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Question 1

Consider the following thought:

"Special relativity holds for frames moving at constant relative velocity, but of course acceleration requires general relativity
because the frames are noninertial."

Ineffable twaddle. Special relativity certainly doesn’t cower before simple kinematical accleration. On the other hand, acceler-
ation, even just uniform accleration in one dimension, is not without its connections with general relativity. We shall explore
some of them here. For ease of notation, we set c = 1. In part (d) we’ll put c back.

(a) Let us first ask what we mean by "uniform acceleration." After all, a rocket approaching the speed of light c can’t change
its velocity at a uniform rate forever without exceeding c at some point. Go into the frame moving instantaneously at
velocity v with the rocket relative to the "lab." In this frame, by definition the instantaneous rocket velocity v ′ vanishes.
Wait a time d t ′ later, as measured in this frame. The rocket now has velocity d v ′ in this same frame. What we mean by
constant acceleration is d v ′/d t ′ ≡ a′ is constant. The acceleration measured in the fixed lab is certainly not constant!
The question is, how is the lab acceleration a = d v/d t related to the truly constant a′ ?

To answer this, let V = v/
p

1− v2, the spatial part of the 4-vector V α associated with the ordinary velocity v. The same
relation holds for V ′ and v ′. Assume for the moment that the primed and unprimed frames differ by some arbitrary
velocity w . The 4 -velocity differentials are then given by:

dV ′ = (
dV −wdV 0)/

√
1−w2

where V 0 = 1/
p

1− v2. Explain.

(b) Now, set w = v . We thereby go into the frame in which v ′ = 0; the rocket is instantaneously at rest. Prove that d v =
d v ′ (1− v2

)
. (Remember, v and v ′ are ordinary velocities.) From here, prove that

d v

d t
= a′ (1− v2)3/2

(c) Show that, starting from rest at t = t ′ = 0,

v = a′tp
1+a′2t 2

, a′t = sinh
(
a′t ′

)
and hence show that (for x = 0 at t = t ′ = 0):

v = tanh
(
a′t ′

)
, x = 1

a′
[
cosh

(
a′t ′

)−1
]

The integrals are not difficult; do them yourselves.

(d) Let’s use these results to construct a full coordinate transformation from the lab frame x, t to the accelerating x ′, t ′ frame.
A good start is to guess a transform of the form

t = A
(
x ′)sinh

(
a′t ′

)+B
(
x ′) , x = A

(
x ′)cosh

(
a′t ′

)+C
(
x ′)

where A,B , and C depend only upon x ′. Then on x ′ = constant surfaces, d x/d t = tanh
(
a′t ′

) = v, which is indeed what
we need.

By definition, constant t ′ surfaces are constant time surfaces in the
(
x ′, t ′

)
frame that moves instantaneously with ve-

locity v = tanh
(
a′t ′

)
with respect to the (x, t ) frame. On such a surface, d t ′/d x ′ = 0. We fix the origin by demanding that

as t ′ → 0, x → x ′. We fix our clock by demanding that as t ′ → 0, t → t ′ at the rocket location x ′ = 0. (This must be done
locally: since A depends on x ′, this time agreement can be exact at only one value of x ′.) Show that these constraints
force B and C to be constant, and that B in particular must vanish.

Finally, put the speed of light c back into the equations, demand that x goes to x ′ at t ′ = 0, and show that

ct =
(

c2

a′ +x ′
)

sinh
(
a′t ′/c

)
, x =

(
c2

a′ +x ′
)

cosh
(
a′t ′/c

)− c2

a′
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(e) Show that the invariant Minkowski line element may be written in x ′, t ′ coordinates as:

c2dτ2 = c2d t 2 −d x2 =
(
1+ a′x ′

c2

)2

c2d t ′2 −d x ′2

Provide a physical interpretation of your result in terms of a gravitational redshift. How do you interpret the region
x ′ É−c2/a′′ ? (Review the results of 1 d.)

Proof. (a) The four velocities V= (V 0,V ) and V′ = (V ′0,V ′) in the two inertial frames are related by a Lorentz boost:

V ′ = V −wV 0

p
1−w2

Taking differential:

dV ′ = dV −wdV 0

p
1−w2

Here w is fixed because we are working in the inertial frames.

(b) We have:

dV ′∣∣
v ′=0

=
(

1

(1− v ′2)3/2

)
v ′=0

dv ′ = dv ′, dV = 1

(1− v2)3/2
dv, dV 0 = v

(1− v2)3/2
dv

Substituting in the equation above, we have

dv ′ = 1

1− v2 dv

By chain rule,
dv

dt
= dv

dv ′
dv ′

dt ′
dt ′

dt
= (1− v)2 ·a′ ·γ−1

v = a′(1− v2)3/2

(c) Integrating the equation above:∫ v

0

dv

(1− v2)3/2
=

∫ t

0
a′ dt =⇒ vp

1− v2
= a′t =⇒ v(t ) = a′tp

1+a′2t 2

On the other hand, we also have
dt

dt ′
= γv = 1p

1− v2

Hence
dt

dt ′
=

√
1+a′2t 2 =⇒

∫ t

0

dtp
1+a′2t 2

=
∫ t ′

0
dt ′ =⇒ t ′ = 1

a′ arcsinh(a′t ) =⇒ a′t = sinh(a′t ′)

Now we subsitute the expression into v(t ):

v(t ′) = sinh(a′t ′)√
1+ sinh2(a′t ′)

= tanh(a′t ′)

Integrating the expression to get x(t ′):

x(t ′) =
∫ t

0
v(t )dt =

∫ t ′

0

vp
1− v2

dt ′ =
∫ t ′

0
a′t dt ′ =

∫ t ′

0
sinh(a′t ′)dt = 1

a′ (cosh(a′t ′)−1)

(d)

(e)

Question 2. Recognising tensors.

One way to prove that something is a vector or tensor is to show explicitly that it satisfies the coordinate transformation laws.
This can be a long and arduous procedure if the tensor is complicated, like Rλ

µνκ. There is another way, usually much better!

Show that if Vν is an arbitrary covariant vector and the combination T µνVν is known to be a contravariant vector (note the free
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index µ ), then (
T ′µν−T λσ ∂x ′µ

∂xλ
∂x ′ν

∂xσ

)
V ′
ν = 0

Why does this prove that T µν is a tensor? Does your proof actually depend on the rank of the tensors involved?

Proof. Since (T µνVν) is a contravariant vector, the coordinate transformation is given by

T̃ µνṼν = ∂x̃µ

∂xλ
T ληVη

Since (Vν) is a covariant vector, the coordinate transformation is given by

Ṽν = ∂xη

∂x̃ν
Vη =⇒ Vη = ∂x̃ν

∂xη
Ṽν, (inverse function theorem)

Combining the equations:

T̃ µνṼν = ∂x̃µ

∂xλ
T λη ∂x̃ν

∂xη
Ṽν =⇒

(
T̃ µν−T λη ∂x̃µ

∂xλ
∂x̃ν

∂xη

)
Ṽν = 0

Since (Vν) is arbitrary, we have

T̃ µν−T λη ∂x̃µ

∂xλ
∂x̃ν

∂xη
= 0 =⇒ T̃ µν = T λη ∂x̃µ

∂xλ
∂x̃ν

∂xη

Hence (T µν) is a type (2,0) tensor.

The proof can be generalised as follows: Suppose that (Ai1···im
j1··· jn

) represents N m+n smooth functions. (B
k1···kp

`1···`q
) is a

type (p, q) tensor field such that any index contraction of

Ai1···im
j1··· jn

B
k1···kp

`1···`q

is a tensor field of suitable type, then A is a type (m,n) tensor field. This is known (from the SR lectures) as the quotient
rule.

Question 3. What about d 2xµ/dτ2?

The geodesic equation in standard form gives us an expresssion for d 2xµ/dτ2 in terms of the affine connection, Γµ
νλ

. For the
covariant coordinate xµ, show that

d 2xµ
dτ2 = 1

2

d xν

dτ

d xρ

dτ

∂gνρ
∂xµ

Refer to section 4.7 in the notes if help is needed. Under what conditions is d x0/dτ=V0 ≡Vt a constant of the motion?

Remark. I think it is better to call Γµ
νλ

the Christoffel symbols, which are the local components of the affine connection ∇. The
relation is given by ∇∂ν∂λ = Γ

µ

νλ
∂µ. The Levi-Civita connection on a (pseudo-)Riemannian manifold (M , g ) is the unique map

∇ : Γ(TM)×Γ(TM) → Γ(TM), (X ,Y ) 7→ ∇X Y , such that for any X ,Y , Z ∈ Γ(TM) and smooth functions a,b on M ,

1. ∇aX+bY Z = a∇X Z +b∇Y Z ;

2. ∇X (Y +Z ) =∇X Y +∇X Z ;

3. ∇X (aY ) = a∇X Y +X (a)Y ;

4. X (g (Y , Z )) = g (∇X Y , Z )+ g (Y ,∇X Z ) (compatible with metric g );

5. ∇X Y −∇Y X = [X ,Y ] (torsion-free).

∇X Y is called the covariant derivative of Y along X . The result is known as the fundamental theorem of Riemannian Geometry.

Proof. Let γ : τ 7→ (xµ(τ)) be a geodesic on the spacetime M (where a local coordinate chart (U , xµ) is fixed). The local form of
geodesic equation is given by

∇γ′γ′ = 0 =⇒ d2xµ

dτ2 +Γµ
νλ

dxν

dτ

dxλ

dτ
= 0

Pietro
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The expansion of the Christoffel symbols in terms of the metric components is given by

Γ
µ

νλ
= 1

2
gµη

(
∂gλη
∂xν

+ ∂gνη

∂xλ
− ∂gνλ
∂xη

)
The parallel transports of a vector field and a dual vector field along the geodesic are given by

DV µ

Dτ
:=∇γ′V µ = dV µ

dτ
+Γµ

νλ

dxν

dτ
V λ,

DVµ
Dτ

= gµν
DV ν

Dτ
= dVµ

dτ
−Γλµν

dxν

dτ
Vλ

Next, return to the question. Note that
dxµ

dτ
is a tangent vector field along γ. Since γ is a geodesic, in particular we have

D

Dτ

(
dxµ

dτ

)
= 0. Therefore we can directly compute:

d2xµ
dτ2 = D

Dτ

(
dxρ

dτ

)
+Γλµν

dxν

dτ

dxλ
dτ

= gµρ
D

Dτ

(
dxρ

dτ

)
+ gλρΓ

λ
µν

dxν

dτ

dxρ

dτ

= gλρΓ
λ
µν

dxν

dτ

dxρ

dτ

= 1

2
gλρgλη

(
∂gµη
∂xν

+ ∂gνη
∂xµ

− ∂gµν
∂xη

)
dxν

dτ

dxρ

dτ

= 1

2
δ
η
ρ

(
∂gµη
∂xν

+ ∂gνη
∂xµ

− ∂gµν
∂xη

)
dxν

dτ

dxρ

dτ

= 1

2

(
∂gµρ
∂xν

+ ∂gνρ
∂xµ

− ∂gµν
∂xρ

)
dxν

dτ

dxρ

dτ

= 1

2

∂gνρ
∂xµ

dxν

dτ

dxρ

dτ

When
dxµ

dτ

dxρ

dτ

∂gµρ
∂x0 =: V µV ρ

∂gµρ
∂x0 = 0, V0 is a constant of motion along γ.

Remark. The notation
d2xµ
dτ2 and the concept of covariant coordinates xµ are fundamental ambiguous. We can only talk about

covariant and contravariant coordinates when we work in the tangent and cotangent space (which are identified by the metric g ).

For this question, the only concept that make sense is the dual of the tangent vector
dxµ

dτ
along the geodesic, which may be denoted

by
dxµ
dτ

.
d2xµ
dτ2 , however, is merely the derivative of the smooth map τ 7→ dxµ

dτ
∈ T∗

γ(τ)M , and is not a dual vector field. We have to

transform it to a dual vector field before raising its index. That is why we need the parallel transport.

Question 4. Practise with the Ricci Tensor.

(a) Consider the 2D surface given by

z2 = x2 + y2

where x, y, z are Cartesian coordinates in 3D Euclidian space. This represents a pair of cones centred on the origin, one
cone opening upward, the other opening downward. The opening angle is 45◦ measured from the z axis. Justify this
description.

(b) A point in the 2D conic surface can be determined by R, the cylindrical radius of the point measured from the z-axis,
and φ, the usual azimuthal angle. Show that the metric for the 2D surface in these coordinates is

d s2 = 2dR2 +R2dφ2

(Hint: Start with a standard metric in good old 3D Euclidian space, then enforce the constraint that z2 = x2 + y2 = R2.
This is known as "embedding." The Nash Embedding Theorem states that pretty much any Riemannian hypersurface
can always be embedded in some higher dimensional Euclidian space. )

Pietro

Pietro

Pietro

Pietro

Pietro

Pietro

Pietro

Pietro

Pietro



5

(c) Is this 2D surface curved, in the mathematical sense of having nonvanishing components of the curvature tensor Rλ
κµν?

(We use R for the tensor, R for the radial coordinate.) Answer the question by showing that the metric of part 4 b ) can
be transformed to new coordinates R ′,φ′, for which

d s2 = dR ′2 +R ′2dφ′2

(The transformation law is extremely simple!) Why does this result alone answer the posed question? Can you give a
physical interpretation of your mathematical transformation?

(d) Next, consider a different 2D surface: z = (α/2)
(
x2 + y2

)
where α is an arbitrary constant parameter. Show that this is a

paraboloid of revolution, i.e. a parabola spun around the z -axis. Prove that the metric within this surface is given by

d s2 = (
1+α2R2)dR2 +R2dφ2

(e) Prove that this surface is distorted by curvature. Calculate, for example, Rφφ and show that it is not zero, but given by

Rφφ =− α2R2(
1+α2R2

)2

You should show en route that the only nonvanishing affine connection coefficients are

ΓR
RR = α2R

1+α2R2 , Γ
φ

φR = Γ
φ

Rφ = 1

R
, ΓR

φφ =− R

1+α2R2

Proof. (a) In cylindrical coordinates (R,ϕ, z), the equation z2 = x2 + y2 becomes z =±R. The intersection of the surface with the
half-planeϕ= const is two rays whose angle is π/4 measured from the z-axis. So z2 = x2+y2 is the surface of revolution
of the two rays about the z-axis and hence is a pair of cones as described in the question.

(b) The local parametrisation of the surface in R3 is given by r(R,ϕ) = (R cosϕ,R sinϕ,±R). The metric tensor is given by

g = gi j dxi dx j , gi j =
〈
∂r

∂R
,
∂r

∂ϕ

〉
Here 〈·, ·〉 is the standard inner product in R3. (In classical differential geometry, g11 = E, g12 = g21 = F , g22 = G, and
g = I is called the first fundamental form of the surface.)

∂r

∂R
= (cosϕ, sinϕ,±1);

∂r

∂ϕ
= (−R sinϕ,R cosϕ,0)

Hence
g11 = 2; g12 = g21 = 0; g22 = R2

We deduce that g = 2dR2 +R2dϕ2.

(c) Let us try the rescaling R =λR ′, ϕ= ηϕ′. Then r(R ′,ϕ′) = (λR ′ cos(ηϕ′),λR ′ sin(ηϕ′),±λR ′). Similarly we can compute

g11 = 2λ2; g12 = g21 = 0; g22 =λ2η2R ′2

We can take λ= 1/
p

2 and η=p
2. Therefore the metric tensor is given by

g = dR ′2 +R ′2dϕ′2

This is the metric of R2 parametrised by the polar coordinates (R ′,ϕ′). The surface is locally isometric to R2 and hence
is flat. (On R2, all Christoffel symbols are zero, so are the components of the Riemann curvature tensor.)

(d) The local parametrisation of the surface z = α

2
(x2 + y2) is given by r(R,ϕ) =

(
R cosϕ,R sinϕ,

α

2
R2

)
.

∂r

∂R
= (cosϕ, sinϕ,αR);

∂r

∂ϕ
= (−R sinϕ,R cosϕ,0)

Hence
g = (1+α2R2)dR2 +R2dϕ2

Pietro
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(e) The Lagrangian of the surface is given by

L = gi j
dxi

dτ

dx j

dτ
= (1+α2R2)

(
dR

dτ

)2

+R2
(

dϕ

dτ

)2

By Euler-Lagrange equation:
d

dτ

∂L

∂ẋi
− ∂L

∂xi
= 0

We find that

d

dτ

(
2Ṙ(1+α2R2)

)−2R(ϕ̇2 +α2Ṙ2) = 0 =⇒ R̈ + α2R2

1+α2R2 Ṙ2 − R

1+α2R2 ϕ̇
2 = 0

d

dτ
(2R2ϕ̇) = 0 =⇒ ϕ̈+ 2

R
Ṙϕ̇= 0

Comparing with the geodesic equations ẍi +Γi
j k ẋ j ẋk = 0, we obtain the Christoffel symbols:

ΓR
RR = α2R2

1+α2R2 , ΓR
ϕϕ =− R

1+α2R2 , Γ
ϕ

Rϕ = Γ
ϕ

ϕR = 1

R
, ΓR

Rϕ = ΓR
ϕR = Γ

ϕ

RR = Γ
ϕ
ϕϕ = 0

The components of the Ricci curvature tensor and the Christoffel symbols are related by

Ri j =
∂Γk

i k

∂x j
−
∂Γk

i j

∂xk
+Γk

i`Γ
`

j k −Γk
i jΓ

`
k`

Hence

Rϕϕ =
∂Γk

ϕk

∂ϕ
−
∂Γk

ϕϕ

∂xk
+Γk

ϕ`Γ
`
ϕk −Γk

ϕϕΓ
`

k`

=−
∂ΓR

ϕϕ

∂R
+ΓR

ϕϕΓ
ϕ

ϕR

= d

dR

R

1+α2R2 − R2

1+α2R2

=− α2R2

(1+α2R2)2

Question 5. What is "the spatial part" of a metric?

It is easy, even trivial, to get the proper time from a metric. One simply sets all the spatial d xi = 0 in the invariant interval
gµνd xµd xν, and reads off a proper time of

dτ=p−g00d x0/c

This is what a local inertial observer reads off on their watch. So to get " the spatial part" of the metric, call it dl 2, do we just
take whatever is left over from setting d x0 = 0, i.e. dl 2 = gi j d xi d x j ? Not quite. How does an observer actually measure a
distance? They take a light ray, bounce it off a mirror a distance dl away, measure the (proper) time on their watch dτ for the
light to go and come back, and then set dl = cdτ/2. Let’s go with that.

(a) Show that for a diagonal metric tensor (all g0i = gi 0 = 0 ), this procedure gives

dl 2 = gi j d xi d x j

just as we expect.

(b) Show that for a general metric tensor gµν, with g0i = g0i present, this procedure gives

dl 2 = γi j d xi d x j , where γi j = gi j −
(
g0i g0 j /g00

)
The metric tensor of a rotating black hole (the Kerr metric) actually has g0φ = gφ0 components, so this formula is very
relevant here. We see that the spatial part of the metric may contain mixed time-indexed terms!
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(c) Using the gµνgνρ = δρµ relations, show that

g i jγ j k = δi
k

and that, defining γi j by raising indices via γi j ≡ g i k g j mγkm , leads to

γi j = g i j

the "pure spatial part" of gµν.γi j defined this way is indeed the inverse of γi j . Hence, we are justified in regarding
γi j d xi d x j as the invariant interval in its own three-dimensional space, with inverse γi j , within the more encompassing
four-dimensional gµν spacetime. (Note that this also shows that the indices on γi j may be raised with γi j .)

(d) Show that det gµν = g00 det γi j , which is consistent with identifying γi j as the spatial metric. You may find it useful to
recall that the determinant of a matrix is unchanged when a multiple of one row is added to another.

Proof. (a) Let us skip this and do (b).

(b) We will be slightly informal for this part. (I believe there is a rigorous way of doing this.)

Suppose that the light signal leaves point A in the space at t = dx0
(1)/c. It hits the mirror at point B in the space at t = 0

and then return to A at t = dx0
(2)/c. Locally the light travels along a null vector. We have

ds2 = gµνdxµdxν = g00d(x0)2 +2g0i dx0dxi + gi j dxi dx j = 0

This is a quadratic equation of dx0. The two solutions are given by

dx0
(1) =

−g0i dxi −
√

(g0i g0 j − g00gi j )dxi dx j

g00
, dx0

(2) =
−g0i dxi +

√
(g0i g0 j − g00gi j )dxi dx j

g00

The proper time is given by

dτ=p−g00

dx0
(2) −dx0

(1)

c
= 2

c

√
g00gi j − g0i g0 j

g00
dxi dx j

Hence the spatial distance is given by

d`= c

2
dτ=

√
g00gi j − g0i g0 j

g00
dxi dx j =⇒ d`2 =

(
gi j −

g0i g0 j

g00

)
dxi dx j =: γi j dxi dx j

If g0i = 0, then the procedure gives
d`2 = gi j dxi dx j

which is consistent with the result in (a).

(c) Note that
g i j g j k = g iµgµk − g i 0g0k = δi

k − g i 0g0k

and
g i j g0 j = g iµg0µ− g i 0g00 = δi

0 − g i 0g00 =−g i 0g00

Hence

g i jγ j k = g i j g j k −
g i j g0 j g0k

g00
= δi

k − g i 0g0k −
−g i 0g00g0k

g00
= δi

k

Raising the indices of γi j :

γi j = g i k g j mγkm = g i kδ
j
k = g i j

(γi j ) is the inverse matrix of (γi j ):
γi jγ j k = g i jγ j k = δi

k
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(d) The determinant can be computed with some elementary row operations:

det(gµν) = det


g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

= det


g00 g01 g02 g03

0 g11 − g01g10/g00 g12 − g02g10/g00 g13 − g03g10/g00

0 g21 − g01g20/g00 g22 − g02g20/g00 g23 − g03g20/g00

0 g31 − g01g30/g00 g32 − g02g30/g00 g33 − g03g30/g00


= g00 det

g11 − g01g10/g00 g12 − g02g10/g00 g13 − g03g10/g00

g21 − g01g20/g00 g22 − g02g20/g00 g23 − g03g20/g00

g31 − g01g30/g00 g32 − g02g30/g00 g33 − g03g30/g00

= g00 det(gi j − gi 0g0 j /g00)

= g00 det(γi j )
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