

I f )= fI - If(x) = f()l -

< <L,
[x—yl lx—r

Hence |f(x) — f(y)| < Ly|x—y| forall x, y € [-r,r]. f is locally Lipschitz continuous.

(c) " = " Suppose that f is a twice differentiable convex function. Fix a,b € R with a < b. For x € (a,b), by 3 slope

inequality,
fx)-fla - fx) = f(b)
xX—a h x—b
Therefore b b
fla) = limw — inf f-fl@ < sup J&) - f) _ lim fx) = f(b) - ' (b)
x—a  x—a xe@b) X—a xe@b) X—b x—b X—b

Hence [’ is non-decreasing. We deduce that f”/(x) =0 for all x €

" < " Suppose that f” = 0. Then f’ is non-decreasing on R. We fix xp, x» € R with xg < x. Let A € (0,1), and x; :=
A)Co +(1- /1))62.



Since xg < x] < X, by Lagrange’s mean value theorem, there exists ¢ € (xg, x1) and ¢ € (x1, x2) such that

Fo =100 g TR =)

X1 — Xo X2 — X1
Then
fx1) = f(xo) - flx2) = f(x1)

<
X1—Xo X2 — X1

(<= flo<f =

Rearranging the inequality:
(%2 = x0) f(x1) < (%2 = x1) f(x2) + (%1 = X0) f (x0)

Hence —x o —x
FAxo+A=)x2) = flx1) € =2 Fxg) + =2 f(x2) = Af (x0) + JE D) f(x2)
X2 — X0 X2 — X0

Hence f is convex.

(d) By Theorem 5.10, «” >0 in &' (R) implies that there exists a increasing function f € Lj. (R) such that u’ = f. Let

F(x) ::foxf(t)dt L 1

be a primitve of f in the usual sense. Then F' = f in 2’ (R): for ¢ € D (R), \ > ’

(F.) =—<E<p’>=—fRF(x)<p’(x)dt
=—f(f f(t)dt)(p'(x)dx
r \Jo
= f ( f —(p’(x)dx)f (r)de (Fubini's theorem)
R\Jt
=fRf(t)<p(t)dt=(f,<p}

Hence (u— F)' =0 in 9'(R). By constancy theorem, u — F = ¢ for some ¢ € R. Hence u = F + ¢ is a regular distribution.

For x( < x1 < x2, since f is increasing, we have

— X; —
Flx)-Flx) _ 1 f(t)dt<f(x1 V< foan < — [ par= F9 F(xl)/

X1 — X0 X1 —Xo X2 = X1 Jx; X2 — X1

By the similar proof in part (c), we deduce that F is convex. Hence u = F + ¢ is represented by a convex function. O
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