Peize Liu St. Peter's College University of Oxford

Problem Sheet 1 ASO: Projective Geometry

In these questions, F denotes the base field.

Question 1

- (i) If we identify $(x,y) \in F^2$ with the point $[1:x:y] \in F\mathbb{P}^2$, what is the point at infinity shared by all lines of the form y = mx + c, where m is fixed?
- (ii) Show that those projective transformations in PGL(3, F) which map the line at infinity to itself form a subgroup of PGL(3, F) which is isomorphic to

$$AGL(2, F) = \{ \boldsymbol{x} \mapsto A\boldsymbol{x} + \boldsymbol{b} : A \in GL(2, F), \ \boldsymbol{b} \in F^2 \}$$

Which of these mappings fix the line at infinity pointwise?

- *Proof.* (i) The projectivization of the line $\{(x,y): y=mx+c\}\subseteq F^2$ is given by $\{[x_0:x_1:x_2]: cx_0+mx_1-x_2=0\}\subseteq F\mathbb{P}^2$. The point of infinity corresponds to the case when $x_0=0$. That is, $x_2=mx_1$. So the point of infinity of the line y=mx+c in $F\mathbb{P}^2$ is [0:1:m].
 - (ii) Suppose that $\tau \in PGL(3, F)$ is induce by

$$T = \begin{pmatrix} c_{1,1} & c_{1,2} & c_{1,3} \\ c_{2,1} & c_{2,2} & c_{2,3} \\ c_{3,1} & c_{3,2} & c_{3,3} \end{pmatrix} \in GL(3, F)$$

If τ fixes the line of infinity, then for $[0:x_1:x_2]\in F\mathbb{P}^2$, we have:

$$\begin{pmatrix} c_{0,0} & c_{0,1} & c_{0,2} \\ c_{1,0} & c_{1,1} & c_{1,2} \\ c_{2,0} & c_{2,1} & c_{2,2} \end{pmatrix} \begin{pmatrix} 0 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ y_1 \\ y_2 \end{pmatrix}$$

In particular, $c_{0,1}x_1 + c_{0,2}x_2 = 0$ for all $x_1, x_2 \in F$. Hence $c_{0,1} = c_{0,2} = 0$. Since T is invertible, $c_{0,0} \neq 0$. By rescaling we may assume that $c_{0,0} = 1$. We can write T as

$$T = \begin{pmatrix} 1 & 0 & 0 \\ b_1 & a_{1,1} & a_{1,2} \\ b_2 & a_{2,1} & a_{2,2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \mathbf{b} & A \end{pmatrix}$$

For $\boldsymbol{x}=(x_1,x_2)^{\mathrm{T}}\in F^2$, we embed in into $F\mathbb{P}^2$ by identification with $[1:x_1:x_2]$. We have:

$$T \begin{pmatrix} 1 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \boldsymbol{b} & A \end{pmatrix} \begin{pmatrix} 1 \\ \boldsymbol{x} \end{pmatrix} = A\boldsymbol{x} + \boldsymbol{b}$$

Hence we identify $\tau \in \mathrm{PGL}(3,F)$ with the affine transformation $x \mapsto Ax + b$. The subgroup of all such projective transformations is isomorphic to $\mathrm{AGL}(2,F)$.

If τ fixes the line at infinity pointwise, then Ax = x for all $x \in F^2$. Hence $A = I_2$. The corresponding $T \in GL(3, F)$ is given by

$$T = \begin{pmatrix} 1 & 0 & 0 \\ b_1 & 1 & 0 \\ b_2 & 0 & 1 \end{pmatrix}$$

Question 2

(i) Let $\mathbb{P}(U_1)$ and $\mathbb{P}(U_2)$ be two non-intersecting lines in the 3-dimensional projective space $F\mathbb{P}^3:=\mathbb{P}(F^4)$. Show that

$$F^4 = U_1 \oplus U_2$$

- (ii) Deduce that three pairwise non-intersecting lines in $F\mathbb{P}^3$ have infinitely many transversals, i.e. projective lines meeting all three.
- *Proof.* (i) If $\mathbb{P}(U_1) \cap \mathbb{P}(U_2) = \emptyset$, then $U_1 \cap U_2 = \{0\}$. We have $\dim(U_1 \oplus U_2) = \dim U_1 + \dim U_2 = 2 + 2 = 4 = \dim F^4$. But $U_1 \oplus U_2 \leqslant F^4$. Hence $F^4 = U_1 \oplus U_2$.
 - (ii) The statement is true only if F is an infinite field.

Suppose that $\mathbb{P}(U_1)$, $\mathbb{P}(U_2)$ and $\mathbb{P}(U_3)$ are three non-intersecting projective lines. By (i) we have $U_3 \subseteq F^4 = U_1 \oplus U_2$. For $\langle u_1 \rangle \in \mathbb{P}(U_3)$, there exists $\langle u_1 \rangle \in \mathbb{P}(U_1)$ and $\langle u_2 \rangle \in \mathbb{P}(U_2)$ such that $u_3 = u_1 + u_2$. Take $U_4 = \langle u_1, u_2 \rangle$. Then $\langle u_1 \rangle$, $\langle u_2 \rangle$, $\langle u_3 \rangle \in \mathbb{P}(U_4)$ and therefore $\mathbb{P}(U_4)$ transverses all $\mathbb{P}(U_1)$, $\mathbb{P}(U_2)$ and $\mathbb{P}(U_3)$. Moreover, for distinct $\langle u_3 \rangle \in \mathbb{P}(U_3)$, the projective line $\mathbb{P}(U_4)$ is distinct. Suppose that $\langle u_3 \rangle \neq \langle u_3' \rangle$ and $\langle u_3 \rangle$, $\langle u_3' \rangle \in \mathbb{P}(U_4)$, then $U_4 = \langle u_3, u_3' \rangle \Longrightarrow U_4 = U_3$. This is impossible because $\mathbb{P}(U_3)$ does not intersect with the other two projective lines. Since F is infinite, so is $\mathbb{P}(U_3)$. We hence constructed infinitely many transversals of the three projective lines.

Question 3

Let L_1 , L_2 be two non-empty projective linear subspaces of a projective space $\mathbb{P}(V)$, corresponding to linear subspaces $U_1, U_2 \subseteq V$. Show that the span

$$\langle L_1, L_2 \rangle = \mathbb{P}(U_1 + U_2)$$

is the union of projective lines P_1P_2 with $P_i \in L_i$.

Proof. For $P_1 = \langle v_1 \rangle \in L_1$ and $P_2 = \langle v_2 \rangle \in L_2$, the projective line P_1P_2 is the projectivization of the linear subspace $\langle v_1, v_2 \rangle$. Since $v_1 \in U_1$ and $v_2 \in U_2$, $\langle v_1, v_2 \rangle \subseteq U_1 + U_2$. Therefore $\mathbb{P}(\langle v_1, v_2 \rangle) \subseteq \mathbb{P}(U_1 + U_2) = \langle L_1, L_2 \rangle$. In other words, the projective line P_1P_2 lies in the span $\langle L_1, L_2 \rangle$.

Conversely, for $\langle u \rangle \in \langle L_1, L_2 \rangle$, $u \in U_1 + U_2$. There exists $u_1 \in U_1$ and $u_2 \in U_2$ such that $u = u_1 + u_2$. Let $P_1 = \langle u_1 \rangle$ and $P_2 = \langle u_2 \rangle$. $\langle u \rangle \subseteq \langle u_1, u_2 \rangle$ implies that $\langle u \rangle$ is a projective point on the projective line $P_1 P_2$.

We conclude that $\langle L_1, L_2 \rangle$ is the union of all projective lines P_1P_2 with $P_i \in L_i$.

Question 4

- (i) List the elements of $PGL(2, \mathbb{F}_2)$. What is the order of PGL(2, F) if |F| = q?
- (ii) By considering the action of $\operatorname{PGL}(2, \mathbb{F}_2)$ on $\mathbb{F}_2\mathbb{P}^1$, show that $\operatorname{PGL}(2, \mathbb{F}_2) \cong S_3$. Is $\operatorname{PGL}(2, \mathbb{F}_3) \cong S_4$? Is $\operatorname{PGL}(2, \mathbb{F}_5) \cong S_6$?

Proof. (i) The elements of $PGL(2, \mathbb{F}_2) = GL(2, \mathbb{F}_2)$ are

$(0,0) \mapsto (0,0)$	$(0,0) \mapsto (0,0)$	$(0,0) \mapsto (0,0)$
$(1,0) \mapsto (1,1)$	$(1,0) \mapsto (0,1)$	$(1,0) \mapsto (1,1)$
$(0,1) \mapsto (0,1)$	$(0,1) \mapsto (1,1)$	$(0,1) \mapsto (1,0)$
$(1,1) \mapsto (1,0)$	$(1,1) \mapsto (1,0)$	$(1,1) \mapsto (0,1)$

We first count the order of GL(2,F). Note that $T:F^2\to F^2$ is uniquely determined by its action on the standard basis $\{(1,0),(0,1)\}$. Suppose that $T:(1,0)\mapsto (x_1,x_2), (0,1)\mapsto (y_1,y_2)$. If $T\in GL(2,F)$, then $\{(x_1,x_2),(y_1,y_2)\}$ is linearly independent. Equivalently, $x_1y_2-x_2y_1\neq 0$.

We shall count the cardinality of $\{(x_1, x_2, y_1, y_2) \in F^4 : x_1y_2 - x_2y_1 = 0\}$.

- If $x_1 = 0$:
 - If $x_2 = 0$:
 - $*~y_1,y_2\in F$ are arbitrary. There are q^2 combinations.
 - If $x_2 \neq 0$:
 - * $y_1 = 0$ and $y_2 \in F$ are arbitrary. There are q(q-1) combinations.
- If $x_1 \neq 0$:
 - If $x_2 = 0$:
 - * $y_2 = 0$ and $y_1 \in F$ are arbitrary. There are q(q-1) combinations.
 - If $x_2 \neq 0$:
 - * If $y_1 = 0$:
 - $y_2 = 0$. There are $(q-1)^2$ combinations.
 - * If $y_1 \neq 0$:
 - $y_2 = x_1^{-1}x_2y_1$. There are $(q-1)^3$ combinations.

In total, the set has $q^2 + q(q-1) + q(q-1) + (q-1)^2 + (q-1)^3 = q^3 + q^2 - q$ elements. The cardinality of GL(2, F):

$$\operatorname{card}\operatorname{GL}(2,F) = \operatorname{card}\{(x_1,x_2,y_1,y_2) \in F^4: x_1y_2 - x_2y_1 \neq 0\} = q^4 - (q^3 + q^2 - q) = q(q-1)^2(q+1)$$

Note that $\operatorname{PGL}(2,F) = \operatorname{GL}(2,F)/\sim$ where $S \sim T \iff \exists \ \lambda \in F \setminus \{0\}: \ S = \lambda T$. Each equivalent class of $\operatorname{GL}(2,F)$ has exactly q-1 elements. Hence the order of $\operatorname{PGL}(2,F)$ is $q(q-1)(q+1)=q^3-q$.

(ii) The elements of $\mathbb{F}_2\mathbb{P}^1$ are

$$L_1 = \{(0,0), (1,0)\}$$
 $L_2 = \{(0,0), (0,1)\}$ $L_3 = \{(0,0), (1,1)\}$

The projective transformations of $\mathbb{F}_2\mathbb{P}^1$ are bijections of $\mathbb{F}_2\mathbb{P}^1$. Hence $\mathrm{PGL}(2,\mathbb{F}_2)\leqslant S_3$. But we know that $|\mathrm{PGL}(2,\mathbb{F}_2)|=|S_3|=6$. Hence $\mathrm{PGL}(2,\mathbb{F}_2)\cong S_3$.

The case of $PGL(2, \mathbb{F}_3)$ is similar. The elements of $\mathbb{F}_3\mathbb{P}^1$ are:

$$L_1 = \{(0,0), (1,0), (2,0)\}$$
 $L_2 = \{(0,0), (0,1), (0,2)\}$ $L_3 = \{(0,0), (1,1), (2,2)\}$ $L_4 = \{(0,0), (1,2), (2,1)\}$

We have $PGL(2, \mathbb{F}_3) \leq S_4$. By part (i) we know that $|PGL(2, \mathbb{F}_3)| = 3^3 - 3 = 24 = |S_4|$. Therefore we have $PGL(2, \mathbb{F}_3) \cong S_4$.

For $\operatorname{PGL}(2, \mathbb{F}_5)$, by part (i) we know that $|\operatorname{PGL}(2, \mathbb{F}_5)| = 5^3 - 5 = 120$. But $|S_6| = 6! = 720$. Therefore $\operatorname{PGL}(2, \mathbb{F}_5) \not\cong S_6$.

Question 5

Let a, b, c, d be four distinct points in \mathbb{C} . Show that a, b, c, d lie on a cirline if and only if the cross-ratio (ab:cd) is real.

Proof. By Proposition 7.2 in the notes, projective transformations preserve cross-ratio. From Part A Complex Analysis we know that $PGL(2, \mathbb{C}) = Mob$, the group of Möbius transformations, and that Möbius transformations preserves circles in \mathbb{CP}^1 (which are cirlines in \mathbb{C}).

Consider the Möbius transformation $z\mapsto \frac{(z-b)(c-d)}{(z-d)(c-b)}$. Under such map, we have $b\mapsto 0, c\mapsto 1, d\mapsto \infty, a\mapsto (ab:cd)$.

If (ab:cd) is real, then $(ab:cd), 0, 1, \infty \in \mathbb{CP}^1$ lies on the same circle in \mathbb{CP}^1 . It follows that $a, b, c, d \in \mathbb{C}$ lies on the same cirline in \mathbb{C} . Conversely, if a, b, c, d lies on a cirline in \mathbb{C} , then $(ab:cd), 0, 1, \infty \in \mathbb{CP}^1$ lies on the same circle in \mathbb{CP}^1 . In particular, (ab:cd), 0, 1 lies on the same line in \mathbb{C} . It follows that $(ab:cd) \in \mathbb{R}$.

Question 6

We say x_0, x_1 and x_2, x_3 are harmonically separated if $(x_0x_1 : x_2x_3) = -1$, where the x_i are distinct points in a projective line $F\mathbb{P}^1$. Let a, b, c, d be four points in general position in the projective plane $F\mathbb{P}^2$ and let e, f, g be the diagonal points, i.e. $e = ac \cap bd$, $f = ab \cap cd$, $g = ad \cap bc$. Let ge meet ab at bc. Prove that a, b and bc are harmonically separated.

Proof. Since $a,b,c,d\in F\mathbb{P}^2$ are in general position, we can apply a projective transformation which maps them to [1:0:0],[0:1:0],[0:0:1],[0:0:1],[1:1:1], in which the cross-ratio is preserved. Hence without loss of generality we may assume that a=[1:0:0],b=[0:1:0],c=[0:0:1],d=[1:1:1]. Then we have $e=ac\cap bd=[1:0:1],f=ab\cap cd=[1:1:0],$ $g=ad\cap bc=[0:1:1],$ and $h=ge\cap ab=[1:-1:0].$ It follows that a,b,h,f lie on the same projective line, which is the projectivization of $\langle (1,0,0),(0,1,0)\rangle$. We can compute the cross-ratio:

$$(ab:hf) = \frac{(a_0h_1 - h_0a_1)(b_0f_1 - f_0b_1)}{(a_0f_1 - f_0a_1)(b_0h_1 - h_0b_1)} = \frac{(1 \cdot (-1) - 0)(0 - 1 \cdot 1)}{(1 \cdot 1 - 0)(0 - 1 \cdot 1)} = -1$$

Hence ab and hf are harmonically separated.

Question 7

- (i) Let $\tau \in \mathrm{PGL}(2,\mathbb{C})$, other than the identity. Show that τ fixes either one or two points. Show that this need not be true over other fields.
- (ii) If τ fixes two points, show that there is an inhomogeneous coordinate z on \mathbb{CP}^1 with respect to which

$$\tau(z) = \lambda z, \qquad \lambda \neq 0, 1$$

Is the same true over other fields?

- (iii) Let A_1, A_2, A_3 be three distinct points in \mathbb{CP}^1 and let $n \geqslant 3$ be an integer. Show that there is $\tau \in \mathrm{PGL}(2,\mathbb{C})$ such that $\tau(A_1) = A_2, \tau(A_2) = A_3$ and τ has order n.
- *Proof.* Throughout this question, we do not distinguish between \mathbb{CP}^1 and \mathbb{C}_{∞} . We identify \mathbb{C} as an open subset of \mathbb{CP}^1 via the embedding $z \mapsto [1:z]$. Then $\infty = [0:1]$.
 - (i) The projective transformations in $PGL(2,\mathbb{C})$ is uniquely determined by its action on three distinct points. Hence if $\tau \in PGL(2,\mathbb{C})$ fixes three or more points, then it must be the identity map. So it suffices to show that τ fixes at least one point in \mathbb{CP}^1 .

We know that τ is given by a Möbius transformation. Suppose that $\tau(z)=\frac{az+b}{cz+d}$ $(ad-bc\neq 0)$. We consider the equation with respect to $z\in\mathbb{CP}^1$:

$$z = \frac{az+b}{cz+d} \iff cz^2 - (a-d)z - b = 0$$

If $c \neq 0$, by Fundamental Theorem of Algebra the equation has a finite solution, which corresponds to a fixed point of τ in \mathbb{C} . If c=0, then $d \neq 0$ and $\tau(z)=\frac{a}{d}z+\frac{b}{d}$ always fixes $z=\infty$.

We conclude that τ fixed either one of two points.

The statement does not hold for general fields. For instance, consider $PGL(2, \mathbb{F}_2)$. In Question 4.(i) we have shown that it is isomorphic to S_3 . There is a projective transformation $L_1 \mapsto L_2$, $L_2 \mapsto L_3$, $L_3 \mapsto L_1$ that has no fixed points.

(ii) Suppose that τ fixes $z_1=[a_1:b_1]$ and $z_2=[a_2:b_2]$. Consider $\sigma\in\mathrm{PGL}(2,\mathbb{C})$ induced by the matrix

$$\begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix}$$

We have $\sigma(0)=z_1$ and $\sigma(\infty)=z_2$. Then $\sigma^{-1}\circ\tau\circ\sigma\in\mathrm{PGL}(2,\mathbb{C})$ fixes 0 and ∞ . Suppose that $\sigma^{-1}\circ\tau\circ\sigma(z)=\frac{az+b}{cz+d}$. Then b=0, c=0. So $\sigma^{-1}\circ\tau\circ\sigma(z)=\frac{a}{d}z$. Moreover, $\frac{a}{d}\neq0$ because $\sigma^{-1}\circ\tau\circ\sigma$ is invertible; $\frac{a}{d}\neq1$ because $\tau\neq\mathrm{id}_{\mathbb{C}_\infty}\Longrightarrow\sigma^{-1}\circ\tau\circ\sigma(z)\neq\mathrm{id}_{\mathbb{C}_\infty}$. We can write the action of τ explicitly as follows: for $[1:z]\in\mathbb{CP}^1$, $\tau([a_1+a_2z:b_1+b_2z])=[a_1+\lambda a_2z:b_1+\lambda b_2z]$.

(iii) Let $\rho \in \mathrm{PGL}(2,\mathbb{C})$ such that $\rho(A_1) = 1$, $\rho(A_2) = \mathrm{e}^{\frac{2\pi \mathrm{i}}{n}}$, and $\rho(A_3) = \mathrm{e}^{\frac{4\pi \mathrm{i}}{n}}$. Let $\sigma_n(z) = \mathrm{e}^{\frac{2\pi \mathrm{i}}{n}} z$. We claim that $\tau := \rho^{-1} \circ \sigma_n \circ \rho \in \mathrm{PGL}(2,\mathbb{C})$ satisfies the desired properties:

$$\tau(A_1) = \rho^{-1} \circ \sigma_n \circ \rho(A_1) = \rho^{-1} \circ \sigma_n(1) = \rho^{-1} \left(e^{\frac{2\pi i}{n}} \right) = A_2.$$

$$\tau(A_2) = \rho^{-1} \circ \sigma_n \circ \rho(A_2) = \rho^{-1} \circ \sigma_n \left(e^{\frac{2\pi i}{n}} \right) = \rho^{-1} \left(e^{\frac{4\pi i}{n}} \right) = A_3.$$

$$\tau^n = (\rho^{-1} \circ \sigma_n \circ \rho)^n = \rho^{-1} \circ \sigma_n^n \circ \rho = \rho^{-1} \circ \operatorname{id} \circ \rho = \operatorname{id}.$$

Question 8

Use the strategy outlined in the lectures to prove Pappus' Theorem: Let A, B, C and A'.B', C' be similar collinear triples of distinct points in the projective plane $F\mathbb{P}^2$. Then the three intersection points $AB' \cap A'B$, $BC' \cap B'C$ and $CA' \cap C'A$ are collinear. Proceed by the following steps.

- (i) Prove the theorem in the degenerate case when A, B, C', B' are not in general position.
- (ii) If these 4 points are in general position, explain why without loss of generality we may take them to be

$$A = [1, 0, 0], \quad B = [0, 1, 0], \quad C' = [0, 0, 1] \quad B' = [1, 1, 1].$$

Proof. (i) If A, B, C', B' are not in general position, we may consider the case that C' lies in the projective line ABC. The other cases are similar.

If $C' \in ABC$, then $BC' \cap B'C = CA' \cap C'A = C$. Then C and $AB' \cap A'B$ are of course on the same projective line.

(ii) It follows from general position theorem that there exists a unique projective transformation such that

$$A \mapsto [1,0,0], \quad B \mapsto [0,1,0], \quad C' \mapsto [0,0,1] \quad B' \mapsto [1,1,1].$$

Clearly projective transformations preserve projective lines. So without loss of generality we can take

$$A = [1, 0, 0], \quad B = [0, 1, 0], \quad C' = [0, 0, 1] \quad B' = [1, 1, 1].$$

Since $C \in AB$, C = [a, b, 0] for some $a, b \in F$. Since $A' \in C'B'$, A' = [c : c : d] for some $c, d \in F$. A direct calculation shows that:

$$\langle x \rangle = AB' \cap A'B = [c:d:d] \quad \langle y \rangle = BC' \cap B'C = [0:b-a:-a] \quad \langle z \rangle = CA' \cap C'A = [(a-b)c:0:-bd]$$

Then we have (b-a)x-dy+z=0. Hence $AB'\cap A'B$, $BC'\cap B'C$ and $CA'\cap C'A$ are collinear.

Question 9

Every line in the real affine plane \mathbb{R}^2 can be written in the form ax + by + c = 0 where a, b are not both zero. Of course, $\lambda ax + \lambda by + \lambda c = 0$ is an equation of the same line where $\lambda \neq 0$. Hence the space of lines can be identified with

$$M = \frac{\mathbb{R}^2 \setminus \{(0,0)\} \times \mathbb{R}}{\mathbb{R}^*}$$

Identify M as a subspace of \mathbb{RP}^2 . What is the topology of M?

Proof. We know that $a_1x+b_1y+c_1$ and $a_2x+b_2y+c_2=0$ represents the same line if and only if there exists $\lambda \in \mathbb{R} \setminus \{0\}$ such that $(a_1,b_1,c_1)=\lambda(a_2,b_2,c_2)$. Therefore the identification $\{(x,y)\in\mathbb{R}^2:ax+by+c=0\}\mapsto [a:b:c]$ gives a well-defined embedding of M into \mathbb{RP}^2 . More specifically, $M=\mathbb{RP}^2\setminus \{[0:0:1]\}$.

To determine the topology of M, we consider \mathbb{RP}^2 as $S^2/\{x \sim -x\}$, the 2-sphere with antipodal points identified. Then $M = S^2 \setminus \{\pm (0,0,1)\}/\{x \sim -x\}$. We can use the Mercator projection that projects $S^2 \setminus \{\pm (0,0,1)\}$ onto an open cylinder $S^1 \times (-1,1)$. The equivalence relation $(\theta,t) \sim (-\theta,-t)$ induces the quotient topology on $S^1 \times (-1,1)$, which is homeomorphic to an open Möbius strip. In other words, M is homeomorphic to an open Möbius strip as a subspace of \mathbb{RP}^2 .