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Question 1

A system has n non-degenerate single-particle states. These states account for all the degrees of freedom of the particle
—— position and (if relevant) spin. The states are occupied by a number p of similar non-interacting particles, without
any constraints except for those arising from symmetry under particle exchange. How many distinct many-particle states
are there for the p-particle system in the following cases:

(i) if the particles are distinguishable;
(ii) if the particles are identical fermions and p = n;
(iii) if the particles are identical bosons and p = n = 2;

(iv) if the particles are identical bosons and p = n = 3.

v Solution. (i) If all the particles are distinguishable, then for each particle there are n possible states, The total number of
microstates is n?.

v (ii) If the particles are fermions, then by Pauli exclusion principle, each state can be occupied by 0 or 1 fermions only.
Since p = n, there is a unique microstate, in which every state of the system is occupied by a fermion.

(iii) If the particles are bosons, then each state in the system can be occupied by arbitrarily many particles. We can list
the possible microstates as follows:

V4 (2,0), (1,1), (0,2)
where (a,b) indicates that the first state is occupied by a particles and the second state is occupied by b particles.
So there are 3 distinct microstates.
(iv) We can list the possible microstates as follows:

(3,0,0), (0,3,0), (0,0,3), (2,1,0), (2,0,1), (1,2,0), (0,2,1), (0,1,2), (1,0,2), (1,1,1)

AN

So there are 10 distinct microstates. O

Question 2

Consider two identical, non-interacting particles, each of mass m, with coordinates 1, z2. They are confined to a box of
length L, so that 0 < 1,25 < L.

Suppose the particles are identical spin-zero bosons. What is the wavefunction ¢ (x4, ) if the system is in an eigenstate
with total energy: (i) h?7w?/mL?, or (ii) 572 /2m L??

Suppose alternatively that the particles are identical spin-half fermions: for the same values of total energy write down a
complete set of possible wavefunctions, as products of space and spin factors.

Solution. First we consider a single particle in the one-dimensional box of length L. It is known that the energy levels of the
system are

h2m2n?
B, =211
v 2m L2

and the eigenstates are
2 . /nmx
(x|n) = Yn(z) = \/;sm (T)

Now, since the two particles are non-interacting, by separation of variables, we can reduce the TISE to two independent
TISE for each particles, and the energy of the system is simply E = (E1);, + (E2)x.

Suppose that the particles are identical spin-zero bosons.
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(i) The energy
K272 R2r2k? R2p2nl
mL®  omL? | omi?

The eigenstate of H is the state |1) @ |1). The wave function is:

E =

= k>+n?>=2 = (k,n)=(1,1)

B . 2 . TIL . X2
Y(x1,22) = wl(xl\)/z/zl(xg) =n sin (T) sin (T)
(ii)) The energy
2 2 2,212 2.2 2
Shem _ hem<k Jr7i7r " K24n?2—5 — (k,n) = (1,2) or (2,1)

= 2mL2 2mL? 2mL?
The eigenstate of H is any linear combinations of |1) ® |2) and |2) ® |1). But since the particles are bosons, we
require that the eigenfunction is symmetric in z; and x5. Then the wave function is given by:

W(@1, 73) = \%wl(m)w(zg) o (22) 2 (1)) = g (sin ™ sin Q”L“ +5in 7 sin 27;“)

Suppose that the particles are identical spin-1/2 fermions. In general, the state of the system is the tensor product
1h) = |space) @ |spin)
Ormeof the space factor arrd the spin factor is symmetric, and the other is anti-symmetric,
(i) The eigenstate of épatialg of H is the state |1) ® |1). The space factor of the wave function
T2
(%)

1
75 (1) @ a) = [L1) ® [12)). The

Y(z1, x2) = Y1(z1)Y1(22) = %sin (7%1) sin

is symmetric. So the spin faeter-is anti-symmetric, which is the singlet state

product state is

1 1
= Do) ®2) — [41) ® =—1,1)® -
) NG D) @[1) @ (|11) ® [{2) — [{1) @ [12)) NG 11, 1) @ ([T1d2) — [1T2))
(ii) The eigenstate of spatial-partof A Ts any linear combinations of |1) ® |2) and |2) ® |1).
If the spaeefaeterjis symmetric, which is % [1,2)+]2, 1), then the spin factor is anti-symmetric. The product state

1S

[9) = 5(1,2)+ [21)) @ (ada) — [1a12)
1
v

If the space factor is anti-symmetric, which is [1,2) — |2,1), then the spin factor is symmetric, which is the

triplet states. The product states are:

|¢2> = %(|1a2>_|271>)®H1T2>7 |w3> = ﬁ(|172>_|27 1>)®|¢1$2>’ |’(/}4> = %(|172>_|2’1>)®(|T1$2>+|¢1T2>)

The complete set of possible states is {|1/1), [)2) , [¥3) , [¢4)}.

Question 3. He: ionisation energy.

The ionization energy is the energy required to remove one electron from an atom or ion in its ground state, leaving it in
the ground state of the next higher ionization stage. (The energy is often quoted in eV and referred to as an ionization
potential.

If we make the (poor) approximation of ignoring the electron-electron repulsion altogether, what value (in eV) is obtained
for the ionization potential of the ground state in helium? How much additional energy would then be required to remove
the second electron? Assuming these estimates have been made as accurately as reasonably possible within their respec-
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tive assumptions, state the degree of accuracy of each of these two results (i.e. how close they may be expected to be to
the true first and second ionization energies for helium.)

To do better, use the variational method. Using hydrogen-like wavefunctions for both electrons:
15 = \/Z3/mai exp(—Zr/ag), where Z is an adjustable parameter distinct from the nuclear charge, show that

< 1 1 > 27
— 4+ y==
Lo T2 Qo
Using also (p} + p3) = 22%h?/ (a}) and (1/r12) = 5Z/ (8ap) , show that the mean energy as a function of Z is given in

terms of the Rydberg R by
E(Z)=—-2R (42 — Z* — 5Z/8)

Complete the variational procedure, and hence obtain an upper limit for the ground state energy, and a lower limit for the
ionization energy of helium.

Solution. If we neglect the electron-electron repulsion, then we can apply separation of variables to the time-independent
Schrodinger equation and obtain the same result as for hydrogen-like atoms. The energy levels are
Z°R
n2
where R =13.6 eV. Then the first ionization energy and second ionization energy are both 4R = 54.4 eV. The estimation
for first ionization energy is quite inaccurate. The more precise result which considers electron-electron repulsion is
— 2.5)R = 20.4 eV. The second ionization energy is accurate because He" is a hydrogen-like ion. /

We use the trial wave function 115 = \/Z3/ma} exp(—Zr/ap).

En:_

The expectation

423 473 2 Z
< > /// *QZT/‘“’ - dV = — refzzr/“(’ dr = —- (&) re) =—
v Tad 0 ag \27 ag
1 1
T
T1 T2 r ap

~ 1 2¢2 1 1 e?
H = ——(pt +p3) — <+)+

Then

2m dmeg \r1 1o 4megria
Therefore
A 1 2% /1 1 e2 1
E(Z)=(H)= —(p?+p?) — — 4= — V=—2R(4Z - 2% -5Z/3
@) =) = g4 ) - e (L4 D) (D) — o /8)

By completion of square:

27 27\ ? 27\ ?
EZ)=2R(Zz-22) —oR- () > 2R (Z) ~-77.84
) R( 16) R (16) R (16) 7T84eV

We deduce that the ground state energy is lower than —77.84 eV. Then the first ionization energy is higher than 77.74 —
54.4 = 23.34 eV. [

Question 4

Two of the energy levels in Helium have the standard notation 1s!2s 1S, and 1s12s! 35,. Explain every part of this
notation. The difference in the notation for the two levels stresses a difference in the spin part of the wavefunction, but
the spatial part is also different: what is the important distinguishing feature between the two spatial wavefunctions?
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4

Solution. By solving time-independent Schrédinger’s equation for hydrogen-like atoms, we can label the eigenstates of the
electrons by |n, ¢, m, s). The orbitalg with distinct energies and orbital angular momenta are represented by 1s, 2s, 2p,
3s, 3p, 4s, 3d, 4p... The number on the left isn and the letter on the right indieatesy/ (sfor ¢ = 0, pfor { =1, dfor ¢ = 2

3). We put a number on the right upper index to indicate the number of electrons occupying the orbital.

and f fo
So 151231 plies that one electron is occupying 1s orbital and the other is occupying 2s orbital.

Next we use a captial letter to indicate the total orbital angular momentum of the electrons (S for L = 0, P for L = 1,
etc.). We put a aumbes; 25 + 1 on the left upper index and a number J = L + S on the right lower index, where S is the
total spin, and J is the total angular momentum, So 'S, means that L = 0, S = 0 and J = 0, and 35S, means that L = 0,
S=1,and J = 1.

For the state 1s'2s! 15, the spins of the two electrons are in the opposite direction, whereas the spins are aligned for the
state 1s'2s! 35,. A qualitative argument is that, if the spins are aligned, then by Pauli exclusion principle the electrons
tend to avoid each other in space, leading to a lower peterntial-due to electron-electron repulsion, O

Question 5

Recall Qu. 7.6 from Prof Blundell’s problem sets, which reads as follows.

A is a beam of atoms with spin-1/2 with the spin alined along the +x-axis. B is a beam of similar unpolarised
atoms. A and B are separately passed through a Stern-Gerlach apparatus aligned along z. In each case you get two
emerging beams coming out of the Stern-Gerlach experiment. Is there any difference between the two cases? If so,
how could you detect that experimentally?

Write down density matrices in the z-basis to describe the beams A and B before passage through the Stern-Gerlach
apparatus. Use these density matrices to evaluate (5, ) and (s, ) for each beam.

Solution. In the z-basis, we have:

4
4

4
vV Vv

The density matrix of A:

The density matrix of B:

ﬁB=;(—>><—>I+<—><<—I)=i<1> (1 1)+i<11> ¢ 1)=§<; f)=§fd

In the z-basis, 3, and s, are represented by the Pauli matrices:

0 1 1 0
Oy =— 0, =
1 0 0 -1

Hence for Ay
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