
Peize Liu
St. Peter’s College

University of Oxford

Problem Sheet 1

ASO: Projective Geometry

May 7, 2020



1

In these questions, F denotes the base field.

Question 1

(i) If we identify (x, y) ∈ F 2 with the point [1 : x : y] ∈ FP2, what is the point at infinity shared by all lines of the form
y = mx+ c, wherem is fixed?

(ii) Show that those projective transformations in PGL(3, F ) which map the line at infinity to itself form a subgroup of
PGL(3, F ) which is isomorphic to

AGL(2, F ) = {x 7→ Ax+ b : A ∈ GL(2, F ), b ∈ F 2}

Which of these mappings fix the line at infinity pointwise?

Proof. (i) The projectivization of the line {(x, y) : y = mx+ c} ⊆ F 2 is given by {[x0 : x1 : x2] : cx0 +mx1 − x2 = 0} ⊆ FP2.
The point of infinity corresponds to the case when x0 = 0. That is, x2 = mx1. So the point of infinity of the line
y = mx+ c in FP2 is [0 : 1 : m].

(ii) Suppose that τ ∈ PGL(3, F ) is induce by

T =

c1,1 c1,2 c1,3

c2,1 c2,2 c2,3

c3,1 c3,2 c3,3

 ∈ GL(3, F )

If τ fixes the line of infinity, then for [0 : x1 : x2] ∈ FP2, we have:c0,0 c0,1 c0,2

c1,0 c1,1 c1,2

c2,0 c2,1 c2,2


 0

x1

x2

 =

 0

y1

y2


In particular, c0,1x1 + c0,2x2 = 0 for all x1, x2 ∈ F . Hence c0,1 = c0,2 = 0. Since T is invertible, c0,0 6= 0. By rescaling
we may assume that c0,0 = 1. We can write T as

T =

 1 0 0

b1 a1,1 a1,2

b2 a2,1 a2,2

 =

(
1 0

b A

)

For x = (x1, x2)
T ∈ F 2, we embed in into FP2 by identification with [1 : x1 : x2]. We have:

T

 1

x1

x2

 =

(
1 0

b A

)(
1

x

)
= Ax+ b

Hence we identify τ ∈ PGL(3, F ) with the affine transformation x 7→ Ax + b. The subgroup of all such projective
transformations is isomorphic to AGL(2, F ).

If τ fixes the line at infinity pointwise, then Ax = x for all x ∈ F 2. Hence A = I2. The corresponding T ∈ GL(3, F ) is
given by

T =

 1 0 0

b1 1 0

b2 0 1


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Question 2

(i) Let P(U1) and P(U2) be two non-intersecting lines in the 3-dimensional projective space FP3 := P(F 4). Show that

F 4 = U1 ⊕ U2

(ii) Deduce that three pairwise non-intersecting lines in FP3 have infinitely many transversals, i.e. projective lines
meeting all three.

Proof. (i) If P(U1) ∩ P(U2) = ∅, then U1 ∩ U2 = {0}. We have dim(U1 ⊕ U2) = dimU1 + dimU2 = 2 + 2 = 4 = dimF 4. But
U1 ⊕ U2 6 F 4. Hence F 4 = U1 ⊕ U2.

(ii) The statement is true only if F is an infinite field.

Suppose that P(U1), P(U2) and P(U3) are three non-intersecting projective lines. By (i) we have U3 ⊆ F 4 = U1⊕U2.
For 〈u1〉 ∈ P(U3), there exists 〈u1〉 ∈ P(U1) and 〈u2〉 ∈ P(U2) such that u3 = u1 + u2. Take U4 = 〈u1, u2〉. Then
〈u1〉 , 〈u2〉 , 〈u3〉 ∈ P(U4) and therefore P(U4) transverses all P(U1), P(U2) and P(U3). Moreover, for distinct 〈u3〉 ∈
P(U3), the projective line P(U4) is distinct. Suppose that 〈u3〉 6= 〈u′3〉 and 〈u3〉 , 〈u′3〉 ∈ P(U4), then U4 = 〈u3, u′3〉 =⇒
U4 = U3. This is impossible because P(U3) does not intersect with the other two projective lines. Since F is infinite,
so is P(U3). We hence constructed infinitely many transversals of the three projective lines.

Question 3

Let L1, L2 be two non-empty projective linear subspaces of a projective space P(V ), corresponding to linear subspaces
U1, U2 ⊆ V . Show that the span

〈L1, L2〉 = P(U1 + U2)

is the union of projective lines P1P2 with Pi ∈ Li.

Proof. For P1 = 〈v1〉 ∈ L1 and P2 = 〈v2〉 ∈ L2, the projective line P1P2 is the projectivization of the linear subspace 〈v1, v2〉.
Since v1 ∈ U1 and v2 ∈ U2, 〈v1, v2〉 ⊆ U1 + U2. Therefore P(〈v1, v2〉) ⊆ P(U1 + U2) = 〈L1, L2〉. In other words, the
projective line P1P2 lies in the span 〈L1, L2〉.

Conversely, for 〈u〉 ∈ 〈L1, L2〉, u ∈ U1 + U2. There exists u1 ∈ U1 and u2 ∈ U2 such that u = u1 + u2. Let P1 = 〈u1〉 and
P2 = 〈u2〉. 〈u〉 ⊆ 〈u1, u2〉 implies that 〈u〉 is a projective point on the projective line P1P2.

We conclude that 〈L1, L2〉 is the union of all projective lines P1P2 with Pi ∈ Li.

Question 4

(i) List the elements of PGL(2,F2). What is the order of PGL(2, F ) if |F | = q?

(ii) By considering the action of PGL(2,F2) on F2P1, show that PGL(2,F2) ∼= S3. Is PGL(2,F3) ∼= S4? Is PGL(2,F5) ∼=
S6?

Proof. (i) The elements of PGL(2,F2) = GL(2,F2) are

(0, 0) 7→ (0, 0)

(1, 0) 7→ (1, 0)

(0, 1) 7→ (0, 1)

(1, 1) 7→ (1, 1)

(0, 0) 7→ (0, 0)

(1, 0) 7→ (0, 1)

(0, 1) 7→ (1, 0)

(1, 1) 7→ (1, 1)

(0, 0) 7→ (0, 0)

(1, 0) 7→ (1, 0)

(0, 1) 7→ (1, 1)

(1, 1) 7→ (0, 1)
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(0, 0) 7→ (0, 0)

(1, 0) 7→ (1, 1)

(0, 1) 7→ (0, 1)

(1, 1) 7→ (1, 0)

(0, 0) 7→ (0, 0)

(1, 0) 7→ (0, 1)

(0, 1) 7→ (1, 1)

(1, 1) 7→ (1, 0)

(0, 0) 7→ (0, 0)

(1, 0) 7→ (1, 1)

(0, 1) 7→ (1, 0)

(1, 1) 7→ (0, 1)

We first count the order of GL(2, F ). Note that T : F 2 → F 2 is uniquely determined by its action on the standard
basis {(1, 0), (0, 1)}. Suppose that T : (1, 0) 7→ (x1, x2), (0, 1) 7→ (y1, y2). If T ∈ GL(2, F ), then {(x1, x2), (y1, y2)} is
linearly independent. Equivalently, x1y2 − x2y1 6= 0.

We shall count the cardinality of {(x1, x2, y1, y2) ∈ F 4 : x1y2 − x2y1 = 0}.

• If x1 = 0:

– If x2 = 0:

∗ y1, y2 ∈ F are arbitrary. There are q2 combinations.

– If x2 6= 0:

∗ y1 = 0 and y2 ∈ F are arbitrary. There are q(q − 1) combinations.

• If x1 6= 0:

– If x2 = 0:

∗ y2 = 0 and y1 ∈ F are arbitrary. There are q(q − 1) combinations.

– If x2 6= 0:

∗ If y1 = 0:

· y2 = 0. There are (q − 1)2 combinations.

∗ If y1 6= 0:

· y2 = x−11 x2y1. There are (q − 1)3 combinations.

In total, the set has q2 + q(q− 1)+ q(q− 1)+ (q− 1)2 +(q− 1)3 = q3 + q2− q elements. The cardinality ofGL(2, F ):

cardGL(2, F ) = card{(x1, x2, y1, y2) ∈ F 4 : x1y2 − x2y1 6= 0} = q4 − (q3 + q2 − q) = q(q − 1)2(q + 1)

Note that PGL(2, F ) = GL(2, F )/ ∼ where S ∼ T ⇐⇒ ∃ λ ∈ F\{0} : S = λT . Each equivalent class of GL(2, F )

has exactly q − 1 elements. Hence the order of PGL(2, F ) is q(q − 1)(q + 1) = q3 − q.

(ii) The elements of F2P1 are

L1 = {(0, 0), (1, 0)} L2 = {(0, 0), (0, 1)} L3 = {(0, 0), (1, 1)}

Theprojective transformations ofF2P1 are bijections ofF2P1. HencePGL(2,F2) 6 S3. Butwe know that |PGL(2,F2)| =
|S3| = 6. Hence PGL(2,F2) ∼= S3.

The case of PGL(2,F3) is similar. The elements of F3P1 are:

L1 = {(0, 0), (1, 0), (2, 0)} L2 = {(0, 0), (0, 1), (0, 2)} L3 = {(0, 0), (1, 1), (2, 2)} L4 = {(0, 0), (1, 2), (2, 1)}

We have PGL(2,F3) 6 S4. By part (i) we know that |PGL(2,F3)| = 33 − 3 = 24 = |S4|. Therefore we have
PGL(2,F3) ∼= S4.

For PGL(2,F5), by part (i) we know that |PGL(2,F5)| = 53 − 5 = 120. But |S6| = 6! = 720. Therefore PGL(2,F5) 6∼=
S6.



4

Question 5

Let a, b, c, d be four distinct points in C. Show that a, b, c, d lie on a cirline if and only if the cross-ratio (ab : cd) is real.

Proof. By Proposition 7.2 in the notes, projective transformations preserve cross-ratio. From Part A Complex Analysis we know
that PGL(2,C) = Mob, the group of Möbius transformations, and that Möbius transformations preserves circles in CP1

(which are cirlines in C).

Consider the Möbius transformation z 7→ (z − b)(c− d)
(z − d)(c− b)

. Under such map, we have

b 7→ 0, c 7→ 1, d 7→ ∞, a 7→ (ab : cd).

If (ab : cd) is real, then (ab : cd), 0, 1,∞ ∈ CP1 lies on the same circle in CP1. It follows that a, b, c, d ∈ C lies on the same
cirline in C. Conversely, if a, b, c, d lies on a cirline in C, then (ab : cd), 0, 1,∞ ∈ CP1 lies on the same circle in CP1. In
particular, (ab : cd), 0, 1 lies on the same line in C. It follows that (ab : cd) ∈ R.

Question 6

We say x0, x1 and x2, x3 are harmonically separated if (x0x1 : x2x3) = −1, where the xi are distinct points in a projective
line FP1. Let a, b, c, d be four points in general position in the projective plane FP2 and let e, f, g be the diagonal points,
i.e. e = ac ∩ bd, f = ab ∩ cd, g = ad ∩ bc. Let gemeet ab at h. Prove that a, b and h, f are harmonically separated.

Proof. Since a, b, c, d ∈ FP2 are in general position, we can apply a projective transformation which maps them to [1 : 0 : 0], [0 :

1 : 0], [0 : 0 : 1], [1 : 1 : 1], in which the cross-ratio is preserved. Hence without loss of generality we may assume that
a = [1 : 0 : 0], b = [0 : 1 : 0], c = [0 : 0 : 1], d = [1 : 1 : 1]. Then we have e = ac ∩ bd = [1 : 0 : 1], f = ab ∩ cd = [1 : 1 : 0],
g = ad∩ bc = [0 : 1 : 1], and h = ge∩ ab = [1 : −1 : 0]. It follows that a, b, h, f lie on the same projective line, which is the
projectivization of 〈(1, 0, 0), (0, 1, 0)〉. We can compute the cross-ratio:

(ab : hf) =
(a0h1 − h0a1)(b0f1 − f0b1)
(a0f1 − f0a1)(b0h1 − h0b1)

=
(1 · (−1)− 0)(0− 1 · 1)
(1 · 1− 0)(0− 1 · 1)

= −1

Hence ab and hf are harmonically separated.

Question 7

(i) Let τ ∈ PGL(2,C), other than the identity. Show that τ fixes either one or two points. Show that this need not be
true over other fields.

(ii) If τ fixes two points, show that there is an inhomogeneous coordinate z on CP1 with respect to which

τ(z) = λz, λ 6= 0, 1

Is the same true over other fields?

(iii) LetA1, A2, A3 be three distinct points inCP1 and let n > 3 be an integer. Show that there is τ ∈ PGL(2,C) such that
τ(A1) = A2, τ(A2) = A3 and τ has order n.

Proof. Throughout this question, we do not distinguish between CP1 and C∞. We identify C as an open subset of CP1 via the
embedding z 7→ [1 : z]. Then∞ = [0 : 1].

(i) The projective transformations in PGL(2,C) is uniquely determined by its action on three distinct points. Hence
if τ ∈ PGL(2,C) fixes three or more points, then it must be the identity map. So it suffices to show that τ fixes at
least one point in CP1.

We know that τ is given by a Möbius transformation. Suppose that τ(z) =
az + b

cz + d
(ad− bc 6= 0). We consider the

equation with respect to z ∈ CP1:
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z =
az + b

cz + d
⇐⇒ cz2 − (a− d)z − b = 0

If c 6= 0, by Fundamental Theorem of Algebra the equation has a finite solution, which corresponds to a fixed point

of τ in C. If c = 0, then d 6= 0 and τ(z) =
a

d
z +

b

d
always fixes z =∞.

We conclude that τ fixed either one of two points.

The statement does not hold for general fields. For instance, consider PGL(2,F2). In Question 4.(i) we have shown
that it is isomorphic to S3. There is a projective transformation L1 7→ L2, L2 7→ L3, L3 7→ L1 that has no fixed
points.

(ii) Suppose that τ fixes z1 = [a1 : b1] and z2 = [a2 : b2]. Consider σ ∈ PGL(2,C) induced by the matrix(
a1 a2

b1 b2

)

We have σ(0) = z1 and σ(∞) = z2. Then σ−1 ◦ τ ◦ σ ∈ PGL(2,C) fixes 0 and∞. Suppose that σ−1 ◦ τ ◦ σ(z) =
az + b

cz + d
. Then b = 0, c = 0. So σ−1 ◦ τ ◦ σ(z) =

a

d
z. Moreover,

a

d
6= 0 because σ−1 ◦ τ ◦ σ is invertible; a

d
6= 1

because τ 6= idC∞ =⇒ σ−1 ◦ τ ◦ σ(z) 6= idC∞ . We can write the action of τ explicitly as follows: for [1 : z] ∈ CP1,
τ([a1 + a2z : b1 + b2z]) = [a1 + λa2z : b1 + λb2z].

(iii) Let ρ ∈ PGL(2,C) such that ρ(A1) = 1, ρ(A2) = e
2πi
n , and ρ(A3) = e

4πi
n . Let σn(z) = e

2πi
n z. We claim that

τ := ρ−1 ◦ σn ◦ ρ ∈ PGL(2,C) satisfies the desired properties:

τ(A1) = ρ−1 ◦ σn ◦ ρ(A1) = ρ−1 ◦ σn(1) = ρ−1
(
e

2πi
n

)
= A2.

τ(A2) = ρ−1 ◦ σn ◦ ρ(A2) = ρ−1 ◦ σn
(
e

2πi
n

)
= ρ−1

(
e

4πi
n

)
= A3.

τn = (ρ−1 ◦ σn ◦ ρ)n = ρ−1 ◦ σn
n ◦ ρ = ρ−1 ◦ id ◦ ρ = id.

Question 8

Use the strategy outlined in the lectures to prove Pappus’ Theorem: Let A,B,C and A′.B′, C ′ be similar collinear triples
of distinct points in the projective plane FP2. Then the three intersection points AB′ ∩ A′B, BC ′ ∩ B′C and CA′ ∩ C ′A are
collinear. Proceed by the following steps.

(i) Prove the theorem in the degenerate case when A,B,C ′, B′ are not in general position.

(ii) If these 4 points are in general position, explain why without loss of generality we may take them to be

A = [1, 0, 0], B = [0, 1, 0], C ′ = [0, 0, 1] B′ = [1, 1, 1].

Proof. (i) If A,B,C ′, B′ are not in general position, we may consider the case that C ′ lies in the projective line ABC. The
other cases are similar.

If C ′ ∈ ABC, then BC ′ ∩B′C = CA′ ∩C ′A = C. Then C and AB′ ∩A′B are of course on the same projective line.

(ii) It follows from general position theorem that there exists a unique projective transformation such that

A 7→ [1, 0, 0], B 7→ [0, 1, 0], C ′ 7→ [0, 0, 1] B′ 7→ [1, 1, 1].

Clearly projective transformations preserve projective lines. So without loss of generality we can take

A = [1, 0, 0], B = [0, 1, 0], C ′ = [0, 0, 1] B′ = [1, 1, 1].

Since C ∈ AB, C = [a, b, 0] for some a, b ∈ F . Since A′ ∈ C ′B′, A′ = [c : c : d] for some c, d ∈ F . A direct calculation
shows that:

〈x〉 = AB′ ∩A′B = [c : d : d] 〈y〉 = BC ′ ∩B′C = [0 : b− a : −a] 〈z〉 = CA′ ∩ C ′A = [(a− b)c : 0 : −bd]
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Then we have (b− a)x− dy + z = 0. Hence AB′ ∩A′B, BC ′ ∩B′C and CA′ ∩ C ′A are collinear.

Question 9

Every line in the real affine plane R2 can be written in the form ax + by + c = 0 where a, b are not both zero. Of course,
λax+ λby + λc = 0 is an equation of the same line where λ 6= 0. Hence the space of lines can be identified with

M =
R2\{(0, 0)} × R

R∗

IdentifyM as a subspace of RP2. What is the topology ofM?

Proof. We know that a1x+b1y+c1 and a2x+b2y+c2 = 0 represents the same line if and only if there exists λ ∈ R\{0} such that
(a1, b1, c1) = λ(a2, b2, c2). Therefore the identification {(x, y) ∈ R2 : ax + by + c = 0} 7→ [a : b : c] gives a well-defined
embedding ofM into RP2. More specfically,M = RP2\{[0 : 0 : 1]}.

To determine the topology of M , we consider RP2 as S2/{x ∼ −x}, the 2-sphere with antipodal points identified.
Then M = S2\{±(0, 0, 1)}/{x ∼ −x}. We can use the Mercator projection that projects S2\{±(0, 0, 1)} onto an open
cylinder S1 × (−1, 1). The equivalence relation (θ, t) ∼ (−θ,−t) induces the quotient topology on S1 × (−1, 1), which is
homeomorphic to an open Möbius strip. In other words,M is homeomorphic to an open Möbius strip as a subspace of
RP2.


