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0.1 Complex Numbers

Definition 0.1. Field of Complex Numbers C

The field of complex numbers C := R [x]/〈x2 + 1〉 = R(
p−1) is a quadratic extension of the field of real numbers. For

convenience we write
p−1 = i. Any complex number can be represented as z = a+bi where a,b ∈R, or as z = r eiθ where

r ∈R and θ ∈R/2πZ. The addition and multiplication are as follows:

(a +bi)+ (c +d i) = (a + c)+ (b +d)i

(a +bi)(c +d i) = (ac −bd)+ (ad +bc)i

Remark. It is natural to identify C as R2 with extra multiplication structure. We can define the modulus, distance, and all
associated concepts for metric spaces on the complex plane.

Definition 0.2. Norm

For z = a +bi ∈C, we define its norm (modulus) to be |z| :=
p

a2 +b2.

Remark. It is easy to check that (C, | · |) is a normed vector space.

Definition 0.3. Complex Conjugation

For z = a +bi ∈C, we define its complex conjugation to be z̄ = a −bi.

Remark. |z|2 = zz̄.

Remark. The complex conjugation is the only non-trivial R-module automorphism in C, as Gal(C|R) = {idC, z̄}. See Galois
Theory for detailed discussions.

I am not going to repeat the definition of exponential / trigonometric functions or the closed / compact / connected sets on
the complex plane, because they have been thoroughly studied in the preceding courses.

1
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Definition 0.4. Domain.

We call U ⊆C a domain, if U is open and connected.

Remark. A path-connected subset U ⊆ Rn is said to be simply-connected, if its fundamental group is trivial. That is, any
closed path in U is homotopic to a constant path (a singleton) in U . See Section 1.2 for discussion of homotopy.

Theorem 0.5. C is algebraically closed.

Any non-constant polynomial has a root in C.

Remark. This is the famous Fundamental Theorem of Algebra. We can use Extreme Value Theorem (continuous mapping
between metric spaces preserves compactness) and some elementary estimation to proof this. An more elegant proof of this
theorem makes use of Liouville’s Theorem in Chapter 1. See Corollary 1.18.

Definition 0.6. Extended Complex Plane.

We introduce ∞ into the complex plane: C∞ :=C∪ {∞}. The arithmetic of ∞ is as follows:

∀z ∈C : z +∞=∞+ z =∞
∀z ∈C\ {0} : z ·∞=∞· z =∞; z/0 =∞; z/∞= 0.

This is an example of one-point compactification of the complex plane. See Section 4.1 for detailed discussion of the
extended plane.

0.2 Complex Differentiation

Definition 0.7. Complex Differentiability, Holomorphicity

Suppose U ⊆ C is a domain. f : U → C is (complex) differentiable at z0 ∈ U , if lim
z→z0

f (z)− f (z0)

z − z0
exists. We denote the

derivative f ′(z0) = lim
z→z0

f (z)− f (z0)

z − z0
.

If f is differentiable at every z ∈U , then we say that f is holomorphic in U .

Remark. We will present a necessary condition for complex differentiability, namely the Cauchy-Riemann Equations.

Theorem 0.8. Cauchy-Riemann Equations.

Suppose U ∈ C is a domain. Let f : U → C be a complex-valued function. We can treat it as a mapping from R2 to R2,
f : (x, y) 7→ (u, v). If f is complex differentiable, then u and v are real differentiable, and the partial derivatives satisfy:

∂u

∂x
= ∂v

∂y
,
∂u

∂y
=−∂v

∂x

Proof. The standard basis of C as a vector space over R is {1, i}. The Jacobian matrix of f with respect to this basis is:(
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)
But with respect to the standard basis, multiplying a complex number w = r + si is equivalent to left multiplying a
matrix: (

r −s
s r

)
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Hence we must have
∂u

∂x
= ∂v

∂y
,
∂u

∂y
=−∂v

∂x
by the complex differentiability.

Corollary 0.9

The Cauchy-Riemann Equations is also equivalent to
∂ f

∂x
= 1

i

∂ f

∂y
.

Corollary 0.10

If f : U →C is complex differentiable, then the derivative is given by:

f ′(z) = ∂u

∂x
(z)+ i

∂v

∂x
(z) =−i

∂u

∂y
(z)+ ∂v

∂y
(z)

Remark. We know from introductory analysis that a mapping f : U → R2 is (real) differentiable given that the partial deriva-
tives are continuously differentiable. Next proposition provides a sufficient condition for complex differentiability similar to
this.

Proposition 0.11

Suppose U ∈C is a domain. Let f : U →C be a complex-valued function. Write f : (x, y) 7→ (u, v). If u, v are continuously
differentiable on U and satisfy the Cauchy-Riemann Equations, then f is holomorphic in U .

Proof. Trivial.

Remark. Actually we only require the continuity of either of the partial derivatives.

Definition 0.12. Laplacian, Harmonic Functions.

The differential operator ∇2 := ∂2

∂x2 + ∂2

∂y2 acting on twice differentiable functions in R2 is called the Laplacian. f : U →R

is called a harmonic function if f ∈ ker∇2.

Definition 0.13. Wirtinger Derivatives.

The Wirtinger derivatives are defined to be:

∂

∂z
:= 1

2

(
∂

∂x
− i

∂

∂y

)
,
∂

∂z̄
:= 1

2

(
∂

∂x
+ i

∂

∂y

)

Remark. If we factorise the Laplacian, we will obtain:

∇2 = ∂2

∂x2 + ∂2

∂y2 =
(
∂

∂x
− i

∂

∂y

)(
∂

∂x
+ i

∂

∂y

)
= 4

∂

∂z

∂

∂z̄
= 4

∂

∂z̄

∂

∂z

Proposition 0.14

Suppose U ∈C is a domain. Let f = u + v i : U →C be holomorphic on U . Then:

∂ f

∂z̄
= 0, f ′ = ∂ f

∂z
= 2

∂u

∂z

Sketch of Proof. It directly follows from the Cauchy-Riemann Equations and the definition of Wirtinger derivatives.
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Proposition 0.15

Suppose U ∈C is a domain. Let f = u + v i : U →C be holomorphic on U . If u, v are twice continuously differentiable on
U , then they are harmonic on U .

Proof.

∇2u =∇2(Re f ) = Re(∇2 f ) = Re

(
4
∂

∂z

∂

∂z̄
f

)
= 0

∇2v =∇2(Im f ) = Im(∇2 f ) = Im

(
4
∂

∂z

∂

∂z̄
f

)
= 0

Hence u, v are harmonic.

Proposition 0.16

Suppose U ∈ C is a domain. Suppose that g : U → R is a twice continuously differerntiable function and ∂g /∂z is holo-
morphic. Then g is harmonic on U .

Sketch of Proof.
∂g

∂z
is holomorphic =⇒ ∂

∂z̄

∂g

∂z
= 0 =⇒∇2g = 0 =⇒ g is harmonic.

Definition 0.17. Harmonic Conjugate.

Suppose U ∈ C is a domain. Let u : U → R be harmonic. Then v : U → R is said to be a harmonic conjugate of u, if
f = u + v i is holomorphic on U .

0.3 Branch Cuts

Definition 0.18. Multifunctions, Branches.

A multi-valued function or a multifunction on U ⊆C is a mapping f : U →P (C). That is, every point of U is assigned to
multiple points in C.

A branch of f on V ⊆U is a function g : V → C such that g (z) ∈ f (z) for z ∈ V . We will be interested in the holomorphic
branches of a multifunction.

Remark. In order to distinguish multifunctions and their branches, we use [ f (x)] to emphasize that the image of x is a set
instead of a number. This notation is not generally accepted.

Remark. We will see that the complex analogues of some real functions, such as power and logarithm, are in nature multi-
functions. The many-valuedness often arises from the argument function.

Example 0.19. Argument.

The argument is a multifunction arg :C\ {0} →P (R) such that for z ∈C,

[arg(z)] := {θ ∈R : z = |z|eiθ}

We know that [arg(z)] is in the form of {θ+2πk : k ∈Z}.

We can restrict the image to a 2π segment on R to eliminate the many-valuedness. For example, the choice (−π,π] gives
a single-valued function, namely the principal argument:

Arg(z) ∈ [arg(z)]∩ (−π,π]

However, Arg : C \ {0} → (−π,π] is not continuous on C \ {0}. It has a jump discontinuity across the negative real axis. In
fact, we can never impose a restriction on the image which make the argument into a continuous function.
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Proof. Suppose that θ :C\ {0} →R is such a continuous function. Define k :R→R by:

k(t ) = 1

2π

(
θ(eit )+θ(e−it )

)
Then k is continuous on R. Moreover, there exists m,n :R→Z such that

k(t ) = 1

2π
((t +2m(t )π)+ (−t +2n(t )π)) = m(t )+n(t )

We can see that k is continuous and takes integer values. Hence k is constant onR. But for t =π, θ(eiπ) = θ(e−iπ). Hence

k(π) = 2(π+2m(π)π)

2π
= 2m(π)+1

is odd. On the other hand, for t = 0,

k(0) = 2(0+2m(0)π)

2π
= 2m(0)

is even. Contradiction.

Example 0.20. Logarithm.

We know that the exponential function exp : R→ (0,+∞) is differentiable and bijective. So we can define its inverse
function, namely the logarithm, on (0,+∞), which is also bijective and differentiable. However, the exponential function
on the complex plane is not injective, so its "inverse" would be a multifunction.

We define the complex logarithm for z 6= 0:

[log z] := exp−1({z}) = {w ∈C : z = ew }

If we write z = |z|eiθ and w = a +bi, then

ew = z =⇒ ea eib = |z|eiθ =⇒ a = ln |z|, b ∈ θ+2πZ

That is,
[log z] = {ln |z|+ iθ : θ ∈ arg(z)} = ln |z|+ i ·arg(z)

The imaginary part of the complex logarithm is exactly the argument. So by Example 0.19, there is no continuous branch
of the complex logarithm.

When we pick the principal argument, the corresponding single-valued logarithm is called principal logarithm:

Log z := ln |z|+ iArg(z)

The principal logarithm is holomorphic on C \R−, with (Log z)′ = 1/z. The question that on which domain does the
complex logarithm have a holomorphic branch is fully addressed in Corollary 1.39.

Example 0.21. Power Functions.

Similar to real functions, the complex power function is defined in terms of logarithm:

[zα] := [eα log z ] for z ∈C\ {0}

Therefore power functions are also multifunctions. Especially, the rule [zαzβ] = [zα+β] still holds, whereas [(z1z2)α] =
[zα1 zα2 ] does not hold generally.

For fractional powers, [z1/n] (n ∈ Z+), the image generally contains n points and can be described by the n-th roots of
unity. Let ωn := e2πi/n . Then [11/n] = {1,ωn ,ω2

n , ...,ωn−1
n }.

=⇒ [z1/n] = n
√
|z| eiArg(z)/n {1,ωn ,ω2

n , ...,ωn−1
n }

Remark. Given a multifunction f , suppose the many-valuedness arises because the definition of f depends explicitly or
implicitly on the argument of one or more points a. Such points are usually excluded from the domain of definition. But from
the reasoning in Example 0.19, we can never choose a continuous branch of f in the neighbourhood of a. Such points are
called branch points. The formal definition is presented below.



6 CHAPTER 0. PRELIMINARIES

Definition 0.22. Branch Points, Branch Cuts.

Suppose f : U →P (C) is a multifunction defined on open set U ⊆C. z0 ∈U is said to be a branch point of f , if for r > 0,
there is no continuous branch of f defined on B(z0,r ) \ {z0}.

It is also useful to work in the extended complex plane. If U is unbounded, we define f̃ (1/z) = f (z). We say ∞ is a branch
point of f , if 0 is a branch point of f̃ . Equivalently, ∞ is a branch point of f if only if for r > 0, there is no continuous
branch of f defined on U ∩ (C\ B(0,r )).

A branch cut of f is a curve in C on whose complement we can choose a continuous branch of f . A branch cut must
contain all branch points.

Remark. The argument function and complex logarithm both have branch points at 0 and ∞. When we pick the principal
argument, we are in fact performing a branch cut at the negative real axis R− = (−∞,0]. Generally we may only consider cuts
that are between branch points (or infinity).

Example 0.23

Consider the multifunction [(z2 −1)1/2]. We observe that 1 and −1 are two branch points. If we shift to the polar coordi-
nates and write:

z = 1+ r eiθ =−1+ s eiϕ

Then [(z2 −1)1/2] = [
p

r s ei(θ+ϕ)/2]. If f (z) = F (r, s,θ,ϕ) is a holomorphic branch of [(z2 −1)1/2], then F (r, s,θ,ϕ) should
be uniquely determined by z. More explicitly, we require that ei(θ+ϕ)/2 stays unchanged after f (z) goes along a closed
path γ in the cut plane. The branch cut is chosen to restrict the movement on the plane such that all inadmissible closed
paths are outlawed.

The idea of winding number introduced in Section 1.4 can help determine the admissibility of closed paths. In this case,
suppose γ(t ) = 1+r (t )eiθ(t ) continuously parametrises the closed path. Then the value of θ remains unchanged if 1 is in
the exterior of γ, and the value increases by an integer multiple of 2π if 1 is in the interior of γ. This is similar for −1. If
we want ei(θ+ϕ)/2 be unchanged, then the closed paths that go around either (but not both) of the branch points should
be outlawed. We conclude that a holomorphic branch of [(z2 −1)1/2] exists if we perform the branch cut at [−1,1].

In this cut plane, there are two holomorphic branches:

f±(z) =±|z2 −1|1/2 ei(θ+ϕ)/2, θ ∈ [arg(z −1)]∩ (−π,π], ϕ ∈ [arg(z +1)]∩ [0,2π)

Re

Im

1−1

z

ϕ
θ

cut

Figure 1: Branch cut along [−1,1].

Example 0.24

Consider the multifunction [log(z2 −1)]. The branch points are ±1 and ∞. The polar form:

[log(z2 −1)] = [ln(r s)+ i(θ+ϕ)] for z = 1+ r eiθ =−1+ s eiϕ

In this case, any closed path that encloses either or both of ±1 is outlawed. We can achieve this by performing a branch
cut at (−∞,−1]∪ [1,+∞). Holomorphic branches are given, for k ∈Z, by:

fk (z) = ln(r s)+ i(θ+ϕ+2kπ), θ ∈ [arg(z −1)]∩ [0,2π), ϕ ∈ [arg(z +1)]∩ (−π,π]
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0.4 Paths and Integration

0.4.1 Paths.

Recall that a path in Rn is described by a continuous parametrisation γ : [a,b] →Rn . We adopt this concept in C. We say that a
path γ : [a,b] →C is:

1. closed, if γ(a) = γ(b);

2. simple, if ∀x, y ∈ (a,b) : γ(x) 6= γ(y);

3. C1 or smooth, if γ is continuously differentiable on (a,b);

4. piecewise smooth, if there exists a partition of [a,b]: a = x0 < x1 < ... < xn = b such that γ
∣∣
[xi−1,xi ] is C 1. A piecewise-

smooth simple closed curve is also called a contour.

Sometimes we denote the image of the path γ∗ := γ([a,b]).

Remark. A smooth path does not necessarily have a well-defined tangent at every point, especially where γ′(t ) = 0. Some texts
insist that a smooth path must have non-vanishing derivative everywhere. We shall not adopt this convention.

Definition 0.25. Length, Rectifiability.

Suppose γ : [a,b] →C is a path. Given a partition of [a,b], P : a = t0 < t1 < ... < tn = b, we define:

Λ(γ;P ) :=
n∑

i=1

∣∣γ(ti )−γ(ti−1)
∣∣

We say that γ is rectifiable, or is of bounded variation, if supP Λ(γ;P ) exists, where the supremum is taken over all
partitions P of [a,b]. We denote L(γ) := supP Λ(γ;P ) the length of the path γ.

Proposition 0.26

Suppose γ : [a,b] →C is a smooth path, then it is rectifiable and its length is given by:

L(γ) =
∫ b

a
|γ′|

Proof. Please refer to the real analysis for the proof.

Theorem 0.27. Jordan Curve Theorem.

Suppose that γ : [0,1] → C is a simple closed path. Then C \γ∗ has two connected components, one bounded and one
unbounded. Each of the components has γ∗ as its boundary.

A simple closed curve on the plane is also called a Jordan curve.

Proof. See Section 1.A for a complete proof.

Remark. Without Jordan Curve Theorem we can still define the interior and exterior of a piecewise-smooth closed path. But
we do not know whether the interior is non-empty, nor do we know the connectivity of it. See Section 1.4 for detail.

Definition 0.28. Oriented Curves.

Let γ1 : [a,b] → C and γ2 : [c,d ] → C be two paths. We define γ1 ∼ γ2, if there exists a diffeomorphism (continuously
differentiable bijection with continuously differentiable inverse) ϕ : [a,b] → [c,d ] such that ∀ t ∈ [a,b] : ϕ′(t ) > 0 and
γ1 = γ2 ◦ϕ.

It is easy to check that this defines an equivalence relation. We denote the equivalence class of γ to be [γ] and call it an
oriented curve.
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Remark. The condition that ϕ′(t ) > 0 ensures that the curve is traversed in the same direction for every parametrisation.

Definition 0.29. Circles.

For a circle centered at a with radius r , the parametrisation γ(t ) = a + r e2πit is said to be positively oriented and is
denoted γ(a,r ). We denote by γ+(a,r ) the upper semicircle of γ(a,r ) and γ−(a,r ) the lower semicircle of γ(a,r ). On the
other hand, the parametrisation γ(t ) = a + r e−2πit is said to be negatively oriented.

0.4.2 Integration.

Next we define integration on the complex place and investigate the line integral along paths.

Definition 0.30. Integrability of Complex-Valued Functions.

Complex-valued function f = u+v i : [a,b] →C is Riemann (resp. Lebesgue) integrable if and only if u and v are Riemann
(resp. Lebesgue) integrable. Moreover we define: ∫ b

a
f :=

∫ b

a
u + i

∫ b

a
v

Proposition 0.31. Triangular Inequality.

Suppose f : [a,b] →C, then

∣∣∣∣∫ b

a
f

∣∣∣∣É ∫ b

a

∣∣ f
∣∣.

Proof. Suppose
∫ b

a
f = z = |z|eiθ where θ = Arg(z). Decompose f with respect to the orthonormal basis {eiθ , ieiθ}:

f (t ) = u(t )eiθ+iv(t )eiθ

where u, v : [a,b] →R. Integrate: ∫ b

a
f = eiθ

(∫ b

a
u + i

∫ b

a
v

)
= |z|eiθ

Then we have ∫ b

a
v = 0,

∫ b

a
u = |z| =

∣∣∣∣∫ b

a
f

∣∣∣∣ =⇒
∣∣∣∣∫ b

a
f

∣∣∣∣= ∫ b

a
u É

∫ b

a

√
u2 + v2 =

∫ b

a
| f |

Remark. We shall give a definition of line integral, which is a special case of the Riemann-Stieltjes integral.

Definition 0.32. (Riemann-Stieltjes) Line Integral.

Suppose U ⊆ C. f : U → C is a complex function and γ : [a,b] →U is a path. Given a partition of [a,b], P : a = t0 < t1 <
... < tn = b, we consider the following Riemann-Stieltjes sum:

Σ( f ,γ;ξ,P ) :=
n∑

i=1
f ◦γ(ξi )

(
γ(ti )−γ(ti−1)

)
where ξ := (ξ1, ...,ξn) and ξi ∈ [ti−1, ti ] for each i = 1, ...,n.

If for all ε > 0 there exists δ > 0 such that for all partitions P with max
1ÉiÉn

|ti − ti−1| < δ and all intermediate points ξ, we

have |Σ( f ,γ;ξ,P )− A| < ε, then we say that the line integral of f along γ exists. The limit A ∈ C is the value of the line
integral of f along γ. We denote: ∫

γ
f (z)dz =

∫
γ

f := A = lim
meshP →0

Σ( f ,γ;ξ,P )
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Proposition 0.33

If f : U →C is continuous and γ : [a,b] →U is rectifiable, then the line integral
∫
γ

f exists.

Proof. Please refer to the real analysis for the proof.

Remark. The definition of line integral is purely conceptual and we shall never use it in these notes. We are only interested in
smooth or piecewise smooth paths. In such case the line integral can be computed as follows:

Proposition 0.34

Suppose γ : [a,b] →C is a smooth path and f :C→C is integrable. Then we have:∫
γ

f :=
∫ b

a
( f ◦γ) ·γ′

Remark. If γ is only piecewise smooth, we can find a partition a = x0 < x1 < ... < xn = b such that each γ
∣∣
(xi−1,xi ) is smooth.

Then the line integral is given by ∫
γ

f :=
n∑

i=1

∫ xi

xi−1

( f ◦γ) ·γ′

Proposition 0.35

If γ : [a,b] →C and γ̃ : [c,d ] →C are two piecewise smooth equivalent paths, then for continuous function f :C→C, we

have
∫
γ

f =
∫
γ̃

f . That is, the line integral only depends on the oriented curve [γ].

Proof. Suppose ϕ is a diffeomorphism such that γ= γ̃◦ϕ. Then:∫
γ

f =
∫ b

a
( f ◦γ) ·γ′

=
∫ b

a
( f ◦ γ̃◦ϕ) · (γ̃◦ϕ)′

=
∫ b

a
( f ◦ γ̃◦ϕ) · (γ̃′ ◦ϕ) ·ϕ′

=
∫ d

c
( f ◦ γ̃) · γ̃′ (change of variable)

=
∫
γ̃

f

Proposition 0.36. Properties of Line Integral.

Suppose f , g :C→C are continuous functions. γ,η : [a,b] →C are piecewise smooth paths. Then:

(i) Linearity. ∀ α,β ∈C :
∫
γ

(α f +βg ) =α
∫
γ

f +β
∫
γ

g

(ii) Opposite Path. The opposite path of γ is defined by γ− : [a,b] →C, γ−(t ) = γ(a +b − t ). Then we have:∫
γ−

f =−
∫
γ

f

(iii) Additivity. Suppose γ(b) = η(a). We define the concatenation of γ and η to be: γ?η : [a,b] →C,

γ?η(t ) =
{
γ(2t −a), t ∈ [a, (a +b)/2]

η(2t −b), t ∈ [(a +b)/2,b]
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We have: ∫
γ?η

f =
∫
γ

f +
∫
η

f

(iv) Estimation Lemma. ∣∣∣∣∫
γ

f

∣∣∣∣É sup
z∈γ∗

| f (z)| ·L(γ)

where L(γ) is the length of γ.

Proof. (i) follows from the linearity of Riemann integral.

(ii):
∫
γ−

f =
∫ b

a
f ◦γ−(t )(γ−)′(t )dt

=
∫ b

a
− f ◦γ(a +b − t ) ·γ′(a +b − t )dt

=
∫ a

b
f ◦γ(t ) ·γ′(t )dt =−

∫ b

a
f ◦γ(t ) ·γ′(t )dt

=−
∫
γ

f

(iii):
∫
γ?η

f =
∫ b

a
f ◦ (γ?η)(t ) · (γ?η)′(t )dt

=
∫ a+b

2

a
f ◦γ(2t −a) ·2γ′(2t −a)dt +

∫ b

a+b
2

f ◦η(2t −b) ·2η′(2t −b)dt

=
∫ b

a
f ◦γ(t ) ·γ′(t )dt +

∫ b

a
f ◦η(t ) ·η′(t )dt

=
∫
γ

f +
∫
η

f

(iv) Since [a,b] is compact and γ is continuous, γ∗ is compact. f is continuous so that | f |(γ∗) is also compact. Hence
sup
z∈γ∗

| f (z)| exists. We have:

∣∣∣∣∫
γ

f

∣∣∣∣= ∣∣∣∣∫ b

a
( f ◦γ) ·γ′

∣∣∣∣É ∫ b

a

∣∣( f ◦γ) ·γ′∣∣ (by Proposition 0.31)

=
∫ b

a

∣∣( f ◦γ)
∣∣ · ∣∣γ′∣∣É sup

t∈[a,b]

∣∣ f ◦γ(t )
∣∣ ·∫ b

a

∣∣γ′∣∣= sup
z∈γ∗

| f (z)| ·L(γ)

Corollary 0.37

If a sequence of continuous functions { fn} converge uniformly to f on γ∗, then we have:

lim
n→∞

∫
γ

fn =
∫
γ

f

Proof. By uniform convergence, we have sup
z∈γ∗

( fn(z)− f (z)) → 0. By the Estimation Lemma, we have:

∣∣∣∣∫
γ

fn −
∫
γ

f

∣∣∣∣= ∣∣∣∣∫
γ

( fn − f )

∣∣∣∣É sup
z∈γ∗

( fn(z)− f (z)) ·L(γ) → 0

as n →∞. Then the result follows.

Definition 0.38. Primitive.

Suppose U ⊆ C is a domain. f : U → C is a complex function. If there exists a holomorphic function F : U → C such that
F ′ = f , then we say that F is a primitive of f .

Remark. The existence of primitive on C is analogous to the existence of scalar potential on R2.
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Theorem 0.39. Fundamental Theorem of Line Integral.

Suppose U ⊆C is a domain. f : U →C is continuous and F : U →C is a primitive of f . γ : [a,b] →U is a piecewise smooth
path. Then we have: ∫

γ
f = F ◦γ(b)−F ◦γ(a)

Proof. Suppose there exists a partition a = x0 < x1 < ... < xn = b such that each γ
∣∣
(xi−1,xi ) is smooth. Then:∫

γ
f =

n∑
i=1

∫ xi

xi−1

( f ◦γ) ·γ′ =
n∑

i=1

∫ xi

xi−1

(F ′ ◦γ) ·γ′ =
n∑

i=1

∫ xi

xi−1

(F ◦γ)′ by chain rule.

By the second Fundamental Theorem of Calculus, we have:∫
γ

f =
n∑

i=1

(
F ◦γ(xi )−F ◦γ(xi−1)

)= F ◦γ(b)−F ◦γ(a)

Corollary 0.40

Suppose U ⊆C is a domain. f : U →C is integrable and has a primitive. γ : [a,b] →U is a piecewise smooth closed path.

Then we have
∮
γ

f = 0

Example 0.41

f (z) = 1/z does not have a primitive on C\ {0}.

Proof. Let the unit circle be parametrised as γ : [0,1] →C, t 7→ e2πit . Then∫
γ

f =
∫ 1

0
e−2πit d

dt
(e2πit )dt =

∫ 1

0
2πidt = 2πi 6= 0

Hence 1/z cannot have a primitive.

Corollary 0.42

Suppose U ⊆C is path-connected. f : U →C is holomorphic and satisfies f ′ = 0 on U . Then f is constant on U .

Theorem 0.43

Suppose U ⊆C is a domain. f : U →C is a continuous function. The following statements are equivalent:

(i) f has a primitive on U ;

(ii)
∮
γ

f = 0 along any piecewise smooth closed path γ : [a,b] →C.

(iii) The value of
∫
γ

f = 0 only depends on the endpoints of γ.

Proof. (i)=⇒(ii): This is just Corollary 0.40.

(ii)=⇒(iii): Suppose γ,η : [a,b] → are piecewise smooth paths such that γ(a) = η(a) and γ(b) = η(b). Then γ?η− is a
closed path. Moreover by (ii) we have: ∫

γ
f −

∫
η

f =
∮
γ?η−

f = 0

Hence
∫
γ f = ∫

η f . The value of the integral only depends on the endpoints of the path.

(iii)=⇒(i): Fix z0 ∈U . Let γ : [a,b] →C be a piecewise smooth path such that γ(a) = z0 and γ(b) = z. Define F (z) := ∫
γ f .

We shall show that F ′ = f .
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Fix z ∈U . ∃ ε> 0 (B(z,ε) ⊆U ). For w ∈ B(z,ε), consider a line segment γ starting from z to w given by s : [0,1] →U such
that s(t ) = z + t (w − z). For a path γ1 from z0 to z, γ2 := γ1? s is a path from z0 to w . We have:

F (w)−F (z) =
∫
γ2

f −
∫
γ1

f =
∫

s
f

=
∫ 1

0
f (z + t (w − z)) · (w − z)dt

=⇒
∣∣∣∣F (w)−F (z)

w − z
− f (z)

∣∣∣∣= ∣∣∣∣∫ 1

0
f (z + t (w − z))dt − f (z)

∣∣∣∣
É

∫ 1

0
| f (z + t (w − z))− f (z)|dt

É sup
t∈[0,1]

| f (z + t (w − z))− f (z)|→ 0

as w → z, by the continuity of f . Hence by definition F ′ = f . F is a primitive of f .

0.A Appendix: Background in Metric and Topological Spaces

Definition 0.44. Metric Spaces.

Suppose that X is a set and d : X ×X →R is a map satisfying

1. Symmetry: ∀x, y ∈ X : d(x, y) = d(y, x);

2. Positivity: ∀x, y ∈ X : d(x, y) Ê 0; d(x, y) = 0 ⇐⇒ x = y ;

3. Triangular Inequality: ∀x, y, z ∈ X : d(x, y) É d(x, z)+d(y, z).

(X ,d) is called a metric space.

Definition 0.45. Open Balls, Closed Balls.

Suppose that (X ,d) is a metric space. We define

B(x0,r ) := {x ∈ X : d(x, x0) < r }, B(x0,r ) := {x ∈ X : d(x, x0) É r }

which are the open ball and the closed ball centered at x0 with radius r , respectively.

Definition 0.46. Interior Points, Open Sets, Neighbourhoods.

Suppose that (X ,d) is a metric space and U ⊆ X . We say that x ∈U is an interior point of U , if:

∃r > 0 : B(x,r ) ⊆U

The set of interior points of U is denoted by Ů . U is called an open subset of X , if U = Ů .

For x ∈ X , an open set U ⊆ X such that x ∈U is called a(n open) neighbourhood of x.

Proposition 0.47. Properties of Open Sets

Suppose that (X ,d) is a metric space.

1. ∅ and X are open sets in X ;

2. If U1,U2 ⊆ X are open, then so is U1 ∪U2;

3. If {Ui }i∈I ⊆P (X ) is a collection of open subsets of X , then
⋂
i∈I

Ui is open in X .
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Definition 0.48. Limit Points, Isolated Points, Closed Sets.

Suppose that (X ,d) is a metric space and U ⊆ X . We say that x ∈ X is a limit point of U , if

∀r > 0 : B(x,r )∩U \ {x} 6=∅

The set of limit points of U is denoted by U ′. U is called a closed subset of X , if U ′ ⊆U .

If x ∈U is not a limit point of U , then it is called an isolated point of U .

Proposition 0.49. Closed Sets are the Complement of Open Sets.

Suppose that (X ,d) is a metric space and U ⊆ X . U is open in X if and only if X \U is closed in X .

Proposition 0.50. Open/Closed Balls are Open/Closed Sets

Suppose that (X ,d) is a metric space. For x ∈ X and r > 0, B(x,r ) is open in X and B(x,r ) is closed in X .

Definition 0.51. Topology.

Suppose that X is a set and T ⊆P (X ) is a collection of subsets of X satisfying

1. ∅, X ∈T ;

2. U1,U2 ∈T =⇒ U1 ∪U2 ∈T ;

3. {Ui }i∈I ⊆T =⇒ ⋂
i∈I

Ui ∈T .

Then (X ,T ) is called a topological space. T is called a topology on X . The elements of T are called open sets in X .

Proposition 0.52. Metric Spaces induce Topology.

Suppose that (X ,d) is a metric space. Then the open sets in X form a topology on X .

Definition 0.53. Closure.

Suppose that (X ,T ) is a topological space and U ⊆ X . The closure of X is the intersection of all closed sets in X that
contain U :

X := ⋂
V closed,
U⊆V ⊆X

V

Proposition 0.54. Closure are Closed Sets.

Suppose that (X ,T ) is a topological space and U ⊆ X . Then U is closed. In particular, U =U if and only if U is closed.

Definition 0.55. Denseness, Separability.

Suppose that (X ,T ) is a topological space and U ⊆ X . U is called a dense subset of X if U = X . X is said to be separable,
if it has a countable dense subset.

Definition 0.56. Boundary.

Suppose that (X ,d) is a metric space and U ⊆ X . The boundary of U is defined by ∂U :=U \Ů .
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Definition 0.57. Subspace Topology.

Suppose that (X ,T ) is a topological space. For Y ⊆ X , we define S := {Y ∩U : U ∈T }. Then S is a topology on Y , called
the subspace topology.

Definition 0.58. Convergence in Topological Spaces

Suppose that (X ,T ) is a topological space and {ai }i∈N is a sequence in X . We say that {ai } converges to a, if for any open
neighbourhood U of a, there exists N ∈N such that {ai }∞i=N is in U .

Definition 0.59. Continuity.

Suppose that (X ,dX ) and (Y ,dY ) are metric spaces. f : X → Y is a map. The following statements are equivalent:

1. ∀x0 ∈ X ∀ε> 0 ∃δ> 0 ∀x ∈ X : dX (x, x0) < δ =⇒ dY ( f (x), f (x0)) < ε;

2. ∀U ⊆ Y : U is open in Y =⇒ f −1(U ) is open in X .

Any map satisfying the properties are called continuous functions from X to Y .

Remark. If (X ,T ) and (Y ,S ) are only topological spaces, then we take the second statement as the definition of a continuous
function f : X → Y .

Definition 0.60. Uniform Continuity.

Suppose that (X ,dX ) and (Y ,dY ) are metric spaces. f : X → Y is said to be uniform continuous, if

∀ε> 0 ∃δ> 0 ∀x, y ∈ X : dX (x, y) < δ =⇒ dY ( f (x), f (y)) < ε

Definition 0.61. Homeomorphisms.

Suppose that (X ,T ) and (Y ,S ) are topological spaces. f : X → Y is called a homeomorphism, if f is continuous and
bijective, with a continuous inverse f −1 : Y → X . X and Y are said to be homeomorphic if there exists a homeomorphism
f : X → Y .

Theorem 0.62. Invariance of Domain.

Suppose that U ⊆ Rn is open. If f : U → Rn is continuous and injective, then f (U ) is open, and f : U → f (U ) is a
homeomorphism.

Remark. A similar theorem holds for holomorphic functions on C. See Open Mapping Theorem 2.8 and Inverse Function
Theorem 2.9.

Definition 0.63. Completeness.

Suppose that (X ,d) is a metric space. It is said to be complete if every Cauchy sequence in X converges.

Remark. C and Rn are complete metric spaces.
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Theorem 0.64. Cantor’s Intersection Theorem.

Suppose that (X ,d) is a complete metric space. {Ui }i∈N is a descending chain of non-empty closed sets in X . Then
⋂
i∈N

Ui

is non-empty.

Theorem 0.65. Contraction Mapping Theorem.

Suppose that (X ,d) is a non-empty complete metric space. Let f : X → X be a map such that

∃K ∈ [0,1) ∀x, y ∈ X : d( f (x), f (y)) É K d(x, y)

f is called a contraction mapping. There exists a unique x0 ∈ X such that f (x0) = x0.

Definition 0.66. Compactness.

Suppose that (X ,T ) is a topological space. X is said to be compact if for any open cover {Ui }i∈I (a collection of open sets
that covers X ), there exists a finite subcover {Ui1 , ...,Uin }.

Definition 0.67. Sequential Compactness.

Suppose that (X ,T ) is a topological space. X is said to be sequentially compact if any sequence in X has a convergent
subsequence.

Definition 0.68. Boundedness, Total Boundedness.

Suppose that (X ,d) is a metric space. X is said to be bounded if {d(x, y) : x, y ∈ X } is bounded. X is said to be totally
bounded if

∀ε> 0 ∃x1, ..., xn ∈ X : X =
n⋃

i=1
B(xi ,ε)

Theorem 0.69

Suppose that (X ,d) is a metric space. The following statements are equivalent:

1. X is compact;

2. X is sequentially compact;

3. X is complete and totally bounded.

Theorem 0.70. Heine-Borel Theorem.

Suppose that X ⊆Rn is equipped with the Euclidean metric. Then X is compact if and only if X is closed and bounded.

Theorem 0.71. Continuity Functions preserve Compactness.

Suppose that (X ,T ) and (Y ,S ) are topological spaces. Let f : X → Y be a continuous function. If X is compact, then
f (X ) is compact.

Theorem 0.72. Heine-Cantor Theorem.

Suppose that (X ,dX ) and (Y ,dY ) are metric spaces. Let f : X → Y be a continuous function. If X is compact, then f is
uniformly continuous.
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Definition 0.73. Equicontinuity.

Suppose that (X ,d) is a metric space and F is a collection of functions from X to R. F is said to be equicontinuous on
X , if

∀ε> 0 ∃δ> 0 ∀ f ∈F ∀x1, x2 ∈ X : d(x1, x2) < δ =⇒ | f (x1)− f (x2)| < ε

Definition 0.74. Uniform Boundedness.

Suppose that (X ,d) is a metric space and F is a collection of functions from X to R. F is said to be uniformly bounded
on X , if there exists M ∈R such that | f (x)| É M for all x ∈ X and f ∈F .

Theorem 0.75. Arzelà-Ascoli Theorem.

Suppose that (X ,d) is a compact metric space and F is a collection of continuous functions from X to R which is
equicontinuous and uniformly bounded. Then any sequence { fi }i∈N in F contains a subsequence { fik }k∈N that con-
verges uniformly on X .

Remark. The theorem can be generalized to complex-valued functions without difficulty.

Definition 0.76. Connectivity.

Suppose that (X ,T ) is a topological space. X is said to be disconnected if there exists non-empty open subsets A,B ⊆ X
such that A∪B = X and A∩B =∅.

X is said to be connected if it is not disconnected.

Proposition 0.77

Suppose that (X ,T ) is a topological space. The following statements are equivalent:

1. X is connected;

2. Any continuous function f : X → {0,1} (with the discrete topology) is constant;

3. The only subsets that are both open and closed are ∅ and X .

Proposition 0.78. Connected Subsets of R.

I ⊆R is connected if and only if I is an interval.

Theorem 0.79. Continuity Functions preserve Connectedness.

Suppose that (X ,T ) and (Y ,S ) are topological spaces. Let f : X → Y be a continuous function. If X is connected, then
f (X ) is connected.

Definition 0.80. Path-Connectivity.

Suppose that (X ,T ) is a topological space. X is said to be path-connected, if for any x, y ∈ X , there exists a continuous
path γ : [0,1] → X such that γ(0) = x and γ(1) = y .
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Theorem 0.81

Suppose that (X ,T ) is a topological space.

1. If X is path-connected, then it is connected;

2. If X is a normed vector space, then X is path-connected if and only if it is connected.

Theorem 0.82. Continuity Functions preserve Path-Connectedness.

Suppose that (X ,T ) and (Y ,S ) are topological spaces. Let f : X → Y be a continuous function. If X is path-connected,
then f (X ) is path-connected.

Definition 0.83. Connected Components, Path Components.

Suppose that (X ,T ) is a topological space.

The equivalence relation given by

x ∼ y ⇐⇒ ∃connected subset U ⊆ X : x, y ∈U

partitions X . The equivalence classes are called connected components of X .

The equivalence relation given by

x ∼ y ⇐⇒ ∃continuous path γ : [0,1] → X γ(0) = x, γ(1) = y

partitions X . The equivalence classes are called path components of X .

Proposition 0.84

Suppose that (X ,T ) is a topological space.

1. The connected components of X are connected;

2. The path components of X are path-connected.

Definition 0.85. Local Connectivity, Local Path-Connectivity.

Suppose that (X ,T ) is a topological space. X is said to be locally connected (resp. locally path-connected), if any point
x ∈ X is contained in a connected (resp. locally path-connected) neighbourhood of x.

Proposition 0.86

Suppose that (X ,T ) is a topological space.

1. X is locally connected if and only if for any open subset U ⊆ X , the connected components of U are open in X ;

2. X is locally path-connected if and only if for any open subset U ⊆ X , the path components of U are open in X ;
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Cauchy’s Integral Theorem
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1.1 Proof of Cauchy’s Theorem, Basic Track

Theorem 1.1. Cauchy’s Theorem, 1846

Suppose U ⊆ C is simply-connected. f : U → C is holomorphic on U and its derivative f ′ is continuous on U . γ is a
piecewise-smooth simple closed curve contained in U . Then we have:∮

γ
f = 0

Remark. This is the original form of Cauchy’s Theorem when it was first proposed. The extra condition that f ′ is continuous
on U make it a direct corollary of Green’s Theorem for the plane.

Proof. Consider f as a mapping in R2. f : (x, y) 7→ (u, v). The line integral on the complex plane has a corresponding form:∮
γ

f (z)dz =
∮
γ

(u + iv)(dx + idy) =
∮
γ

(udx − vdy)+ i
∮
γ

(vdx +udy)

Apply Green’s Theorem to f along γ: Ï
S

(
∂u

∂x
− ∂v

∂y

)
dxdy =

∮
γ

(vdx +udy)

Ï
S

(
−∂v

∂x
− ∂u

∂y

)
dxdy =

∮
γ

(udx − vdy)

where S is the region enclosed by γ (this is well-defined by Jordan Curve Theorem).

But from Cauchy-Riemann Equations we know that
∂u

∂x
= ∂v

∂y
and

∂v

∂x
=−∂u

∂y
. Hence

∮
γ

f (z)dz = 0 as claimed.

Remark. Next we shall loosen the condition on f , of which the holomorphicity on U is sufficient. The result is given by
Goursat in 1900. The following proof is adapted from Pringsheim’s work published a year after Goursat’s.

Lemma 1.2. Cauchy’s Theorem for a triangle.

Suppose U ⊆C is a domain. f : U →C is holomorphic on U . Let T be a triangular path whose interior is contained in U .
Then we have: ∮

T
f = 0

	
		 	

Figure 1.1: Bisecting a triangle.

Proof. "Divide and Conquer". Suppose that

∣∣∣∣∮
T

f

∣∣∣∣= M . We are going to prove that M = 0.

As shown in Figure 1.1, the image of T is a triangle, which can be divided into four congruent sub-triangles, denoted by
T1,T2,T3,T4. Notice that the integral along the boundary of the inner sub-triangle is cancelled. Hence we have:∮

T
f =

∮
T1

f +
∮

T2

f +
∮

T3

f +
∮

T4

f

or: ∣∣∣∣∮
T

f

∣∣∣∣É 4∑
i=1

∣∣∣∣∮
Ti

f

∣∣∣∣
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Then ∃ i ∈ {1,2,3,4} :

∣∣∣∣∮
Ti

f

∣∣∣∣Ê M

4
. We denote this sub-triangle T (1) and the original triangle T (0). Start from T (1) and

repeat the process, we will inductively obtain a sequence of triangles T (n) such that:

1. ∆(0) ⊆∆(1) ⊆ ... ⊆∆(n) where ∆(n) denotes the region enclosed by T (n);

2. diam(∆(n)) = 2−ndiam(∆(0));

3. L(T (n)) = 2−nL(T (0));

4.

∣∣∣∣∮
T (n)

f

∣∣∣∣Ê 4−n M .

By Cantor Intersection Theorem, the first and the second properties imply that there exists a unique point z0 ∈
∞⋂

n=0
∆(n).

Since U is simply-connected, z0 ∈ U . Hence f is differentiable at z0. For ε > 0 there exists δ > 0 such that for z ∈
B(z0,δ)∩U : ∣∣∣∣ f (z)− f (z0)

z − z0
− f ′(z0)

∣∣∣∣< ε
Choose n ∈N such that ∆(n) ∈ B(z0,δ)∩U . Then:

| f (z)− f (z0)− f ′(z0)(z − z0)| < ε(z − z0) < ε ·diam(∆(n))

Now perform the line integral along T (n):∮
T (n)

( f (z)− f (z0)− f ′(z0)(z − z0))dz É ε ·diam(∆(n)) ·L(T (n))

= 4−nε ·diam(∆(0)) ·L(T (0))

But notice that: ∮
T (n)

( f (z)− f (z0)− f ′(z0)(z − z0))dz =
∮

T (n)
f (z)dz Ê 4−n M

Hence

M É 4n
∮

T (n)
f É ε ·diam(∆(0)) ·L(T (0))

Since ε is arbitrary, we conclude that M = 0 as claimed.

Corollary 1.3. Cauchy’s Theorem for a polygon.

Suppose U ⊆ C is a domain. f : U → C is holomorphic on U . Let P be a piecewise linear closed path whose interior is
contained in U . Then we have: ∮

P
f = 0

Proof. First we can prove that every simple polygon admits a triangulation by induction on the number of vertices, as shown
in Figure 1.2. If P∗ is not simple (i.e. it intersects itself), it can be expressed as a finite union of simple polygons, the
union of interior of which is the interior of P∗.

After triangulation, the integral of f along the paths in the interior of P∗ will be cancelled. What is left is the integral

along P . Hence
∮

P
f =∑∮

T
f = 0.

Figure 1.2: Triangulation of a polygon.
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Remark. We use the interior of a (not necessarily simple) polygon without defining this concept properly. One way is to invoke
the Jordan’s Curve Theorem for polygons, which is an elementary fact. The other way is using the winding number introduced
in Section 1.4.

Lemma 1.4

Suppose U ⊆ C is a domain. f : U → C is continuous on U and γ is a piecewise smooth path in U . Then for ε > 0 there
exists a polygonal (piecewise linear) path P in U such that:

(i) The vertices of P∗ are on γ∗;

(ii)

∣∣∣∣∫
γ

f −
∫

P
f

∣∣∣∣< ε
Proof. We shall make use of the uniform continuity of f . Since U is open and γ∗ is compact, we can find a compact set G such

that γ∗ ⊆G ⊆U . Then f is uniformly continuous on G by the Heine-Cantor Theorem. Hence:

∀ε> 0 ∃η> 0 ∀z, w ∈G : |z −w | < η=⇒ | f (z)− f (w)| < ε

2L(γ)

Let ρ := dist(γ∗,∂U ) > 0 and δ := min{η,ρ}. Since γ∗ is compact, there is a finite open covering: γ∗ ⊆
n⋃

i=1
B(zi ,δ) where

z1, ..., zn ∈ γ∗. Let the endpoints of the path be z0 and zn+1. Now {z0, z1, ..., zn+1} partitions the curve γ into n +1 parts.
We connect these points by line segments and denote the corresponding path by P . Since |zi−1 − zi | < δ < ρ, the line
segment Pi between zi−1 and zi is contained in U . For the curve γi and line segment Pi , we estimate the difference of
the integral: ∣∣∣∣∫

γi

f −
∫

Pi

f

∣∣∣∣É ∣∣∣∣∫
γi

f (z)dz − f (zi )(zi − zi−1)

∣∣∣∣+ ∣∣∣∣∫
Pi

f (z)dz − f (zi )(zi − zi−1)

∣∣∣∣
=

∣∣∣∣∫
γi

( f (z)− f (zi ))dz

∣∣∣∣+ ∣∣∣∣∫
Pi

( f (z)− f (zi ))dz

∣∣∣∣
< ε

2L(γ)
·L(γi )+ ε

2L(γ)
· |zi − zi−1|

É ε

L(γ)
·L(γi )

Hence we have: ∣∣∣∣∫
γ

f −
∫

P
f

∣∣∣∣É n+1∑
i=1

∣∣∣∣∫
γi

f −
∫

Pi

f

∣∣∣∣< n+1∑
i=1

ε

L(γ)
·L(γi ) = ε

Remark. Combining Corollary 1.3 and Lemma 1.4 we finally reach the landmark theorem:

Theorem 1.5. Cauchy-Goursat Theorem.

Suppose U ⊆C is a domain. f : U →C is holomorphic on U . γ is a piecewise smooth simple closed curve whose interior
is contained in U . Then we have: ∮

γ
f = 0

Proof. Fix ε > 0. By Lemma 1.4 we can find a closed piecewise linear path P such that

∣∣∣∣∫
γ

f −
∫

P
f

∣∣∣∣< ε. By Corollary 1.3 we

have
∮

P
f = 0, Hence

∣∣∣∣∮
γ

f

∣∣∣∣< ε. But ε is arbitrary, we can conclude that
∮
γ

f = 0 as claimed.

Remark. The Cauchy-Goursat Theorem can be also stated using the concept of primitives: a holomorphic function on a
simply-connected domain has a primitive on the domain.

Remark. Again we use the concept of the interior of a simple closed path. In general, Jordan Curve Theorem addresses
this problem (see Section 1.A for a complete proof). However, as we are only interested in piecewise smooth paths, we may
use winding numbers to define the interior of such closed paths. The discussions are in Section 1.4, where another proof of
Cauchy’s Theorem is presented.
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1.2 Homotopy and Cauchy’s Theorem

In this section, we shall develop an alternative way of formulating Cauchy’s Theorem. First we introduce the homotopy of
curves. Informally, we say that two paths are homotopic in a domain, if one can continuously deform to another.

Definition 1.6. Homotopy.

Suppose U ⊆ C is a domain and γ,η : [0,1] →U are two paths in U with the same endpoints, i.e. γ(0) = η(0) = z0, γ(1) =
η(1) = z1. We say that γ and η are homotopic, if there exists a continuous function h : [0,1]2 →U , (t , s) 7→ z, such that:

∀t ∈ [0,1] : h(0, s) = z0, h(1, s) = z1

∀s ∈ [0,1] : h(t ,0) = γ(t ), h(t ,1) = η(t )

One should think of h as a family of paths in U indexed by the second variable s which continuously deform γ into η.

Remark. It follows immediately from the definition that homotopy is an equivalence relation. We call the equivalence classes
the homotopic classes.

Definition 1.7. Constant Path, Null Homotopy.

If a path γ : [0,1] →U is a constant function, then the image γ∗ is just a point and we call this a constant path, denoted
ca as its image is a ∈U .

A closed path γ starting and ending at a ∈U is said to be null homotopic, if it is homotopic to the constant path ca .

Definition 1.8. Simple-Connectivity

A domain U ⊆C is simply-connected, if ∀z, w ∈U , any two paths starting at z and ending at w are homotopic.

Remark. Equivalently, a domain U is simply-connected if all closed paths starting and ending at a given point z0 ∈ U are
null-homotopic.

Remark. In the next theorem we shall prove that the line integral only depends on the homotopic class given that the function
is holomorphic.

Theorem 1.9. Deformation Theorem.

Suppose U ⊆ C is a domain. γ,η : [0,1] → U are piecewise-smooth paths in U which are homotopic. f : U → C is
holomorphic on U . Then we have: ∫

γ
f =

∫
η

f

Remark. We need some form of Cauchy’s Theorem before we prove Theorem 1.9. For now we forget Corollary 1.3 and Theorem
1.5, which depend on some forms of Jordan Curve Theorem. We shall begin with Lemma 1.2 and generalize it to a broader
class of domains.

Definition 1.10. Star Domain.

A domain U ⊆C is a star domain, if there exists z ∈U such that for all w ∈U , the line segment [z, w] is entirely contained
in U .

Remark. Notice the following inclusion relation for concepts:

Convex Domain ⊆ Star Domain ⊆ Simply-Connected Domain ⊆ Domain.
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Figure 1.3: Dissecting the homotopy.

Lemma 1.11. Cauchy’s Theorem for a star domain.

Suppose U ⊆C is a star domain. f : U →C is holomorphic on U . γ : [a,b] →U is a piecewise-smooth closed path. Then
we have: ∮

γ
f = 0

Proof. It suffices to prove the existence of the primitive of f on U . Suppose z0 ∈U is th point that satisfies the definition of star

domain. For every z ∈U , consider the line segment parametrised by γz (t ) = z0 + t (z − z0). We claim that F (z) =
∫
γz

f

is a primitive of f (z). To show this, we fix z ∈ U . ∃ ε > 0 (B(z,ε) ⊆ U ). For w ∈ B(z,ε), consider the line segment
parametrised by η(t ) = z + t (w − z). Notice that the interior of the triangle T with vertices z0, z, w is entirely contained

in U . By Lemma 1.2 we have
∮

T
f = 0. But T is the concatenation γz ?η?γ

−
w . Hence:∫

η
f =

∫
γw

f −
∫
γz

f = F (w)−F (z)

And we have: ∣∣∣∣F (w)−F (z)

w − z
− f (z)

∣∣∣∣= ∣∣∣∣ 1

w − z

∫
η

f (ζ)dζ− f (z)

∣∣∣∣
=

∣∣∣∣ 1

w − z

∫ 1

0
f (z + t (w − z)) · (w − z)dt − f (z)

∣∣∣∣
É sup

t∈[0,1]

∣∣( f (z + t (w − z))− f (z))
∣∣→ 0

as w → z by the continuity of f . Hence F ′ = f on U . By Corollary 0.40, we have
∮
γ

f = 0 for any piecewise-smooth

closed path γ in U .

Proof of Theorem 1.9. Let h : [0,1]×[0,1] →U be a homotopy of γ and η. Since [0,1]2 is compact and h is continuous, h is also
uniformly continuous so that we have cover the image h([0,1]2) with finitely many disks.

∀ε> 0 ∃δ> 0 ∀(t1, s1), (t2, s2) ∈ [0,1]2 : ‖(t1, s1)− (t2, s2)‖ < δ=⇒ |h(t1, s1)−h(t2, s2)| < ε
Choose N ∈N such that N > 1/δ. Let us dissect [0,1]2 into N 2 squares. In order to deform γ(t ) = h(t ,0) to η(t ) = h(t ,1),
we connect the image of these vertices by piecewise linear paths. More specifically, for k ∈ {0,1, ..., N }, let µk be the

piecewise linear path that connects the points h

(
0,

k

N

)
,h

(
1

N
,

k

N

)
, ...,h

(
1,

k

N

)
. We claim that:∫

γ
f =

∫
µ0

f =
∫
µ1

f = ... =
∫
µN

f =
∫
η

f

It suffices to prove the second equality and the proof for others are similar. Consider two adjacent squares whose
vertices are (

j −1

N
,0

)
,

(
j

N
,0

)
,

(
j +1

N
,0

)
,

(
j −1

N
,

1

N

)
,

(
j

N
,

1

N

)
,

(
j +1

N
,

1

N

)
For the left square, by the compactness condition, its image can be covered by a disc B(h(p j ),ε) where p j is the center
of the square. Therefore by Lemma 1.11, f has a primitive F j on the disc (disks are star domains). Similarly we cover the
image of the right square with another disc B(h(p j+1),ε) and find a primitive F j+1 of f . Since the two disks intersect,
F j and F j+1 only differ by a constant. In particular, since µ0( j /N ),µ1( j /N ) ∈ B(h(p j ),ε)∩B(h(p j+1),ε), we have:

F j ◦µ0( j /N )−F j ◦µ1( j /N ) = F j+1 ◦µ0( j /N )−F j+1 ◦µ1( j /N ) (1.1)
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By the Fundamental Theorem for Line Integral, we have:∫
µ0|[ j−1, j ]

f = F j ◦µ0

(
j

N

)
−F j ◦µ0

(
j −1

N

)
∫
µ1|[ j−1, j ]

f = F j ◦µ1

(
j

N

)
−F j ◦µ1

(
j −1

N

)
After we have covered two paths with N disks, we have:∫

µ0

f =
N∑

j=1

∫
µ0|[ j−1, j ]

f

=
N∑

j=1

(
F j ◦µ0

(
j

N

)
−F j ◦µ0

(
j −1

N

))

= FN ◦µ0 (1)−F1 ◦µ0 (0)+
N−1∑
j=1

(
F j ◦µ0

(
j

N

)
−F j+1 ◦µ0

(
j +1

N

))

= FN ◦µ1 (1)−F1 ◦µ1 (0)+
N−1∑
j=1

(
F j ◦µ1

(
j

N

)
−F j+1 ◦µ1

(
j +1

N

))
=

∫
µ1

f

where the fourth equality follows from Equation 1.1 and that µ0 and µ1 have the same endpoints.

Remark. We use this cumbersome piecewise linear approximation because we only know the continuity of h, and the inte-
grability of f along γk (t ) = h(t ,k/N ) is not assumed. 1

Corollary 1.12

Suppose U ⊆C is a domain. γ is a piecewise-smooth closed path which is null homotopic. f : U →C is holomorphic on
U . Then we have: ∮

γ
f = 0

Theorem 1.13. Cauchy-Goursat Theorem.

Suppose U ⊆C is simply-connected. f : U →C is holomorphic on U . γ is a piecewise-smooth closed curve contained in
U. Then we have: ∮

γ
f = 0

Proof. It immediately follows from the previous corollary and the definition of a simply-connected domain.

1.3 Cauchy’s Integral Formulae

1.3.1 Cauchy’s Integral Formulae.

We are now ready to present some important consequences of Cauchy’s Theorem. All results in this section are based on
Cauchy’s Theorem for star domain (Lemma 1.11). The most general form of the theorem via the winding number will be
postponed after we present Liouville’s theorem and Riemann’s Removable Singularity Theorem.

Lemma 1.14

Let γ(a,r ) be a positively oriented circle. Then for w ∈ B(a,r ) we have:∮
γ(a,r )

1

z −w
dz = 2πi

1See https://math.stackexchange.com/questions/44306 for detail.

https://math.stackexchange.com/questions/44306
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Proof.
1

z −w
= 1

(z −a)− (w −a)
= 1

z −a

(
1− w −a

z −a

)−1
= 1

z −a

∞∑
n=0

( w −a

z −a

)n

Since (w −a) < (z −a) for z ∈ γ∗, the series converges uniformly on the image of the circle. Hence by Corollary 0.37 we
can integrate term by term:∮

γ(a,r )

1

z −w
dz =

∞∑
n=0

∮
γ(a,r )

1

z −a

( w −a

z −a

)n
dz

=
∞∑

n=0
(w −a)n

∮
γ(a,r )

1

(z −a)n+1 dz

=
∞∑

n=0
(w −a)n

∫ 1

0
(r e2πit )−(n+1) ·2πi · r e2πit dt

= 2πi
∞∑

n=0
(w −a)nr−n

∫ 1

0
e−2nπit dt

= 2πi+2πi
∞∑

n=1
(w −a)nr−n

(∫ 1

0
cos(−2nπt )dt + i

∫ 1

0
sin(−2nπt )dt

)
= 2πi

The last equality follows from that the integrals
∫ 1

0 cos(−2nπt )dt and
∫ 1

0 sin(−2nπt )dt are obviously 0 for n 6= 0.

Theorem 1.15. Cauchy’s Integral Formula for a Circle.

Suppose f : U →C is holomorphic in a domain U that contains B(a,r ). Then for any w ∈ B(a,r ), we have:

f (w) = 1

2πi

∮
γ(a,r )

f (z)

z −w
dz

Proof. Fix w ∈ B(a,r ). Define g : U →C by

g (z) :=


f (z)− f (w)

z −w
z ∈U \ {w}

f ′(w) z = w

Then g is continuous on U and holomorphic on U \ {w}. U \ {w} is not a star domain. Alternatively, we consider the
closed paths Γ1 and Γ2 as shown in Figure. Note that Γ1 is in a star domain which is contained in U \ {w}. By Lemma

1.11 we have
∮
Γ1

g = 0. Similarly,
∮
Γ2

g = 0

The integrals over the linear segments cancel. We have:

0 =
∮
Γ1

g +
∮
Γ2

g =
∮
γ(a,r )

g +
∮
γ(w,ε)−

g

. But
∮
γ(w,ε)−

g → 0 as ε→ 0, by the continuity of g at w . Hence
∮
γ(a,r )

g = 0.

=⇒
∮
γ(a,r )

f (z)− f (w)

z −w
dz = 0

=⇒
∮
γ(a,r )

f (z)

z −w
dz = f (w)

∮
γ(a,r )

dz

z −w

=⇒
∮
γ(a,r )

f (z)

z −w
dz = 2πi · f (w) by Lemma 1.14.

And the result follows.
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Figure 1.4: Cauchy’s Integral Formula.

Remark. In fact this result holds for any simple closed positively path. The generalisation of Cauchy’s Integral Formula will
be presented after we introduce winding number and make sense about orientation and interior in the next section.

Definition 1.16. Entire Functions.

If f :C→C is holomorphic on the whole C, then we call it an entire function.

Theorem 1.17. Liouville’s Theorem.

A bounded entire function is constant.

Proof. Suppose f :C→C is entire and bounded by M . For w ∈C, choose r > |w | and consider the integral:

f (w) = 1

2πi

∮
γ(0,r )

f (z)

z −w
dz, f (0) = 1

2πi

∮
γ(0,r )

f (z)

z
dz

Hence

| f (w)− f (0)| =
∣∣∣∣ 1

2πi

∮
γ(a,r )

f (z)

(
1

z −w
− 1

z

)
dz

∣∣∣∣
= 1

2π

∣∣∣∣∮
γ(0,r )

w f (z)

z(z −w)
dz

∣∣∣∣
É r · sup

z∈∂B(0,r )

∣∣∣∣ w f (z)

z(z −w)

∣∣∣∣
É r · |w |M

r (r −|w |) = M · 1

r /|w |−1
→ 0

as r →∞. Hence f (w) = f (0) for all w ∈C. It follows that f is constant.

Remark. There is a result much stronger than Liouville’s Theorem, namely Picard’s Little Theorem, which states that the
image of a non-constant entire function is either C or C\ {z0} for some point z0 ∈C.

Corollary 1.18. Fundamental Theorem of Algebra.

Any non-constant polynomial has a root in C.
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Proof. Suppose p(z) = ∑n
j=0 a j z j ∈ C[z] has no roots in C. Then f (z) = 1/p(z) is defined on the whole complex plane and is

entire. Without loss of generality we may assume that an = 1. Note that

|p(z)| = |zn |+
∣∣∣∣∣n−1∑

j=0
a j z j

∣∣∣∣∣Ê |zn |
∣∣∣∣∣1−n−1∑

j=0

|a j |
|z|n− j

∣∣∣∣∣→∞

as |z| → ∞. Hence f → 0 as |z| → ∞. Hence f is bounded. By Liouville’s Theorem, f is constant. Then p(z) is also
constant.

Remark. The following theorems shows the powerful aspects of complex analysis. Any holomorphic function is in fact in-
finitely differentiable and even analytic. This is much more well-behaved than real functions.

Theorem 1.19. Taylor Expansion.

If f : U → C is holomorphic on domain U ⊆ C which contains B(a,r ), then the power series
∞∑

n=0
cn(z −a)n converges

uniformly to f on B(a,r ), where

cn = f (n)(a)

n!
= 1

2πi

∮
γ(a,r )

f (z)

(z −a)n+1 dz

Proof. We will use the same technique as in Lemma 1.14. For w ∈ B(a,r ), by Cauchy’s Integral Formula,

f (w) = 1

2πi

∮
γ(a,r )

f (z)

z −w
dz = 1

2πi

∮
γ(a,r )

f (z)

z −a

∞∑
n=0

( w −a

z −a

)n
dz

=
∞∑

n=0

(
1

2πi

∮
γ(a,r )

f (z)

(z −a)n+1 dz

)
(w −a)n =

∞∑
n=0

f (n)(a)

n!
(w −a)n

Hence the Taylor series of f converges to the function on B(a,r ). The absolute and uniform convergence follows im-
mediately.

Remark. The previous theorem demonstrates that all holomorphic functions are analytic. From now on we shall use these
two words interchangably. However, some physicists like to call complex differentiable functions "analytic" from the very
beginning. From my perspective, this is not appropriate until we prove the Taylor expansion of holomorphic functions.

Remark. We know that any power series is in fact infinitely differentiable. The Taylor expansion of a holomorphic function
not only gives a proof that it is analytic, but also gives the explicit formulae for the derivatives of the function.

Corollary 1.20. Infinite Differentiability of Holomorphic Functions.

If f : U → C is holomorphic on domain U ⊆ C, then f is infinitely differentiable on U . Moreover, if U contains B(a,r ),
then for any w ∈ B(a,r ), we have:

f (n)(w) = n!

2πi

∮
γ(a,r )

f (z)

(z −w)n+1 dz

Remark. These integral representations for derivatives are also called Cauchy’s Integral Formulae.

Remark. The next theorem is an immediate corollary of Corollary 1.20 and is a converse to Cauchy’s Theorem.

Corollary 1.21. Morera’s Theorem.

Suppose f : U →C is continuous on a domain U ⊆C.
∮
γ

f = 0 for any closed path in U . Then f is holomorphic on U .

Proof. By Theorem 0.43, f has a primitive F on U . But by Corollary 1.20, the second derivative F ′′ = f ′ exists on U . Hence f is
holomorphic on U .

Remark. In fact the condition for Morera’s Theorem can be weakened as follows. Instead of any closed path,
∮

T
f = 0 for any

triangle T is sufficient to deduce that f is holomorphic.
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Corollary 1.22. Cauchy’s Inequalities.

If f : U → C is holomorphic on domain U ⊆ C which contains B(a,r ), then the modules of the derivatives of f at a are
controlled by: ∣∣ f (n)(a)

∣∣É n!

r n sup
z∈∂B(a,r )

| f (z)|

Proof. ∣∣ f (n)(a)
∣∣= ∣∣∣∣ n!

2πi

∮
γ(a,r )

f (z)

(z −a)n+1 dz

∣∣∣∣
É n!

2π
·2πr sup

z∈∂B(a,r )

∣∣∣∣ f (z)

(z −a)n+1

∣∣∣∣
É n!

r n sup
z∈∂B(a,r )

| f (z)|

1.3.2 Consequences of Cauchy’s Integral Formulae.

Theorem 1.23. Riemann’s Removable Singularity Theorem.

Suppose U ⊆ C is open and z0 ∈ U . f : U \ {z0} → C is holomorphic in U \ {z0} and is bounded near z0. Then f can be
holomorphically extended on the whole U .

Remark. For this reason, z0 is called a removable singularity of f . We will discuss the classification of isolated singularities
in detail in Section 2.2.

Proof. We define g : U →C by

g (z) :=
{

(z − z0)2 f (z), z ∈U \ {z0}

0, z = z0

Clearly g is holomorphic in U \ {z0}. Since f is bounded near z0, we have

g (z)− g (z0)

z − z0
= (z − z0) f ′(z) → 0

as z → z0. It follows that g is in fact holomorphic on U . Choose r > 0 such that B(z0,r ) ⊆U . By Theorem 1.19, g has the
power series expansion in B(z0,r ):

g (z) =
∞∑

n=0
cn(z − z0)n .

Since g (z0) = g ′(z0) = 0, we have c0 = c1 = 0. Therefore g (z) = (z − z0)2
∞∑

n=0
cn−2(z − z0)n . Now we define f (z0) = c2. Then

we have

f (z) =
∞∑

n=0
cn−2(z − z0)n .

which implies that f is holomorphic on B(z0,r ). We conclude that f is holomorphic on U = (U \ {z0})∪B(z0,r ).

Remark. The next theorem suggests that the uniform limit of holomorphic functions is holomorphic. This is a very strong
result which has no analogy in real analysis.

Theorem 1.24. Weierstrass’ Theorem.

Suppose U ⊆ C is a domain. fn : U → C is a sequence of holomorphic functions on U . If fn → f uniformly on any
compact subset of U , then f is holomorphic on U . Moreover, f (k)

n → f (k) uniformly on every compact subset of U for
any k ∈N.

Proof. Fix z0 ∈U . It suffice to prove that f is holomorphic on a neighbourhood of z0. Let r > 0 such that B(z0,r ) ⊆U . For any
piecewise-smooth closed path γ : [a,b] → B(z0,r ), since fn is holomorphic in B(z0,r ), we have:∮

γ
fn = 0
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Since γ∗ is compact, by the assumption, fn → f uniformly on γ∗. Hence:∮
γ

f = lim
n→∞

∮
γ

fn = 0

By Morera’s Theorem, f is holomorphic in B(z0,r ). Hence f is holomorphic on U .

To prove the second part, note that by Corollary 1.20 f is infinitely differentiable. Fix compact subset K ⊆U . Since U is

open and K is compact, we can find a open subset G such that K ⊆G ⊆G ⊆U . More explicitly, we define G := ⋃
z∈K

B(z,
ρ

2
)

where ρ := inf
z∈K ,w∈∂U

|z −w |. By Cauchy’s Inequalities, for z ∈ K we have:

f (k)
n (z) É k !

(ρ/2)k
sup

w∈∂B(z,ρ/2)
| fn(w)|, f (k)(z) É k !

(ρ/2)k
sup

w∈∂B(z,ρ/2)
| f (w)|

Since G is compact, fn → f uniformly on G :

∀ε> 0 ∃N ∈N ∀n > N : sup
z∈G

| fn(z)− f (z)| < ε

Hence:

sup
z∈K

∣∣∣ f (k)
n (z)− f (k)(z)

∣∣∣É k !

(ρ/2)k
sup
w∈G

∣∣ fn(z)− f (z)
∣∣É k !

(ρ/2)k
ε

Therefore we conclude that f (k)
n → f (k) uniformly on every compact K ⊆U .

Remark. The property "uniformly convergent on any compact subset" is an important property that we shall exploit in Section
4.6. In the language of Definition 4.52, we say that { fn} is a normal family and it converges normally.

Proposition 1.25. Holomorphic Function defined in terms of Integrals.

Suppose U ⊆ C is a domain. F : U × [a,b] → C is a continuous function. Suppose z 7→ F (z, s) is holomorphic on U for
every s ∈ [a,b]. Then the function defined by:

f (z) :=
∫ b

a
F (z, s) ds

is holomorphic on U .

Proof using Fubini’s Theorem. For any triangle T contained in U ,∮
T

f (z)dz =
∮

T

(∫ b

a
F (z, s) ds

)
dz

=
∫ b

a

(∮
T

F (z, s)dz

)
ds (by Fubini’s Theorem)

=
∫ b

a
0 ds = 0 (since F (z, s) is holomorphic in z)

Then by Morera’s Theorem, f is holomorphic on U .

A more rigorous proof. We shall find a sequence of holomorphic functions fn that converges uniformly to f , so that by the
previous theorem we can assert that f is holomorphic. To construct fn we use partitions of [a,b], which is analgous to the way
we approximate the Riemann integral of continuous functions.

Without loss of generality we shift [a,b] to [0,1]. Let fn(z) := 1

n

n∑
j=1

F (z,
j

n
). We claim that fn(z) → f (z) uniformly on every

compact subsets K ⊆U . For compact K , note that F is continuous on compact set K×[0,1], and hence is uniformly continuous.
Therefore:

∀ε> 0 ∃δ> 0 ∀z ∈ K ∀ s, t ∈ [0,1] : |s − t | < δ=⇒ |F (z, s)−F (z, t )| < ε
For n ∈N such that n > 1/δ, we have:

| fn(z)− f (z)| =
∣∣∣∣∣ 1

n

n∑
j=1

F (z,
j

n
)−

∫ 1

0
F (z, s) ds

∣∣∣∣∣
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=
∣∣∣∣∣ n∑

j=1

∫ j /n

( j−1)/n

(
F (z,

j

n
)−F (z, s)

)
ds

∣∣∣∣∣
É

n∑
j=1

∫ j /n

( j−1)/n

∣∣∣∣F (z,
j

n
)−F (z, s)

∣∣∣∣ds

É
n∑

j=1
ε/n = ε

Hence fn → f on every compact subset K ⊆U . By Weierstrass Theorem f is holomorphic on U .

1.4 Winding Numbers and Cauchy’s Theorem

In this section we wish to define the interior of a simple closed curve by introducing the winding number of a closed curve with
respect to a certain point. This will allow us to present the ultimate form of Cauchy’s theorem, as well as many consequences
of it. Informally stated, the winding number is the number of anti-clockwise rotations that a path goes around a point.

1.4.1 Winding Numbers.

Lemma 1.26. Continuous Choices of Argument.

Suppose γ : [0,1] →C is a path and z0 ∈C\γ∗. Then there exists a continuous function θ : [0,1] →R such that:

γ(t ) = z0 +|γ(t )− z0|eiθ(t )

Moreover, if θ and ϕ are two such functions, then

∃k ∈Z ∀ t ∈ [0,2π] : θ(t )−ϕ(t ) = 2πk

Proof. Let η : [0,1] → S1 ⊆C be the path such that η(t ) = (γ(t )−z0)/|γ(t )−z0|. Again we appeal to the uniform continuity of the
path. Let δ> 0 such that

∀ s, t ∈ [0,1] : |s − t | < δ=⇒ |η(s)−η(t )| <p
3

Let n ∈ N such that n > 1/δ. Note that for |z| = |w | = 1 and |z − w | < p
3, we must have |Arg(z) − Arg(w)| < 2π/3.

Therefore we can define a holomorphic branch of the argument function on this subinterval. That is, for 1 É j É n,
there is a continuous function θ j : [ j−1

n , j
n ] →R such that η|

[ j−1
n , j

n ]
(t ) = eiθ j (t ).

But for t = j /n, we must have η( j /n) = eiθ j ( j /n) = eiθ j+1( j /n), which means that |θ j ( j /n)−θ j+1( j /n)| = 2πk j for some
k j ∈ Z. We may choose each k j such that θ j ( j /n) = θ j+1( j /n) for j ∈ {1, ...,n − 1} and obtain a continuous function
θ : [0,1] →R such that η(t ) = eiθ(t ) as claimed.

Moreover, if θ and ϕ are two such functions, then we have

ei(θ(t )−ϕ(t )) = 1 =⇒ θ(t )−ϕ(t ) ∈ 2πZ

But θ(t )−ϕ(t ) is continuous, it must take constant value on each connected domain. [0,1] is connected, so θ(t )−ϕ(t )
is a constant integer.

Remark. The Lemma shows that, if γ is a closed path, then ei(θ(1)−θ(0)) = 1. It follows that θ(1)−θ(0) ∈ 2πZ. We shall demon-
strate that this integer is an important parameter of the path, which is called the winding number.

Definition 1.27. Winding Number.

Suppose γ : [0,1] → C is a closed path and z0 ∈ C \γ∗. θ : [0,1] → R is a continuous function such that γ(t ) = z0 +|γ(t )−
z0|eiθ(t ). Then we define I (γ, z0) := θ(1)−θ(0)

2π
to be the winding number or index of γ about z0.

By the previous lemma, we know that I (γ, z0) ∈Z and is independent of the choice of θ(t ).

Remark. The winding number can also be interpreted by logarithm. Since log(η(t )) = ln |η(t )|+iθ(t ), we can define θ(t ) locally
by choosing holomorphic branches of [Log(η(t ))]. Hence we have the line integral form of the winding number:
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Proposition 1.28

Suppose γ is a piecewise-smooth closed path and z0 ∈C\γ∗. The winding number of γ about z0 is given by:

I (γ, z0) := 1

2πi

∮
γ

dz

z − z0

Proof. By Lemma 1.26, we may write γ(t ) = z0+r (t )eiθ(t ) where r (t ) = |γ(t )−z0|. Then γ′(t ) = (r ′(t )+ir (t )θ′(t ))eiθ(t ). Compute
the integral: ∮

γ

dz

z − z0
=

∫ 1

0

(r ′(t )+ ir (t )θ′(t ))eiθ(t )

r (t )eiθ(t )
dt

=
∫ 1

0

r ′(t )

r (t )
dt + i

∫ 1

0
θ′(t )dt

= (ln r (t )+ iθ(t ))1
0 = 0+ i(θ(1)−θ(0))

= 2πi · I (γ, z0) (by Definition 1.27.)

and the result follows.

Remark. The next corollary reveals the connection between homotopy and winding number.

Corollary 1.29

If γ and η are homotopic piecewise-smooth paths via the homotopy h : [0,1]2 → C and z0 ∉ h([0,1]2). Then I (γ, z0) =
I (η, z0).

Proof.

I (γ, z0) = 1

2πi

∮
γ

dz

z − z0
= 1

2πi

∮
η

dz

z − z0
= I (η, z0)

Proposition 1.30

Suppose U ⊆C is a domain. γ : [0,1] →U is a piecewise-smooth closed path and f is a function continuous on γ∗. Then
the function defined by

I f (γ, w) :=
∮
γ

f (z)

z −w
dz

is holomorphic on U .

Proof. The proof is similar to the one in Taylor Expansion. SinceC\γ∗ is open and holomorphicity is a local property, it suffices
to show that I f (γ, w) is holomorphic in B(z0,r ) for each z0 ∈C\γ∗ and some r > 0.

Now fix z0 ∈C\γ∗. Let r = 1

2
inf

t∈[0,1]
|γ(t )− z0|. Then for w ∈ B(z0,r ) and z ∈ γ∗ we have

∣∣∣ w − z0

z − z0

∣∣∣< 1

2
. Moreover, since γ∗

is compact, M = sup
z∈γ∗

| f (z)| exists. Hence: ∣∣∣∣ f (z)
(w − z0)n

(z − z0)n+1

∣∣∣∣É M

2r

(
1

2

)n

By Weierstrass M-test,
∞∑

n=0
f (z)

(w − z0)n

(z − z0)n+1 converges uniformly to
f (z)

z −w
on γ∗. Hence we have:

∮
γ

f (z)

z −w
dz =

∞∑
n=0

(∮
γ

f (z)

(z − z0)n+1 dz

)
(w − z0)n

Since I f (γ, w) is given by a power series, it is analytic and of course holomorphic.

Corollary 1.31

Fix the piecewise-smooth closed path γ. The winding number as a function z 7→ I (γ, z) is continuous onC\γ∗. Therefore
it takes constant value on connected components of C\γ∗.
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Definition 1.32. Interior of Closed Path.

Suppose γ is a piecewise-smooth closed path. We define the interior of γ to be {z ∈C\γ∗ : I (γ, z) 6= 0}.

By the previous lemma, it is the union of bounded connected components of C\γ∗ (if it is not empty).

We define the exterior of γ to be {z ∈ C \γ∗ : I (γ, z) = 0}. Since lim
z→∞I (γ, z) = 0, the exterior is made of exactly one un-

bounded connected component of C\γ∗.

Definition 1.33. Orientation.

A closed path γ is said to be positively oriented, if I (γ, z0) > 0 for z0 in the interior of γ; γ is said to be negatively oriented,
if I (γ, z0) < 0 for z0 in the interior of γ.

Remark. We can see that the definition of orientation above is consistent with our definition of the orientation of circles. In
fact, for a simple closed positively oriented curve, I (γ, z) = 1 for z in the interior and I (γ, z) = 0 for z in the exterior.

1.4.2 Dixon’s Proof of Cauchy’s Theorem.

Remark. We shall end this chapter with our final goal: Cauchy’s Theorem and Cauchy’s Integral Formula in the form of wind-
ing numbers. The proof uses Liouville’s Theorem, Riemann’s Removable Singularity Theorem, and Proposition 1.25. These are
consequences of Cauchy’s Integral Formula for a circle, which is based on Cauchy’s Theorem for star domains. We can see that
it is independent of the homotopy form of Cauchy’s Theorem.

Theorem 1.34. Cauchy-Goursat Theorem, Homology Form.

Suppose U ⊆C is open. f : U →C is holomorphic on U . γ : [a,b] →U is a piecewise-smooth closed path whose interior
is entirely contained in U , i.e. I (γ, z) = 0 for all z ∉U . Then we have:∮

γ
f = 0

Theorem 1.35. Cauchy’s Integral Formula, Homology Form.

Suppose U ⊆C is open. f : U →C is holomorphic on U . γ is a piecewise-smooth closed curve whose interior is entirely
contained in U . Then for all w ∈U \γ∗:

1

2πi

∮
γ

f (z)

z −w
dz = I (γ, w) · f (w)

Proof of Theorem 1.34 and 1.35. We only prove the Cauchy’s Integral Formula.

Since I (γ, w) = 1

2πi

∮
γ

f (w)

z −w
dz, the formula to be proved can be written as:

∮
γ

f (z)− f (w)

z −w
dz = 0

Define g : U ×U →C by:

g (z, w) :=


f (z)− f (w)

z −w
z 6= w ;

f ′(z) z = w.

Then g is continuous on U ×U . Fix z ∈U , then w 7→ g (z, w) is holomorphic on U \ {z}. But by continuity, w 7→ g (z, w)
is bounded near z. Hence by Riemann’s Removable Singularity Theorem, w 7→ g (z, w) is actually holomorphic on the
whole U . Then the line integral:

F (w) :=
∮
γ

g (z, w)dz =
∫ b

a
g (γ(t ), w)γ′(t )dt

is holomorphic on U by Proposition 1.25.
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Let V denote the exterior of γ, i.e. I (γ, w) = 0 for w ∈V . Define G : V →C by G(w) :=
∮
γ

f (z)

z −w
dz. Then F (w) and G(w)

agrees on U ∩V :

F (w) =
∮
γ

f (z)− f (w)

z −w
dz =G(w)− f (w)I (γ, w) =G(w)

Hence the function H :C→C defined by:

H(w) :=
{

F (w), w ∈U ;

G(w), w ∈V.

is entire. But

|H(w)| =
∣∣∣∣∮
γ

f (z)

z −w
dz

∣∣∣∣É
L(γ)sup

z∈γ∗
| f (z)|

|z|− sup
t∈[a,b]

|γ(t )| → 0

as |z| → ∞. Then by Liouville’s Theorem, H is constant on C. That is H(w) = 0 for w ∈ C. And the formula follows
immediately.

Definition 1.36. Cycles.

Suppose γ1, · · · ,γn are closed paths in C and a1, · · · , an ∈C. We define a cycle to be the formal sum Γ :=
n∑

i=1
aiγi . The line

integral along a cycle is defined by: ∮
Γ

f =
n∑

i=1
ai

∮
γi

f

Since winding numbers can be expressed as integrals, we can naturally define the winding number of Γ to be I (Γ, z) :=
n∑

i=1
ai I (γi , z), which is well-defined for z ∉ Γ∗ :=

n⋃
i=1
γ∗i . We define the interior of Γ to be the set of z ∈C such that I (Γ, z) 6= 0.

Corollary 1.37

Theorem 1.34 and 1.35 also holds for cycles.

Remark. Recall that we first define simple-connectivity in terms of the interior of a closed path. After introducing homotopy,
we redefine simply-connected domains to be domains such that paths with the same endpoints are homotopic. We sum-
marise the properties related to simply-connectivity in the next proposition. To complete the whole proof, we have to use the
Riemann’s Mapping Theorem in Chapter 3, which states that simply-connected domains are not only homeomorphic, but also
conformally equivalent to the unit disk.

Proposition 1.38. Equivalent Formulations of Simple-Connectivity.

Suppose U ⊆C is a domain. Then the following statements are equivalent:

(i) U is homeomorphic to the unit disk D;

(ii) U is simply-connected (all paths with the same endpoints are homotopic);

(iii) Any piecewise-smooth closed path in U is null-homotopic;

(iv) The interior of any piecewise-smooth closed path is contained in U ;

(v) For any piecewise-smooth closed path γ in U and holomorphic function f on U , we have:
∮
γ

f = 0;

(vi) Any holomorphic function f on U has a primitive.

(vii) If f and 1/ f are both holomorphic on U , then there exists a holomorphic function g on U , such that f = exp◦ g .

Proof. (i)=⇒(iii): By homeomorphism, there exists a continuous bijection ϕ : U →D such that ϕ−1 is also continuous. For any
piecewise-smooth closed path γ : [0,1] →U , suppose γ(0) = γ(1) = z0 and define the homotopy by:

H(t , s) :=ϕ−1(s ·ϕ◦γ(t )+ (1− s)ϕ(z0))
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Then H is obviously continuous. Moreover, H(t ,0) = z0; H(t ,1) = γ(t ); and H(0, s) = H(1, s) = z0. We claim that the
image H([0,1]2) ⊆U . To show this, it suffices to show that the line segment s ·ϕ◦γ(t )+(1−s)ϕ(z0), s ∈ [0,1] is contained
in D for all t ∈ [0,1]. This is true because ϕ(γ∗) ⊆D and D is convex. Hence we conclude that H is a homotopy between
γ and z0. γ is null-homotopic.

(ii)⇔(iii): Trivial.

(iii)=⇒(iv): Suppose γ is a closed path in U . We have to assume that γ is piecewise-smooth.

For w ∈C\U , note that
1

z −w
is holomorphic in U . Then by Cauchy’s Theorem,

I (γ, w) =
∮
γ

1

z −w
dz = 0

Hence the interior of γ {z ∈C\γ∗ : I (γ, z) 6= 0} ⊆U .

(iv)=⇒(v): This is Theorem 1.34.

(v)=⇒(vi): This is Theorem 0.43.

(vi)=⇒(vii): Since f has no roots in U , f ′/ f is holomorphic on U . By (vi), there exists a function g : U → C such that
g ′ = f ′/ f . By adding a constant to g , we can have f (z0) = exp(g (z0)) for some z0 ∈U . But

d

dz

(
f e−g )= f ′ e−g − f g ′ e−g = 0

Hence f e−g = const on U . The condition that f (z0) = eg (z0) implies that the constant is 1. Hence f = eg on U as
claimed.

(vii)=⇒(i): This is a direct corollary of Riemann’s Mapping Theorem 4.51. See the remark after the proof of the theorem.

Corollary 1.39. Global Existence of Holomorphic Logarithm.

Suppose U ⊆C is simply connected and 0 ∉U , then there exists a holomorphic branch of complex logarithm on U .

Proof. Let f (z) = z in part (vii) of the previous theorem. Then there exists a holomorphic function g on U such that eg (z) = z.
Hence g is a holomorphic branch of the complex logarithm on U .

1.A Appendix: Proof of Jordan Curve Theorem*

We shall formulate a quick proof of the full Jordan Curve Theorem using the tools from fundamental groups and covering
spaces in algebraic topology.1 We shall quote a few topological theorems without proof:

Theorem 1.40. Seifert-van Kampen Theorem.

Suppose that X is a topological space. Let X = X1∪X2, where X1 and X2 are path-connected open subsets of X such that
X1 ∩X2 is also path-connected. For b ∈ X1 ∩X2, the push-out of the based set

(X1,b) (X1 ∩X2,b) (X2,b)
ι1 ι2

induces the push-out of the fundamental group

π1(X1,b) π1(X1 ∩X2,b) π1(X2,b)
ι1∗ ι2∗

which is isomorphic to π1(X ,b).

Theorem 1.41. Homotopy Extension Lemma.

Suppose that X is a topological space such that X × [0,1] satisfies the T4 axiom. Let A be a closed subset of X , and Y be
an open subset of Rn . If f : A → Y is a null-homotopic continuous map, then it can be extended to a continuous map
f̃ : X → Y which is also null-homotopic.

1The proof is adapted from Munkres’ Topology.
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We state the Jordan Curve Theorem for S2:

Theorem 1.42. Jordan Curve Theorem forS2.

Suppose that γ : [0,1] →S2 is a simple closed path. Then S2 \γ∗ has two connected components, each of which has γ∗

as its boundary.

We break down the proof of Jordan Curve Theorem into a sequence of lemmata.

Lemma 1.43

Suppose that γ : [0,1] →S2 is an injective path. Then S2 \γ∗ is connected.

Proof. Suppose that a,b ∈S2 \γ∗. We shall show that a and b lie in the same connected component.

We first apply a stereographic projectionS2 \ {b} →C (see Section 4.1). Let z0 ∈C be the image of a, and C be the image
of γ∗. Since C is compact, there is a unique unbounded component of C \ C . Let U be the connected component of
C\C containing z0. It suffices to prove that U is unbounded.

Suppose for contradiction that U is bounded. Let V be the union of other connected components of C \ C . Then V is
unbounded. Consider the identity map idC : C →C . Since C is the image of an injective path, it is contractible. So idC is
null-homotopic. Since C × [0,1] is a metric space, it satisfies the T4 axiom. C is a closed subset of U ∪C . By Homotopy
Extension Lemma, idC : C →C extends to a continuous map α : U ∪C →C , which is also null-homotopic. We extend α
to β :C→V ∪C by setting β|V = idV .

Since U ∪C is bounded, there exists r > 0 such that U ∪C ⊆ B(z0,r ). By restricting β on B(z0,r ), we obtain a continuous
map δ : B(z0,r ) →V ∪C where δ|∂B(z0,r ) = id∂B(z0,r ). Note that z0 ∉V ∪C . Consider the retraction f :C\{z0} → ∂B(z0,r ),

f (z) = z0 +r
z − z0

|z − z0|
. It is easy to see that f ◦δ is a deformation retraction from B(z0,r ) to ∂B(z0,r ). But it is impossible,

as π1(B(z0,r )) = {e} whereas π1(∂B(z0,r )) =Z.

Lemma 1.44

Suppose that γ : [0,1] →S2 is a simple closed path. Then S2 \γ∗ has at least two connected components.

Proof. S2 \γ∗ is an open subset of a normed vector space. The path components of S2 \γ∗ are exactly the connected compo-
nents.

Let x1 and x2 be two distinct points on γ∗. Let C1 and C2 be the arcs between x1 and x2. That is, γ∗ = C1 ∪C2 and
C1∩C2 = {x1, x2}. Let X1 =S2 \C1 and X2 = S2 \C2. By the previous lemma, X1 and X2 are both connected open subsets
of S2. X1 ∪X2 =S2 \ {x1, x2}.

Suppose for contradiction that S2 \γ∗ is connected. Then X1 ∩ X2 = S2 \γ∗ is path-connected. Fix x0 ∈ S2 \γ∗, By
Seifert-van Kampen Theorem, π1(X ) is isomorphic to the push-out

π1(X1, x0) π1(S2 \γ∗, x0) π1(X2, x0)
ι1∗ ι2∗

We consider the group homomorphism j1∗ :π1(X1, x0) →π1(X1∪X2, x0) induced by the inclusion map j1 : X1 ,→ X1∪X2.
We claim that it is a trivial homomorphism.

Consider a closed path η : [0,1] → X1 with η(0) = η(1) = x0. We shall show that j1 ◦η is null-homotopic in S2 \ {x1, x2}.
As in the previous lemma we consider the stereographic projection p :S2 \ {x1} →C. Let z0 := p(x2). Then p ◦ j1 ◦η is a
closed path in C \ {z0}, whose image is denoted by C . Note that x1 and x2 are path-connected in S2 via C1, away from
η∗. Since p maps x1 to infinity, z0 lies in the unbounded connected component of C \ C . C is bounded on C. There
exists r > 0 such that C ⊆ B(z0,r ). Pick z1 ∈C\ B(z0,r ). Then z0 and z1 are path-connected in C\C . Let ξ : [0,1] →C\C
be a path connecting z0 and z1. We can define a homotopy G : [0,1]2 →C\ {z0}

G(t , s) = p ◦ j1 ◦η(t )−ξ(s)+ z0.

It is clear that G(t , s) 6= z0 since p ◦ j1∗ ◦η and ξ are disjoint paths.

Finally we define a homotopy H : [0,1]2 →C\ {z0}

H(t , s) = (1− s)(p ◦ j1∗ ◦η(t ))− z1 + z0.
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It is clear that H(t , s) 6= z0 since |p ◦ j1 ◦η(t )− z0| < r < |z1 − z0|.
Since p ◦ j1 ◦η(t ) = G(t ,0), G(t ,1) = H(t ,0), and H(t ,1) = z0 − z1, we deduce that p ◦ j1∗ ◦η is homotopic to a constant
path in C \ {z0}. Hence j1 ◦η is null-homotopic in S2 \ {x1, x2}. It follows that j1∗ is a trivial homomorphism. Similarly,
j2∗ :π1(X2, x0) →π2(X1 ∪X2, x0) is also a trivial homomorphism.

Next we claim thatπ1(X1∪X2) is a trivial group. Consider the universal property of the push-out of fundamental groups:

π1(X1)

π1(X1 ∩X2) π1(X1)∗π1(X1∩X2)π1(X2) π1(X1 ∪X2)

π1(X2)

θ1
j1∗ι1∗

ι2∗

∃!σ

θ2 j2∗

By Seifert-van Kampen Theorem,π1(X1)∗π1(X1∩X2)π1(X2) ∼=π1(X1∪X2). Since j1∗ and j2∗ are trivial, the maps θ1 and θ2

are also trivial. The unique induced map σ has to be both a trivial homomorphism and an isomorphism. We conclude
that π1(X1 ∪X2) = {e}.

But this leads to a contradiction, because π1(X1 ∪ X2) = π1(S2 \ {x1, x2}) ∼= Z. We conclude that S2 \γ∗ is not path-
connected.

Lemma 1.45

Suppose that γ : [0,1] →S2 is a simple closed path. Then S2 \γ∗ has at most two connected components.

Proof. As in the previous lemma, let x1 and x2 be two distinct points on γ∗. Let C1 and C2 be the arcs between x1 and x2. Let
U =S2 \C1 and V = S2 \C2. U ∪V =S2 \ {x1, x2} and U ∩V =S2γ∗. Suppose for contradiction that U ∩V =S2 \γ∗ has
more than two connected components. Let X1, X2 be two of them and W be the union of the rest.

First we shall construct a covering space for U ∪V . Let Y := (U ×2Z)t (V × (2Z+1)). Define an equivalence relation:

∀n ∈Z ∀x ∈ X1 ∪X2 : (x,2n) ∼ (x,2n −1)

∀n ∈Z ∀x ∈W : (x,2n) ∼ (x,2n +1)

Define the quotient space E := Y / ∼. Let π : Y � E be the quotient map. Let ρ : Y �U ∪V , ρ(x,n) = x induces the map
p : E →U ∪V by ρ = p ◦π. It is not hard to verify that p is a covering map. Therefore E is a covering space of U ∪V .

We fix a1 ∈ X1, a2 ∈ X2 and b ∈ B . Construct the following paths:

α : [0,1] →U , α(0) = a1, α(1) = b;

β : [0,1] →V , β(0) = b, β(1) = a1;

δ : [0,1] →U , δ(0) = a1, δ(1) = a2;

λ : [0,1] →V , λ(0) = a2, λ(1) = a1.

Let f := α?β and g := δ?λ. They are loops in U ∪V based at a1. Since E is connected, f and g has unique based
liftings in E , which we are going to construct.

Now we consider the lifting of f . Let α̃n(t ) =π(α(t ),2n) and β̃n(t ) =π(β(t ),2n +1). They are liftings of α and β repsec-
tively. Let f̃n := α̃n ? β̃n . Then f̃n is a path in E such that f̃n(0) =π(a1,2n) and f̃n(1) =π(a1,2(n +1)). If we fix the based
point π(a1,0) ∈ E , the path f m has the unique lifting in E

˜f m := f̃0? · · ·? f̃m−1

where ˜f m(0) =π(a1,0) and ˜f m(1) =π(a1,2m).

Now we consider the lifting of g . Let δ̃n(t ) = π(δ(t ),2n) and λ̃n(t ) = π(λ(t ),2n −1). Since π(a1,2n) = π(a1,2n −1) and
π(a2,2n) =π(a2,2n −1), g̃n is a loop in E such that g̃n(0) = g̃n(1) = (a1,2n) The path g k has the unique lifting in E

g̃ k := g̃0? · · ·? g̃0

where g̃ k (0) = g̃ k (1) =π(a1,0).
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Since g̃ k (1) = ˜f m(1) if and only if m = 0, it follows that [ f ]m 6= [g ]k for all m,k ∈ Z \ {0}. [ f ] ∈ π1(U ∪V ) is non-trivial
as we have shown. But [g ] ∈ π1(U ∪V ) is also non-trivial because X1 ∪ X2 is disconnected: construct another covering
space of U ∪V , where the roles of X1 ∪X2 and W are replaced by X1 ∪W and X2.

In summary, [ f ], [g ] ∈ π1(U ∪V ) are non-trivial elements such that [ f ]m 6= [g ]k for all m,k ∈ Z \ {0}. This is impossible
because π1(U ∪V ) =π1(S2 \ {x1, x2}) =Z.

Lemma 1.46

Suppose that γ : [0,1] → S2 is a simple closed path. Let X1 and X2 be the two connected components of S2 \γ∗. Then
∂X1 = ∂X2 = γ∗.

Proof. SinceS2 is locally connected, X1 and X2 are open. In particular ∂X1∩X1 =∅ and ∂X2∩X2 =∅. It is clear that ∂X1∩X2 =
∅ and ∂X2 ∩X1 =∅. Therefore ∂X1,∂X2 ⊆ γ∗.

For the reverse inclusion, suppose that x ∈ γ∗. We shall show that x ∈ ∂X1. Let U be an open neighbourhood of x.
Choose x1, x2 ∈U such that one of the arcs connecting x1 and x2 is entirely in U . Denote it by C1 and denote the other
arc by C2 Choose a ∈ X1 and b ∈ X2. Since S2 \ C2 is path-connected, there exists a path α : [0,1] → S2 \ C2 such that
α(0) = a andα(1) = b. Since X1 and X2 are open and disjoint, andα∗ is connected, thenα∗∩∂X1 6=∅. But ∂X1 ⊆ γ∗ and
α∗∩C2 =∅. Henceα∗∩C1 6=∅. In other words, there exists y ∈C1 ⊆U such that y ∈ ∂X1. It follows that x ∈ paX1 = ∂X1.
Similarly, x ∈ ∂X2.

In conclusion, we have ∂X1 = ∂X2 = γ∗.

Theorem 0.27. Jordan Curve Theorem for C.

Suppose that γ : [0,1] → C is a simple closed path. Then C \γ∗ has two connected components, one bounded and one
unbounded. Each of the components has γ∗ as its boundary.

Proof. Choose x0 ∈S2 \γ∗ and consider the stereographic projection S2 \ {x0} →C.
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2.1 Taylor Series

We have shown in Section 1.3 that holomorphic functions on a disk can be expanded into Taylor Series:

Theorem 1.19. Taylor Expansion.

If f : U →C is holomorphic on domain U ⊆Cwhich contains B(a,r ), then the power series
∞∑

n=0
cn(z −a)n converges to f

absolutely on B(a,r ) and uniformly on any compact subset of B(a,r ), where

cn = f (n)(a)

n!
= 1

2πi

∮
γ(a,r )

f (z)

(z −a)n+1 dz

2.1.1 Identity Theorem.

Lemma 2.1

Suppose f is holomorphic in a domain U ⊆ C. Let S := f −1({0}) be the set of zeros of f . z0 ∈ S is an isolated point in S,
then there exists a unique k ∈ N and a holomorphic function g : U → C such that f (z) = (z − z0)k g (z) for all z ∈ U and
g (z0) 6= 0.

Proof. f is analytic at z0. So f (z) =∑∞
i=0 cn(z − z0)n for all z ∈ B(z0.r ) ⊆U . Since z0 is an isolated zero of f , not all cn are zero.

Let k be the smallest integer such that cn 6= 0. Clearly c0 = 0 so k Ê 1.

Define g (z) := (z−z0)−k f (z) =∑∞
i=0 cn+k (z−z0)n , which is holomorphic on U \{z0} and continuous on U . g (z0) = ck 6= 0,

and by continuity there exists ε> 0 such that g (z) 6= 0 on B(z0,ε). Hence f (z) = (z−z0)k g (z) is non-zero on B(z0,ε)\{z0}.

To prove the uniqueness of k, let f (z) = (z−z0)k g (z) = (z−z0)l h(z). If k < l , then g (z) = f (z)(z−z0)−k = (z−z0)l−k h(z).
Since h(z0) 6= 0, letting z → z0 we have g (z) → 0, which contradicts that g (z0) 6= 0. Similarly we cannot have k > l . Hence
k = l .

38
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Definition 2.2. Multiplicity of zeros.

Suppose f is holomorphic in a domain U ⊆C and z0 ∈ f −1({z0}) is an isolated. Then we define the multiplicity of z0 to be
the unique integer k in the previous lemma.

Theorem 2.3. Identity Theorem.

Suppose f is holomorphic in a domain U ⊆C. The following statements are equivalent:

(i) f (z) = 0 for all z ∈U ;

(ii) ∃a ∈U ∀k ∈N : f (k)(a) = 0;

(iii) The set f −1({0}) has a limit point in U .

Proof. (i)=⇒(ii): Trivial.

(ii)=⇒(iii): There exists r > 0 such that B(a,r ) ⊆U . By Theorem 1.19, we have:

f (z) =
∞∑

n=0

f (n)(a)

n!
(z −a)n = 0

for all z ∈ B(a,r ). Then f −1({0}) contains B(a,r ) and hence has a limit point.

(iii)=⇒(i): Let S be the set of limit points of f −1({0}) in U . Since f is continuous on U , f −1({0}) is closed. Therefore
we have S ⊆ f −1({0}). Suppose z0 is a limit point of f −1({0}). f is analytic at z0. So f (z) = ∑∞

i=0 cn(z − z0)n for all
z ∈ B(z0.r ) ⊆ U . If there exists a non-zero coefficient cn , then by the previous lemma f is non-zero on some deleted
neighbourhood of z0, contradicting that z0 is a limit point. Hence f (z) = 0 on B(a,r ). Hence z0 is an interior point of S
and S is open in U . But by definition S is closed in U . Since U is connected and S 6=∅, we must have S =U ⊆ f −1({0}).
That is, f (z) = 0 for all z ∈U .

Corollary 2.4

Suppose f and g are holomorphic in a domain U ⊆C. The following statements are equivalent:

(i) f (z) = g (z) for all z ∈U ;

(ii) ∃a ∈U ∀k ∈N : f (k)(a) = g (k)(a);

(iii) The set S := {z ∈U : f (z) = g (z)} has a limit point in U .

Proof. Simply apply the Identity Theorem to f − g .

2.1.2 Argument Principle & Rouché’s Theorem.

Theorem 2.5. Argument Principle for Holomorphic Functions.

Suppose U ⊆C is a domain and f : U →C is holomorphic. Let γ be a piecewise-smooth simple closed path in U and f is
non-zero on γ. Then we have:

N = 1

2πi

∮
γ

f ′(z)

f (z)
dz

where N is the number of zeros of f inside γ (counting multiplicity).

Proof. Suppose f has zeros a1, · · · , an with multiplicity m1, · · · ,mn in the interior of γ. Without loss of generality, suppose
that γ is positively oriented. Since a1, · · · , an are isolated zeros, we can choose r1, · · · ,rn such that B(ai ,ri ) are mutually

disjoint and that
n⋃

i=1
B(ai ,ri ) is in the interior of γ. Now consider the cycle Γ := γ−

n∑
i=1
γ(ai ,ri ), we observe that all the

zeros are in the exterior of Γ. By Cauchy’s Theorem:

0 =
∮
Γ

f ′(z)

f (z)
dz =

∮
γ

f ′(z)

f (z)
dz −

n∑
i=1

∮
γ(ai ,ri )

f ′(z)

f (z)
dz
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For each i ∈ {1, · · · ,n}, gi (z) = (z −ai )−mi f (z) is holomorphic and non-zero on U . Moreover, we have:

f ′(z)

f (z)
= mi (z −ai )mi−1gi (z)+ (z −ai )mi g ′

i (z)

(z −ai )mi gi (z)
= g ′

i (z)

gi (z)
+ mi

z −ai

But g ′
i /gi is holomorphic in B(ai ,ri ), we have:

0 =
∮
γ(ai ,ri )

g ′
i (z)

gi (z)
dz =

∮
γ(ai ,ri )

f ′(z)

f (z)
dz −mi

∮
γ(ai ,ri )

1

z −ai
dz

=⇒
∮
γ(ai ,ri )

f ′(z)

f (z)
dz = 2πimi

Hence ∮
γ

f ′(z)

f (z)
dz =

n∑
i=1

∮
γ(ai ,ri )

f ′(z)

f (z)
dz = 2πi

n∑
i=1

mi

which completes the proof.

Remark. To see why the theorem is called "argument principle", observe that the winding number of f ◦γ about the origin is
just:

I ( f ◦γ,0) =
∮

f ◦γ
dw

w
=

∫ b

a

f ′ ◦γ(t ) ·γ′(t )

f ◦γ(t )
dt =

∮
γ

f ′(z)

f (z)
dz

So the number of zeros of f inside γ is the same as the winding number of f ◦γ about the origin.

Remark. Theorem 2.5 can be generalized to meromorphic functions. See Theorem 2.23.

Theorem 2.6. Rouché’s Theorem.

Suppose U ⊆ C is a domain and f , g are holomorphic functions on U . Suppose γ is a piecewise-smooth closed path in
U . If | f (z)| > |g (z)| for all z ∈ γ∗, then f and f +g have same number of zeros (counting multiplicity) in the interior of γ.

Proof. Since | f (z)| > |g (z)| for all z ∈ γ∗, we can see that f + t g have no zeros on γ∗ for all t ∈ [0,1]. Define:

F (z, t ) = f ′(z)+ t g ′(z)

f (z)+ t g (z)

Then F (z, t ) is continuous on γ∗× [0,1] and z 7→ F (z, t ) is holomorphic for all t ∈ [0,1]. Hence the function n(t ) defined
by the integral:

n(t ) :=
∮
γ

F (z, t )dz

is continuous on [0,1].

But n(t ) is the number of zeros of f + t g in the interior of γ, by argument principle, and hence is integer-valued. Since
[0,1] is connected, n(t ) is constant. n(0) = n(1). Therefore f and f + g have the same number of zeros.

Remark. As an application of the argument principle, Rouché’s Theorem implies that a holomorphic function can be slightly
perturbed without changing the number of its zeros.

2.1.3 Maximum Modulus Principle.

Definition 2.7. Open Mapping.

A mapping is said to be open if it maps open sets to open sets.

Theorem 2.8. Open Mapping Theorem.

A holomorphic and non-constant function on a domain U ⊆C is an open mapping.

Proof. Suppose f : U ⊆C is holomorphic and non-constant. To show that f (U ) is open, it suffices to show that
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∀w0 ∈ f (U ) ∃ε> 0 : B(w0,ε) ⊆ f (U ).

Let z0 ∈U such that w0 = f (z0). Then the function g (z) := f (z)−w0 has an isolated zero at z0. Then there exists r > 0
such that g (z) 6= 0 on B(z0,r ) \ {z0}. Since ∂B(z0,r ) is compact, there exists ε> 0 such that |g (z)| > ε on ∂B(z0,r ). Then
for all w ∈ B(w0,ε), we have |g (z)| > ε> |w0 −w | on ∂B(z0,r ). By Rouché’s Theorem, h(z) := g (z)+ (w0 −w) = f (z)−w
also has a zero in B(z0,r ). Hence w ∈ f (U ). Hence B(w0,ε) ⊆ f (U ) as claimed.

Theorem 2.9. Inverse Function Theorem.

Suppose f : U →C is holomorphic.

1. If f is injective, then f ′(z) 6= 0 for all z ∈U ;

2. If f ′(z) 6= 0 for all z ∈U , then f is locally injective.

For the first case, the inverse function g : f (U ) →U is holomorphic on f (U ). Moreover, we have g ′ = 1/( f ′ ◦ g ). If γ is a
piecewise smooth closed path in U , then

g (w) =
∮
γ

z f ′(z)

f (z)−w
dz

for w in the interior of γ.

Proof. The proof of (1) and (2) are exactly the same as in real analysis. But there are simple proofs for holomorphic functions
that make use of Rouché’s Theorem.

(1). Suppose for contradiction that there exists a ∈U with f ′(a) = 0. We claim that there exists R > 0 such that f (z) 6=
f (a) and f ′(z) 6= 0 in the deleted neighbourhood B(a,R) \ {a}. Indeed, if the first condition does not hold, then for
each sufficiently large n ∈ N there exists zn ∈ B(a,1/n) \ {a} such that f (a) = f (zn). Then a is a limit point in the set
{z ∈ C : f (z) = f (a)}. By identity theorem f (z) = f (a) for all z ∈ U , contradicting that f is injective. If the second
condition does not hold, for similar reason we must have f ′(z) = 0 for all z ∈U , again contradicting that f is injective.

Let ε= inf
z∈∂B(a,R)

| f (z)− f (a)| > 0 and w ∈ B( f (a),ε) \ { f (a)}. For z ∈ ∂B(a,R):

| f (z)− f (a)| Ê ε> |w − f (a)| = |( f (z)−w)− ( f (z)− f (a))|

By Rouché’s Theorem, f (z)− f (a) and f (z)− w have the same number of zeros in B(a,R). However, f (z)− f (a) has
exactly at least two zeros in B(a,R) because f ′(a) = 0, whereas f (z)−w has exactly one zero because f is injective and
f ′(z) 6= 0. This is a contradiction. Hence f ′(a) 6= 0.

(2). For the beginning the proof is the same as the previous part. The continuity of f at a implies that there exists
δ > 0 such that f (B(a,δ)) ⊆ B( f (a),ε), where ε is defined as above. Let r := min{R,δ}. We claim that f is injective in
B(a,r ). Suppose for contradiction that there exists z1, z2 ∈ B(a,r ) such that w = f (z1) = f (z2). By Rouché’s Theorem,
f (z)− f (a) and f (z)−w have the same number of zeros in B(a,R). However, f (z)− f (a) has exactly one simple zero in
B(a,R) because f ′(a) 6= 0, whereas f (z)−w has at least two zeros, contradiction. Hence f is injective in B(a,r ).

The continuity of the inverse function follows from the open mapping theorem. By open mapping theorem, for any
open set V ⊆U , the pre-image of V under g is f (V ), which is open. Hence g is continuous.

g ′ = 1/( f ′ ◦ g ) follows directly from the definition of derivatives.

Let Γ := f ◦γ. Γ is a closed path. By Cauchy’s Integral Formula:

g (w) =
∮
Γ

g (ζ)

ζ−w
dζ

As ζ= f (z), dζ= f ′(z)dz, we have:

g (w) =
∮
γ

g ◦ f (z)

f (z)−w
f ′(z)dz = z f ′(z)

f (z)−w
dz

Remark. Sometimes we call an injective holomorphic function a biholomorphism or a univalent function. In Corollary 4.13
we shall show that biholomorphisms are angle-preserving mappings.

Theorem 2.10. Maximum Modulus Principle.

Suppose U ⊆C is a domain and f : U →C is holomorphic. Then | f | cannot attain a maximum value in U .
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Proof. Suppose there exists z0 ∈U such that | f (z0)| attains a maximum value. But f (U ) is open by the open mapping theorem,
so f (z0) is an interior point. There exists z ∈U such that | f (z)| > | f (z0)|, which is a contradiction.

Corollary 2.11

Suppose U ⊆C is a domain and U is compact. f is holomorphic on U and continuous on U . Then | f | attains a maximum
value on ∂U .

Proof. Since U is compact and | f | is continuous, f (U ) is compact. | f | attains maximum on U . But by maximum modulus
principle, | f | cannot attain maximum in U , so it attains maximum on U \U = ∂U .

2.2 Laurent Series and Isolated Singularities

2.2.1 Laurent Series.

A Laurent series is a generalisation of the power series. We called a series of the form
+∞∑

n=−∞
cn(z − z0)n a Laurent series. The

power series part
∞∑

n=0
cn(z − z0)n is called the holomorphic part and the negative part

−∞∑
n=−1

cn(z − z0)n is called the principal

part. We shall see that many properties of the Laurent series depend on the principal part. Just as holomorphic functions
can be expanded into Taylor series in an open disk, we shall prove that they can be expanded into Laurent series in an open
annulus.

Definition 2.12. Open Annulus.

A open annulus A(z0,r,R) is a open set on the complex plane defined by

A(z0,r,R) = B(z0,R) \ B(z0,r ) = {z ∈C : r < |z − z0| < R}

Theorem 2.13. Laurent Expansion.

If f is holomorphic on a domain U ⊆ C which contains the annulus A(z0,r,R), then the Laurent series
+∞∑

n=−∞
cn(z −a)n

converges to f uniformly on any compact subset of A(z0,r,R), where

cn = 1

2πi

∮
γ(z0,ρ)

f (z)

(z − z0)n+1 dz

for any ρ ∈ (r,R). Moreover, the expansion is unique.

Proof. For w ∈ A(z0,r,R), we apply the homology form of the Cauchy’s Integral Formula to the cycle Γ := γ(z0,R)−γ(z0,r ):

2πi · f (w) =
∮
γ(z0,R)

f (z)

z −w
dz −

∮
γ(z0,r )

f (z)

z −w
dz

On the circle ∂B(z0,R), since |w | < |z|, the series
1

z −w
= 1

z − z0

∞∑
n=0

(
w − z0

z − z0

)n

converges uniformly. We can integrate

term by term: ∮
γ(z0,R)

f (z)

z −w
dz =

∞∑
n=0

(∮
γ(z0,R)

f (z)

(z − z0)n+1 dz

)
(w − z0)n

On the circle ∂B(z0,r ), since |w | > |z|, the series
1

w − z
= 1

w − z0

∞∑
m=0

(
z − z0

w − z0

)m

converges uniformly. We can integrate

term by term: ∮
γ(z0,r )

f (z)

z −w
dz =−

∮
γ(z0,r )

f (z)
∞∑

m=0

(z − z0)m

(w − z0)m+1 dz

=−
∮
γ(z0,r )

f (z)
−∞∑

n=−1

(w − z0)n

(z − z0)n+1 dz (let n =−m −1)
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=
−∞∑

n=−1

(∮
γ(z0,r )

f (z)

(z − z0)n+1 dz

)
(w − z0)n

If we define

cn :=


1

2πi

∮
γ(z0,R)

f (z)

(z − z0)n+1 dz, n Ê 0

1

2πi

∮
γ(z0,r )

f (z)

(z − z0)n+1 dz, n < 0

Then the above equations implies that f (w) =
+∞∑

n=−∞
cn(w − z0)n . To see that the coefficients can be expressed by inte-

gral along γ(z0,ρ), notice that f (z)/(z − z0)n+1 is holomorphic on tha annulus A(z0,r,R). So when we apply Cauchy’s
Theorem to the cycle Γ := γ(z0,ρ)−γ(z0,r ), we have:

0 =
∮
γ(z0,ρ)

f (z)

(z − z0)n+1 dz −
∮
γ(z0,r )

f (z)

(z − z0)n+1 dz

And similar for the cycle γ(z0,r )−γ(z0,R). Hence we have cn = 1

2πi

∮
γ(z0,ρ)

f (z)

(z − z0)n+1 dz as claimed.

To prove uniqueness, suppose f has another Laurent series
+∞∑

n=−∞
dn(z − z0)n on A(z0,r,R). Then:

2πicn =
∮
γ(z0,ρ)

f (z)

(z − z0)n+1 dz

=
∮
γ(z0,ρ)

+∞∑
k=−∞

dk (z − z0)k

(z − z0)n+1 dz

=
∮
γ(z0,ρ)

+∞∑
k=0

dk (z − z0)k−n−1 dz +
∮
γ(z0,ρ)

+∞∑
k=1

d−k (z − z0)−k−n−1 dz

=
+∞∑

k=−∞
dk

∮
γ(z0,ρ)

(z − z0)k−n−1 dz (since both power series converges uniformly)

=
+∞∑

k=−∞
dk ·2πiδn,k = 2πidn

The fifth equality follows from that the integral
∮
γ(z0,ρ)

(z − z0)n dz is zero except for n =−1, where the value is given in

Lemma 1.14.

Remark. The following examples illustrates some techniques in calculating Laurent series. For a specific function, using the
integrals given in the previous theorem is not economical or even feasible. One shall exploit the properties of some known
expansions.

Example 2.14

Compute the Laurent series of f (z) = 1

(z −1)2(z +2)
in the annulus A(0,1,2) := {z ∈C : 1 < |z| < 2}.

Solution. We know that 1/(1− z) can be expanded into Taylor series for |z| < 1:

1

1− z
=

∞∑
n=0

zn

For |z| > 1, let w := 1/z. Then
1

z −1
=−1

z

1

1− z−1 =− w

1−w
can be expanded into Taylor series:

1

1− z
=− w

1−w
=−w

∞∑
n=0

wn =−
∞∑

n=1
z−n

To expand f , we first split it into partial fractions:

f (z) = 1

(z −1)2(z +2)
= 1

9(z +2)
− 1

9(z −1)
+ 1

3(z −1)2
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f has singularities at z = 1 and z =−2. Since 1 < |z| < 2 we expand 1/z and z/2 respectively:

f (z) = 1

18(1+ z/2)
− 1

9z(1− z−1)
− 1

3z2(1− z−1)2

= 1

18

∞∑
n=0

(−1

2
)n zn − 1

9z

∞∑
n=0

z−n + 1

3z2

∞∑
n=0

(n +1)z−n

=
∞∑

n=−∞
cn zn

where

cn =


1

18

(
−1

2

)n

n Ê 0

−(3n +4)/9 n < 0

This gives the desired Laurent series.

2.2.2 Isolated Singularities.

Definition 2.15. Singularities.

Suppose U ⊆ C is a domain and D ⊆ U is the set of points at which f : U → C are holomorphic. We say that z0 is a
singularity of f , if z0 ∉ D and z0 is a limit point of D . Especially, z0 is said to be an isolated singularity, if there exists a
deleted neighbourhood B(z0,r ) \ {z0} ⊆ D .

Definition 2.16. Classification of Isolated Singularities.

Suppose f : U →C has an isolated singularity at z0. We say that z0 is a:

1. removable singularity, if lim
z→z0

f (z) exists and finite;

2. pole, if lim
z→z0

f (z) =∞;

3. essential singularity, if lim
z→z0

f (z) does not exists in C∞.

Remark. Often we concern the behavior of a function at infinity. We say that ∞ is a removable singularity (resp. pole/essential
singularity) of f , if 0 is a removable singularity (resp. pole/essential singularity) of g , where g is defined by g (z) = f (1/z).

Definition 2.17. Meromorphic Functions.

Suppose U is open in C and S ⊆ U is at most countable with no limit points in U . Then f : U \ S → C is said to be a
meromorphic function, if f is holomorphic on U \ S and has poles at the points in S.

Remark. It is easy to prove that f has the same Laurent expansion at A(z0,0,r ) regardless of the choice of r . So we can safely
say the Laurent expansion "near the singularity". We can now show the connection between the isolated singularities and the
Laurent expansion near them. The general result is as follows:

1. removable singularity: no principal part;

2. pole: finitely many terms in the principal part;

3. essential singularity: infinitely many terms in the principal part.

Remark. First, for removable singularities, we already have the Riemann’s Removable Singularity Theorem (1.23), which will
be restated below.
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Theorem 2.18. Riemann’s Removable Singularity Theorem.

Suppose f : U \ {z0} →C is holomorphic. The following statements are equivalent:

(i) z0 is a removable singularity of f ;

(ii) f is bounded near z0;

(iii) f can be extended to a holomorphic function on U ;

(iv) If
+∞∑

n=−∞
cn(z − z0)n is a Laurent expansion of f in a deleted neighbourhood of z0, then cn = 0 for all n < 0. That is,

the Laurent expansion coincides with the Taylor expansion.

Remark. Next we turn to poles. We will see that the characterisation of poles plays an important role in computing integrals
in the next section.

Proposition 2.19

z0 is a pole of f if and only if z0 is a zero of 1/ f .

Proof. Trivial by algebra of limits.

Definition 2.20. Multiplicity of Poles.

Suppose z0 is a pole of f . The multiplicity or order of z0 of f is defined to be the multiplicity of z0 as a zero of 1/ f .

A pole of order 1 is called a simple pole.

Proposition 2.21

f has a pole of order k at z0 if and only if the Laurent expansion of f in a deleted neighbourhood of z0 is

∞∑
n=−k

cn(z − z0)n (c−k 6= 0).

Proof. "=⇒": By definition, z0 is a zero of 1/ f with multiplicity k. That is, 1/ f (z) = (z − z0)k g (z) with g holomorphic in a
neighbourhood B(z0,r ) and g (z0) 6= 0. Hence 1/g is also holomorphic in B(z0,r ). Suppose its Taylor expansion is

1

g (z)
=

∞∑
n=0

an(z − z0)n . Then in B(z0,r ) \ {z0} we have:

1

f (z)
= (z − z0)k∑∞

n=0 an(z − z0)n =⇒ f (z) =
∞∑

n=−k
an+k (z − z0)n

"⇐=": Suppose f has a Laurent series
∞∑

n=−k
cn(z − z0)n in B(z0,r ) \ {z0} with c−k 6= 0. Then

f (z) = (z − z0)−k
∞∑

n=0
cn−k (z − z0)n = (z − z0)−k g (z)

g (z) is defined by a power series and hence is holomorphic in B(z0,r ). Moreover, g (z0) = c−k 6= 0. Therefore 1/g (z) is
also holomorphic in B(z0,r ) and non-zero at z0. We have:

1

f (z)
= (z − z0)k 1

g (z)

Hence z0 is a zero of 1/ f of multiplicity k.

Remark. The next proposition is helpful in classifying the singularities of some known functions.
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Proposition 2.22

Suppose f : U →C and g : U →C are holomorphic functions. If f has a zero of multiplicity m at z0 ∈U , and g has a zero
of multiplicity n at z0 ∈U , then the function h := f /g has a

1. removable singularity at z0, if m Ê n;

2. pole of order n −m at z0, if m < n.

Proof. It follows immediately from Proposition 2.21.

Theorem 2.23. Argument Principle for Meromorphic Functions.

Suppose U ⊆C is a domain and S ⊆U is an at most countable subset. f : U \ S →C is meromorphic function with poles
at the points of S. Let γ be a piecewise-smooth simple closed path in U and f is non-zero on γ. Then we have:

N −P = 1

2πi

∮
γ

f ′(z)

f (z)
dz

where N is the number of zeros of f inside γ and P is the number of poles of f inside γ (both counting multiplicity).

Proof. The proof is essential the same as 2.5. Suppose f has zeros a1, · · · , an with multiplicity m1, · · · ,mn and poles b1, · · · ,bk

with multiplicity p1, · · · , pk in the interior of γ. We have:∮
γ

f ′(z)

f (z)
dz =

n∑
i=1

∮
γ(ai ,ri )

f ′(z)

f (z)
dz +

k∑
i=1

∮
γ(bi ,si )

f ′(z)

f (z)
dz

At each pole bi , gi (z) = (z −bi )pi f (z) is a power series and hence is holomorphic on U . Moreover, gi (bi ) = c−pi 6= 0. We
have:

f ′(z)

f (z)
= g ′

i (z)

gi (z)
− pi

z −bi

Therefore: ∮
γ(bi ,si )

f ′(z)

f (z)
dz =

∮
γ(bi ,si )

g ′
i (z)

gi (z)
dz −

∮
γ(bi ,si )

pi

z −bi
dz = 0−2πipi

We have already known the behavior of the integral near the zeros. Finally,

1

2πi

∮
γ

f ′(z)

f (z)
dz =

n∑
i=1

mi −
k∑

i=1
pi = N −P

Remark. We have proven in the preceding theorems that the Laurent series of f has no principal part near a removable
singularity and finite terms of principal part near a pole. The case of essential singularity is more complicated. The Laurent
series has infinite terms of principal parts. In fact we have a deeper result:

Theorem 2.24. Casorati-Weierstrass Theorem.

Suppose U ⊆C is a domain and z0 ∈U . f : U \{z0} →C is a holomorphic function with an essential singularity at z0. Then
for all r > 0 with B(z0,r ) ⊆U , the image set f (B(z0,r ) \ {z0}) is dense in C.

Proof. We argue by contradiction. Suppose:

∃r > 0 ∃w ∈C ∃ε> 0 ∀z ∈ B(z0,r ) \ {z0} : | f (z)−w | > ε
Then g (z) = 1/( f (z)−w) is holomorphic in B(z0,r ) \ {z0} and bounded near z0. Therefore z0 is a removable singularity
of g and lim

z→z0
g (z) exists. Hence

lim
z→z0

f (z) = w + 1

lim
z→z0

g (z)

exists in C or is equal to ∞, contradicting that z0 is an essential singularity of f .

Remark. A significant generalisation of Casorati-Weierstrass Theorem is the Picard’s Great Theorem, which states that, if z0

is an essential singularity of f , then for any deleted neighbourhood of z0, f (z) assumes all possible complex values, with at
most one exception, infinitely many times.
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2.3 Weierstrass Factorisation Theorem*

2.3.1 Weierstrass Factorisation Theorem.

Now we begin with discussion of the zeros of an entire function. Suppose f : C → C is an entire function with zeros at
0, a1, · · · , an with multiplicities m,m1, · · · ,mn . (If f (0) 6= 0, then we put m = 0.) Consider the polynomial

p(z) = zm
(
1− z

a1

)m1

· · ·
(
1− z

an

)mn

Then the function g (z) = f (z)/p(z) has removable singularities at 0, a1, · · · , an , so we can extend g to an entire function with no
zeros inC. By Proposition 1.38 (vii), sinceC is simply-connected, there exists an entire function h such that g (z) = eh(z). Hence
we have expressed f as a product of a polynomial, whose zeros and multiplicities are the same as f , and an entire function
without zeros.

f (z) = zm eh(z)
(
1− z

a1

)m1

· · ·
(
1− z

an

)mn

If f has infinitely many zeros in C, we can generalize the above formula to an infinite product:

Theorem 2.25. Weierstrass Factorisation Theorem.

Suppose f :C→C is an entire function with zeros at a1, a2, · · · (counting multiplicity). {an} ∈C \ {0} forms an infinite set
which has no limit points. Suppose furthermore that 0 is a zero of order m of f . (If f (0) 6= 0, then we put m = 0.) Then
there exists an entire function h :C→C such that

f (z) = zm eh(z)
∞∏

n=1

(
1− z

an

)
exp

(
z

an
+·· ·+ 1

n −1

(
z

an

)n−1)

Before giving the formal proof, we first introduce the so-called elementary factors, named by Weierstrass.

Definition 2.26. Elementary Factors.

Let E0(z) = 1− z. For p ∈Z+, we define

Ep (z) = (1− z)exp

(
z +·· ·+ zp

p

)
= (1− z)exp

(
p∑

i=1

zi

i

)

Then Weierstrass Factorisation Theorem can be written as

f (z) = zm eh(z)
∞∏

n=1
En−1(z/an)

Lemma 2.27

∃c > 0 ∀p ∈N ∀z ∈C : |z| É 1

2
=⇒ |1−Ep (z)| É c|z|p+1

Proof. Observe that

Ep (z) = exp

(
log(1− z)+

p∑
n=1

zn

n

)
= exp

(
−

∞∑
n=1

zn

n
+

p∑
n=1

zn

n

)
= exp

(
−

∞∑
n=p+1

zn

n

)
=: exp(w)

For |z| É 1/2, we have

|w | = |z|p+1
∣∣∣∣ ∞∑
n=0

zn

n +p +1

∣∣∣∣É |z|p+1
∣∣∣∣ ∞∑
n=0

1

2n

∣∣∣∣= 2|z|p+1

In particular, |w | É 2|z|p+1 É 1/2p É 1. Hence

|1−Ep (z)| = |1−ew | = |w |
∣∣∣∣ ∞∑
n=1

wn−1

n!

∣∣∣∣É |w |
∞∑

n=1

|w |n−1

n!
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É |w |
∞∑

n=1

1

n!
= (e −1)|w | É 2(e −1)|z|p+1

Proof of Theorem 2.25. We shall show that the infinite product converges. Since {an} is an infinite set inCwithout limit points,
we have lim

n→∞|an | = +∞. Fix any z ∈C,

{n ∈Z+ : |z/an | > 1/2}

is a finite set. By Lemma 2.27,

∑
n: |z/an |É1/2

|1−En−1(z/an)| É c
∑

n: |z/an |É1/2
|z/an |n É c

∞∑
n=1

|1/2|n = c <+∞

Hence the series
∞∑

n=1
|1−En−1(z/an)| converges.

For x > 0, we have 1+x < ex . Hence

∞∏
n=1

|En−1(z/an)| É
∞∏

n=1
(1+|1−En−1(z/an)|) É

∞∏
n=1

exp(|1−En−1(z/an)|)

= exp

( ∞∑
n=1

|1−En−1(z/an)|
)
<+∞

Hence the infinite product P (z) :=
∞∏

n=1
En−1(z/an) converges absolutely on C and uniformly on any compact subset of

C. Now we observe that zmP (z) is an entire function with the same zeros and multiplicities as f (z). Therefore g (z) :=
f (z)

zmP (z)
has only removable singularities, and can be extended to an entire function without zeros. By Proposition 1.38

(vii), there exists an entire function h(z) such that g (z) = eh(z). Hence we have

f (z) = zm eh(z)
∞∏

n=1
En−1(z/an) = zm eh(z)

∞∏
n=1

(
1− z

an

)
exp

(
z

an
+·· ·+ 1

n −1

(
z

an

)n−1)
as claimed.

Remark. Weierstrass Factorisation Theorem can also be stated as follows: we can always find an entire function with pre-
scribed zeros and multiplicities.

Remark. In the proof of Theorem 2.25, a key step is the convergence of
∞∑

n=1

∣∣∣∣ z

an

∣∣∣∣n

. This motivates us to make the following

generalisation:

Corollary 2.28

Suppose f : C→ C is an entire function with zeros at a1, a2, · · · (counting multiplicity). {an} ∈ C \ {0} forms an infinite
set which has no limit points. Suppose furthermore that 0 is a zero of order m of f . (If f (0) 6= 0, then we put m = 0.) If
{kn} ⊆Z is a integer sequence such that

∞∑
n=1

(
r

|an |
)kn

converges for all r > 0. Then there exists an entire function h :C→C such that

f (z) = zm eh(z)
∞∏

n=1
Ekn−1(z/an) = zm eh(z)

∞∏
n=1

(
1− z

an

)
exp

(
z

an
+·· ·+ 1

n −1

(
z

an

)kn−1
)

Proof. Trivial.

Corollary 2.29

Any meromorphic function on C is the quotient of two entire functions.
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Proof. Suppose f is a meromorphic function on C with poles at a1, a2, · · · of order m1,m2 · · · . By Weierstrass Factorsation
Theorem, we can construct an entire function g such that g has zeros at a1, a2, · · · with multiplicities m1,m2 · · · .

Then near each an , lim
z→an

(z −an)mn f (z) exists and is finite, and lim
z→an

g (z)

(z −an)mn
6= 0. Let h(z) = f (z)g (z). The limit

lim
z→an

h(z) = lim
z→an

(z −an)mn f (z) · lim
z→an

g (z)

(z −an)mn

exists and is finite. Hence h has only removable singularities and can be extended to an entire function. Hence f = h/g
is the quotient of two entire functions.

Next we shall use the Weierstrass Factorisation Theorem to prove some famous identities:

Example 2.30

1. πcotπz = ∑
n∈Z

1

z +n
(z ∉Z);

2. sin z = z
∞∏

n=1

(
1− z2

n2π2

)
;

3.
∞∑

n=1

1

n2 = π2

6
.

Remark. Note that both
∞∑

n=1

1

z +n
and

−∞∑
n=−1

1

z +n
diverges. The sum

∑
n∈Z

1

z +n
should be interpreted as lim

N→∞

N∑
n=−N

1

z +n
.

Proof. 1. Let f (z) =πcotπz − ∑
n∈Z

1

z +n
defined on C\Z. First we observe that f is periodic:

f (z +1) =πcotπ(z +1)− ∑
n∈Z

1

z +n +1
=πcotπz − ∑

n∈Z

1

z +n
= f (z)

Second, note that

lim
z→0

πz cotπz = 1 and lim
z→0

z
∑

n∈Z

1

z +n
= 1

We have lim
z→0

z f (z) = 0. Therefore z = 0 is a removable singularity of f . By periodicity,Z are removable singularities

of f . Hence f can be extended to an entire function on C.

We claim that f is bounded in {z ∈C : |Re z| É 1/2}. Since f is holomorphic in that domain, it suffices to show that
f (x + y i) is bounded as |y |→∞ for |x| É 1/2. We have

|cotπz| =
∣∣∣∣i e−2πy +e−2πix

e−2πy −e−2πix

∣∣∣∣→ 1 as |y |→∞

Also, for |x| É 1/2 and |y | > 1:∣∣∣∣∣ ∑
n∈Z

1

z +n

∣∣∣∣∣=
∣∣∣∣ 1

z
+

∞∑
n=1

2z

z2 −n2

∣∣∣∣= ∣∣∣∣ 1

x + y i
+

∞∑
n=1

2(x + y i)

x2 − y2 −n2 +2x y i

∣∣∣∣
É

∣∣∣∣ 1

x + y i

∣∣∣∣+ ∞∑
n=1

∣∣∣∣ 2(x + y i)

x2 − y2 −n2 +2x y i

∣∣∣∣É A+B
∞∑

n=1

y

y2 +n2

É A+B
∫ ∞

0

y

x2 + y2 dx

(
y

x2 + y2 is decreasing in x

)
= A+B arctan

(
x

y

)x=∞

x=0
= A± 1

2
πB

where A,B > 0 are some constants. Hence f is bounded in {z ∈C : |Re z| É 1/2}.

By periodicity, f is bounded on C. By Liouville’s Theorem, f is constant on C. But

f (−z) =πcot(−πz)− ∑
n∈Z

1

−z +n
=−

(
πcot(πz)− ∑

n∈Z

1

z +n

)
=− f (z)
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for z ∈C. We conclude that f (z) = 0 for all z ∈C. Hence πcot(−πz) = ∑
n∈Z

1

z +n
for z ∈C\Z.

2. Note that sin z has zeros at z ∈πZ. If we fix kn = 2, we see that

∑
n∈Z\{0}

(
r

|nπ|
)kn

= 2r

π2

∞∑
n=1

1

n2

converges for all r > 0. Hence by Corollary 2.28, we have

sin z = z eh(z)
∏

n∈Z\{0}
E1

( z

nπ

)
= z eh(z)

∏
n∈Z\{0}

(
1− z

nπ

)
ez/nπ

for some entire function h. Note that the infinite product is absolutely convergent, we have

sin z = z eh(z)
∞∏

n=1

(
1− z

nπ

)
ez/nπ

(
1+ z

nπ

)
e−z/nπ = z eh(z)

∞∏
n=1

(
1− z2

n2π2

)
It remains to determine the function h. Taking logarithm on both sides:

logsin z = log z +h(z)+
∞∑

n=1
log

(
1− z2

n2π2

)
Taking derivative:

cot z = 1

z
+h′(z)+

∞∑
n=1

2z

z2 −n2π2

or

πcotπz = 1

z
+h′(πz)+

∞∑
n=1

2z

z2 −n2

Combining with the first part, we deduce that h′(πz) = 0 for z ∈ C \Z. Hence h(z) = const. By evaluating at z = 0

we deduce that h(z) = 0. Hence sin z = z
∞∏

n=1

(
1− z2

n2π2

)
.

3. By expanding sin z into Taylor series at z = 0, we obtain:

∞∑
n=0

(−1)n

(2n +1)!
z2n+1 = z

∞∏
n=1

(
1− z2

n2π2

)

By comparing the coefficient of z3, we obtain

−
∞∑

n=1

1

n2π2 =−1

6

Thus the result follows.

Remark.
∞∑

n=1

1

n2 = π2

6
can also be proven by calculus of residue in the next chapter. See Example 3.18 for detail.

2.3.2 Mittag-Leffler Theorem.

Theorem 2.31. Mittag-Leffler Theorem.

Suppose {an} is a sequence of complex numbers in C without limit points. ϕn :=
kn∑
j=1

cn, j

(z −an) j
is a sequence of rational

functions with cn, j ∈C. Then there exists a meromorphic function f : U →C such that f has poles at {an} and principal
parts ϕn at each pole.

Remark. Mittag-Leffler Theorem states that we can always find a meromorphic function with prescribed poles and principal
parts near each pole.
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Proof. For each n ∈Z+, ϕn is a polynomial of 1/(z −an). Hence ϕn is holomorphic in B(0, |an |) and has Taylor series
∞∑

k=0

ϕ(k)
n (0)

k !
zk , which converges uniformly to ϕn in B(0, |an |/2). Hence there exists sn ∈N such that

∣∣∣∣∣ϕn −
sn∑

k=0

ϕ(k)
n (0)

k !
zk

∣∣∣∣∣< 1

2n

for z ∈ B(0, |an |/2). We denote
∑sn

k=0ϕ
(k)
n (0)zk /k ! by pn(z).

Fix R > 0. Since {an} is an infinite set in Cwithout limit points, we have lim
n→∞|an | = +∞. Let

N := max{n ∈Z+ : |an | É 2R}

Then for z ∈ B(0,R) and n > N , |z| É R < |an |, the function defined by ϕn(z)−pn(z) is holomorphic. Moreover,

∞∑
n=N+1

∣∣ϕn(z)−pn(z)
∣∣É ∞∑

n=N+1
< 1

The series
∞∑

n=N+1

(
ϕn(z)−pn(z)

)
converges absolutely and uniformly in B(0,R). Hence it defines a holomorphic func-

tion in B(0,R).

Therefore the series
∞∑

n=1

(
ϕn(z)−pn(z)

)= N∑
n=1

(
ϕn(z)−pn(z)

)+ ∞∑
n=N+1

(
ϕn(z)−pn(z)

)
defines a meromorphic function in B(0,R), with prescribed poles at {an : |an | < R} and corresponding principal parts

{ϕn : |an | < R}. Since R is arbitrary,
∞∑

n=1

(
ϕn(z)−pn(z)

)
is a meromorphic function on Cwith the desired properties.

2.3.3 Interpolation Theorem.

Mittag-Leffler Theorem may be combined with Weierstrass Factorisation Theorem to give a solution to the interpolation prob-
lem: Given a infinite set {an} ∈C without limit points, we want to find an entire function with prescribed values on the set. In
fact the result is much stronger. We can also prescribe finitely many derivatives at each an .

Theorem 2.32. Interpolation Theorem.

Suppose {an} is a sequence of complex numbers in C without limit points. For each an we associate a non-negative
integer mn and a sequence of complex numbers ck,n , (0 É k É mn). Then there exists an entire function f such that
f (k)(an) = k !ck,n for each an and 0 É k É mn .

In other words, f has the prescribed mn terms of Taylor expansion at each an .

Proof. By Weierstrass Factorisation Theorem, we can find an entire function g such that g has zeros at each an with multiplic-
ities mn +1. We claim that we can associate each an with a rational function

ϕn(z) =
mn+1∑

k=1

dk,n

(z −an)k

such that g (z)ϕn(z) has a Taylor expansion near an :

g (z)ϕn(z) =
mn∑
k=0

ck,n(z −an)k +O
(
(z −an)mn+1)

Suppose that we are given that g (z) =
∞∑

k=0
bk (z −an)k+mn+1 near an . Then

g (z)ϕn(z) =
(

mn+1∑
k=1

dk,n

(z −an)k

)
·
( ∞∑

k=0
bk (z −an)k+mn+1

)

= (
dmn+1,n +dmn ,n(z −an)+·· ·+d1,n(z −an)mn

) ·( ∞∑
k=0

bk (z −an)k

)
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Comparing the coefficients, we have:

b0 ·dmn+1,n = c0,n

b1 ·dmn+1,n +b0 ·dmn ,n = c1,n

· · · · · ·
k∑

j=0
bk− j ·dmn+1− j ,n = ck,n

Thus we can determine dmn+1,n , · · · ,d1 successively, since b0 6= 0. In this way we have obtained the desired functions
ϕn .

By Mittag-Leffler Theorem, we can find a meromorphic function h on C such that h has poles at each an with principal
parts ϕn . Now f (z) := g (z)h(z) has only removable singularities and can be extended to an entire function with the
desired properties.

Remark. The Interpolation Theorem can also help determine the structure of the ring of holomorphic functions. Suppose
U ∈C is a domain. Let H(U ) denotes the set of all holomorphic functions on U . Then H(U ) is a ring under function additions
and multiplications. We have the following proposition:

Proposition 2.33

Every finitely-generated ideal in H(U ) is principal.

Proof. Given f1, · · · , fn ∈ H(U ). The corollary states that there exists f ∈ H(U ) such that 〈 f1, · · · , fn〉 = 〈 f 〉. But first we shall
prove the following lemma: If g1, · · · , gn ∈ H(U ), if none of them is identically zero in U , and if they have no common
zeros in U , then 〈g1, · · · , gn〉 = 〈1〉 = H(U ).

We use induction on n. Suppose that the lemma holds for any n − 1 functions with no common zeros. Let m(gi ;α)
denotes the multiplicities of zero of gi at α ∈ U . By Weierstrass Factorisation Theorem (applied to a domain rather
than the whole C, which is still valid), we can find ϕ ∈ H(U ) such that m(ϕ,α) = min

1ÉiÉn−1
m(gi ,α) for each α ∈U . This is

practical because the common zeros of g1, · · · , gn−1 is a discrete point set.

Let hi := gi /ϕ for i = 1, · · · ,n − 1. Then h1, · · · ,hn−1 have no common zeros. By the induction hypothesis, we have
〈h1, · · · ,hn−1〉 = H(U ). Hence 〈g1, · · · , gn−1, gn〉 = 〈ϕ, gn〉.
Since g1, · · · , gn have no common zeros, ϕ and gn have no common zeros. By Interpolation Theorem (again applied to
a domain U ), we can find ψ ∈ H(U ) such that m(1−ψgn ;α) Ê m(ϕ;α) for all α ∈U . This could be done by prescribing
the value of ψ(k)(α) for 0 É k É m(ϕ;α) at each α ∈U such that m(ϕ;α) > 0.

Hence ξ := (1−ψgn)/ϕ has only removable singularities and can be extended to a holomorphic function in U . That is,
∃ψ,ξ ∈ H(U ) : 1 =ψgn +ϕξ.

Then 1 ∈ 〈ϕ, gn〉. 〈g1, · · · , gn〉 = 〈ϕ, gn〉 = H(U ), which completes the proof.



Chapter 3

Calculus of Residues

3.1 Residue Theorem 53
3.2 Semicircular Contour 54
3.3 Jordan’s Lemma 56
3.4 Keyhole Contour 59
3.5 Infinite Series 61
3.6 Some More Examples 63

3.1 Residue Theorem

Definition 3.1. Residue.

Suppose f has an isolated singularity at z0 ∈ C. The Laurent series of f in a deleted neighbourhood is
∞∑

n=−∞
cn(z − z0)n .

We call the coefficient c−1 the residue of f at z0 and denote it by Res( f , z0).

Proposition 3.2. Residue at a Pole.

If f has a pole of order n at z0, then the residue of f at z0 is given by:

Res( f , z0) = 1

(n −1)!
lim

z→z0

(
d

dz

)n−1 (
(z − z0)n f (z)

)

Proof. Suppose the Laurent series of f near z0 is
∞∑

m=−n
cm(z − z0)m . Then (z − z0)n f (z) =

∞∑
m=0

cm−n(z − z0)m is can be holomor-

phically extended to z0. We have:

lim
z→z0

(
d

dz

)n−1 (
(z − z0)n f (z)

)= lim
z→z0

(
d

dz

)n−1 ∞∑
m=0

cm−n(z − z0)m

= lim
z→z0

∞∑
m=n−1

m!

(n +1)!
cm−n(z − z0)m−n+1

= (n −1)! c−1 = (n −1)! Res( f , z0)

Corollary 3.3. Residue at a Simple Pole.

If f has a simple pole at z0, then the residue of f at z0 is given by:

Res( f , z0) = lim
z→z0

(z − z0) f (z)

Proposition 3.4

Suppose g ,h are holomorphic at z0 ∈ C, with g (z0) 6= 0, h(z0) = 0, and h′(z0) 6= 0. Then z0 is a simple pole of f (z) :=
g (z)/h(z). Moreover, we have Res( f , z0) = g (z0)/h′(z0).

53
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Proof. 1/ f (z0) = h(z0)

g (z0)
= 0 and (1/ f )′(z0) = h′(z0)g (z0)−h(z0)g ′(z0)

g (z0)2 = h′(z0)

g (z0)
6= 0. So z0 is a simple zero of 1/ f and hence a

simple pole of f . By Corollary 3.3, we have:

Res( f , z0) = lim
z→z0

(z − z0)
g (z)

h(z)
= lim

z→z0

g (z)
h(z)−h(z0)

z−z0

= g (z0)

h′(z0)

Theorem 3.5. Residue Theorem.

Suppose U ⊆ C is a domain and S ⊆ U is an at most countable subset with no limit points in U . f : U \ S → C is holo-
morphic with isolated singularities at the points of S. γ is piecewise-smooth closed path contained in U with S∩γ∗ =∅.
Then we have: ∮

γ
f = 2πi

∑
a∈S

I (γ, a)Res( f , a)

Proof. Since γ∗ is bounded, without loss of generality we can assume that S is finite. For a ∈ S, let pa be the principal part of f
near a. Then f −pa is holomorphic at a ∈ S. Consequently f − ∑

a∈S
pa is holomorphic on S. Apply Cauchy’s Theorem:

0 =
∮
γ

f (z)dz − ∑
a∈S

∮
γ

pa(z)dz

But we also have: ∮
γ

pa(z)dz =
∮
γ

−∞∑
n=−1

cn(z − z0)ndz =
+∞∑
n=1

∮
γ

c−n

(z − z0)n dz

=
∮
γ

c−1

z − z0
dz = 2πi · I (γ, a)Res( f , a)

The second equality follows from the uniform convergence of the principal part. The third equality follows from that
(z − z0)n always has a primitive in U except for n =−1.

Therefore we have
∮
γ

f (z)dz = 2πi
∑
a∈S

I (γ, a)Res( f , a) as claimed.

Remark. Residue Theorem provides a powerful tool that transforms the calculation of integrals into the calculation of the
residue of singularities, which, by Proposition 3.2, is essentially doing differentiation.

Now we will give a number of examples to demonstrate the power of Residue Theorem in computing integrals, especially
improper integrals on the real line. For more techniques and examples of residue calculus, please refer to [Priestley].

3.2 Semicircular Contour

We first consider improper integrals of the type
∫ +∞

−∞
f (x)dx:

Theorem 3.6

Suppose f is holomorphic on the upper half plane {z ∈ C : Im z Ê 0} except at a finite set S. If lim
z→∞z · f (z) = 0, then we

have: ∫ +∞

−∞
f (x)dx = 2πi

∑
a∈S

Res( f , a)

provided the improper integral on the left side exists.

Proof. We will use a semicircular contour in the upper half plane that consists of a line segment [−R,R] and a semicircle
γR := γ+(0,R), as shown in Figure 3.1. By Residue Theorem, for sufficiently large R, we have:∫ R

−R
f (x)dx +

∫
γR

f (z)dz = 2πi
∑
a∈S

Res( f , a) (3.1)
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Let M(R) := sup
z∈γ∗R

| f (z)|. We know that lim
R→∞

R ·M(R) = 0. Then:

∣∣∣∣∫
γR

f (z)dz

∣∣∣∣= ∣∣∣∣∫ π

0
f (R eiθ) ·Rieiθ dθ

∣∣∣∣ÉπRM(R) → 0

as R →∞.

By letting R →∞ in the Equation (3.1), we have∫ +∞

−∞
f (x)dx = 2πi

∑
a∈S

Res( f , a)

as claimed.

Remark. We must prove the existence of the improper integral before we apply the theorem. If the integral diverges, then
2πi

∑
a∈S

Res( f , a) only gives the Cauchy principal value of the integral. We should write:

P.V.
∫ +∞

−∞
f (x)dx = 2πi

∑
a∈S

Res( f , a)

Remark. There is nothing special about our choice of the semicircle in the upper half plane. One gets the same conclusion
using the semicircle in the lower half plane, with the corresponding poles and residues.

R−R

γR

Re

Im

Figure 3.1: A semicircular contour.

Example 3.7

Evaluate
∫ +∞

−∞
1

1+x2 +x4 dx.

Solution. Let us consider the function f (z) = 1/(1+ z2 + z4) defined on the upper half plane. Notice that 1/ f (z) = 1+ z2 + z4 =
(z6 −1)/(z2 −1) has simple zeros at eπi/3, e2πi/3, e4πi/3 and e5πi/3. Then, in the upper half plane, f has simple poles at
ω= eπi/3 and ω2 = e2πi/3.

We calculate the residues by using Corollary 3.3:

Res( f ,ω) = lim
z→ω

z −ω
z4 + z2 +1

= 1

(ω−ω2)(ω+ω)(ω+ω2)
=− 1

2(1−ω2)

Res( f ,ω2) = lim
z→ω2

z −ω2

z4 + z2 +1
= 1

(ω2 −ω)(ω2 +ω)(ω2 +ω2)
= 1

2ω(1−ω2)

Note that

lim
z→∞z f (z) = lim

z→∞
1

z−1 + z + z3 = 0

Now we can apply Theorem 3.6: ∫ +∞

−∞
1

1+x2 +x4 dx = 2πi
(
Res( f ,ω)+Res( f ,ω2)

)
= 2πi · 1

2(1−ω2)

(
1

ω
−1

)
= πi

ω2 +ω
= πp

3
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3.3 Jordan’s Lemma

When evaluating integrals of the type
∫ +∞

−∞
eiαx f (x)dx, we need the following lemma:

Lemma 3.8. Jordan’s Lemma.

Suppose f is continuous on the upper half plane (with possible exceptions at a finite set). If lim
z→∞ f (z) = 0, then:

lim
R→∞

∫
γR

eiαz f (z)dz = 0

for any α> 0, where γR (t ) = γ+(0,R)(t ) = R eit , t ∈ [0,π] is a semicircular path.

Proof. Since sin x is convex on [0,π/2], by Jensen’s Inequality, we have:

sin x = sin

((
1− 2x

π

)
0+ 2x

π
· π

2

)
Ê

(
1− 2

π

)
sin0+ 2x

π
sin

π

2
= 2

π
x

for x ∈ [0,π/2].

Let M(R) := sup
z∈γ∗R

| f (z)|. We know that lim
R→∞

M(R) = 0. Then:

∣∣∣∣∫
γR

eiαz f (z)dz

∣∣∣∣= ∣∣∣∣∫ π

0
eiαR cosθ e−αR sinθ f (R eiθ)Rieiθ dθ

∣∣∣∣
É R ·M(R)

∫ π

0
e−αR sinθ dθ É 2R ·M(R)

∫ π/2

0
e−

2α
π Rθ dθ

= 2M(R) · π
2α

(
1−e−αR)→ 0

as R →∞.

Corollary 3.9

Suppose f is holomorphic on the upper half plane {z ∈C : Im z Ê 0} except at a finite set S. If lim
z→∞ f (z) = 0, then for α> 0

we have: ∫ +∞

−∞
eiαx f (x)dx = 2πi

∑
a∈S

Res
(
eiαz f (z), a

)
Proof. This is exactly like the proof of Theorem 3.6. We know from Jordan’s Lemma that the integral on the upper semicircular

path tends to zero, and the result follows.

Remark. We can also translate the complex exponential into real trigonometrics:∫ +∞

−∞
cosαx f (x)dx = Re

(
2πi

∑
a∈S

Res
(
eiαz f (z), a

))
∫ +∞

−∞
sinαx f (x)dx = Im

(
2πi

∑
a∈S

Res
(
eiαz f (z), a

))

Example 3.10

Evaluate
∫ +∞

−∞
sin x

x
dx.

Solution. Normally we will consider eiz /z on the upper half plane. But it has a simple pole at the origin, which is on the con-
tour we are about to integrate along. So we consider f (z) = (eiz −1)/z instead. By expanding the exponential function
we can see that

lim
z→0

eiz −1

z
= i
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Therefore z = 0 is a removable singularity of f , which can be extended to an entire function on the plane. By Cauchy’s
Theorem, along the semicircular contour we have:

0 =
∮

f (z)dz =
∫ R

−R

eix −1

x
dx +

∫
γR

eiz

z
dz −

∫
γR

1

z
dz (3.2)

The third term in the Equation (3.2) is just: ∫
γR

1

z
dz =

∫ π

0

iR eiθ

R eiθ
dθ = iπ

Letting R →∞, the second term in the Equation (3.2) vanishes by Jordan’s Lemma. Hence we have:∫ ∞

−∞
eix

x
dx = lim

R→∞

∫ R

−R

eix

x
dx = lim

R→∞

∫ R

−R

eix −1

x
dx = iπ

Take the imaginary part: ∫ ∞

−∞
sin x

x
dx =π

Remark. If the integrand function has singularities on the real line. We often indent the contour by a small circular arc around
the singularity. The following lemma shows that it works for simple poles.

Lemma 3.11. Indentation Lemma.

Suppose f is holomorphic on the sector
{

z = z0 + r eiθ : r ∈ (0,R], θ ∈ [θ1,θ2]
}

and has a simple pole at z0. Then:

lim
r→0

∫
γr

f (z)dz = i(θ2 −θ1)Res( f , z0)

where γr (t ) = z0 + r eit , t ∈ [θ1,θ2].

Proof. Suppose Res( f , z0) = A. Let g (z) = (z − z0) f (z)− A. Then lim
z→z0

g (z) = 0. We have

∫
γr

f (z)dz =
∫
γr

g (z)

z − z0
dz + A

∫
γr

1

z − z0
dz = iA(θ2 −θ1)+

∫
γr

g (z)

z − z0
dz

where ∣∣∣∣∫
γr

g (z)

z − z0
dz

∣∣∣∣=
∣∣∣∣∣
∫ θ2

θ1

g (z0 + r eiθ)

r eiθ
r ieiθ dθ

∣∣∣∣∣
=

∣∣∣∣∫ θ2

θ1

ig (z0 + r eiθ)dθ

∣∣∣∣É sup
z∈γ∗r

|g (z)|(θ2 −θ1) → 0

as r → 0. Hence
∫
γr

f (z)dz → iA(θ2 −θ1) as r → 0 as claimed.

Remark. The indentation only works for simple poles and fails at other types of singularities. This is because the contour has
length O(ε) and the integrand grows as O(ε−1) near a simple pole.

Rρ−R −ρ

γR

γρ

Re

Im

Figure 3.2: A semi-annular contour.
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Example 3.12

Use Lemma 3.11 to evaluate
∫ +∞

−∞
sin x

x
dx.

Solution. Let f (z) = eiz /z. We integrate it along the semi-annular contour as shown in Figure 3.2. Since f is holomorphic
inside and on the contour, by Cauchy’s Theorem we have:

0 =
∫ −ρ

−R

eix

x
dx −

∫
γρ

eiz

z
dz +

∫ R

ρ

eix

x
dx +

∫
γR

eiz

z
dz

where γρ(t ) = ρeit , t ∈ [0,π] and γR (t ) = R eit , t ∈ [0,π].

By Jordan’s Lemma, the fourth term vanishes as R →∞.By Lemma 3.11, since lim
z→0

z ·eiz /z → 1, the second term

∫
γρ

eiz

z
dz → iπ

as ρ→ 0. Therefore we have: ∫ +∞

−∞
eix

x
dx = lim

R→∞
ρ→0

∫ −ρ

−R

eix

x
dx + lim

R→∞
ρ→0

∫ R

ρ

eix

x
dx = iπ

We can see that this method produces the same answer as the previous one.

Example 3.13

Evaluate
∫ ∞

0

ln x

(1+x2)2 dx.

Solution. Let f (z) = log z/(1+z2)2. f has a simple pole at 0 and double poles at i and −i. We wish to indent at z = 0 and use the
semi-annulur contour in Figure 3.2. Since logarithm is multi-valued, we have to choose a holomorphic branch of the
logarithm such that the cut line does not cross the contour. We use the principal logarithm here. First let us calculate
the residue. By Proposition 3.2,

Res( f , i) = lim
z→i

d

dz
(z − i)2 log z

(1+ z2)2 = lim
z→i

d

dz

log z

(z + i)2 = lim
z→i

(z + i)2/z −2(z + i) log z

(z + i)4 = π

8
+ i

4

For x ∈R−, we have ln x = ln |x|+ iπ. Apply the Residue Theorem:∫ −ρ

−R

ln |x|+ iπ

(1+x2)2 dx −
∫
γρ

log z

(1+ z2)2 dz +
∫ R

ρ

ln x

(1+x2)2 dx +
∫
γR

log z

(1+ z2)2 dz = 2πiRes( f , i)

For the second term, since lim
z→0

z · log z

(1+ z2)2 = 0, 0 is a simple pole of f . By Lemma 3.11, we have:

lim
ρ→0

∫
γρ

log z

(1+ z2)2 dz = 0

For the fourth term, lim
z→∞z · log z

(1+ z2)2 = 0, we have:

lim
R→∞

∫
γR

log z

(1+ z2)2 dz = 0

Combining the preceding equations we have:

lim
ρ→0

R→∞

∫ −ρ

−R

ln |x|+ iπ

(1+x2)2 dx + lim
ρ→0

R→∞

∫ R

ρ

ln x

(1+x2)2 dx = 2πiRes( f , i)

=⇒ 2
∫ ∞

0

ln x

(1+x2)2 dx + iπ
∫ 0

−∞
1

(1+x2)2 dx = 2πi

(
π

8
+ i

4

)
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O Rγ1

γR
γ2

π/4

Re

Im

Figure 3.3: A sectorial contour

Taking the real part: ∫ ∞

0

ln x

(1+x2)2 dx =−π
4

By taking the imaginary part, we also obtain that:∫ ∞

0

1

(1+x2)2 dx = π

4

Remark. We will see later that the previous example can also be solved by a keyhole contour.

Example 3.14. Fresnel Integrals.

Evaluate
∫ ∞

0
sin x2 dx and

∫ ∞

0
cos x2 dx.

Solution. We consider the function f (z) = eiz2
, which is entire on C. We wish to apply Cauchy’s Theorem. A semicircular

contour would not work, because eiz2
does not tends to zero as R →∞. Alternatively we can consider a contour that

goes around a sector, as shown in Figure 3.3. Let the contour be Γ := γ1?γR ?γ2, where γR (t ) = R eit , t ∈ [0,π/4] and
γ2(t ) =−t eπi/4, t ∈ [−R,0]. By Cauchy’s Theorem:∫ R

0
eix2

dx +
∫
γR

eiz2
dz +

∫
γ2

eiz2
dz = 0

Now the second term tends to zero as R → ∞, following from the same argument in the proof of Jordan’s Theorem
(applying the Jensen’s Inequality). For the third term,

lim
R→∞

∫
γ2

eiz2
dz =−

∫ ∞

0
eit 2 eπi/2

eπi/4 dt =−eπi/4
∫ ∞

0
e−t 2

dt

=−eπi/4
p
π

2
=−

(p
2π

4
+ i

p
2π

4

)
Hence ∫ ∞

0
sin x2 dx =

∫ ∞

0
cos x2 dx =

p
2π

4

Remark. In the previous example we have used the well-known result:∫ +∞

−∞
e−x2

dx =p
π

which is usually derived from a double integral in the polar coordinates. An alternative way which utilizes residue calculus is
given in Example 3.23.

3.4 Keyhole Contour

We consider the integrals of the type
∫ ∞

0
f (x)dx, where f depends explicitly or implicitly on logarithm. We need to select a

holomorphic branch by drawing a cut line on the plane. For example we choose R+ as the cut line and consider the following
contour Γ. Let γ(0,R) and γ(0,ρ)− be two circular paths, where we make R →∞ and ρ→ 0. We join the two circles by two line
segments with a narrow neck in between, as shown in Figure 3.4. Our choice will make log z holomorphic inside the contour.
Moreover, we have log z = ln |z| just above R+ and log z = ln |z|+2πi just below R+.
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Re

Im

γρ

γR

γ+

γ−

Figure 3.4: A keyhole contour.

Example 3.15

Evaluate
∫ ∞

0

xp−1

(1+x)m dx, where m ∈Z+ and p ∈ (0,m) \Z.

Solution. Let f (z) = zp−1

(1+ z)m = e(p−1)log z

(1+ z)m . Since p ∉ Z, f is multi-valued. We choose the positive real axis as the cut line and

consider the keyhole contour Γ= γR ?γ−?γ−ρ ?γ+ in Figure 3.4.

On γ+, zp−1 = e(p−1)ln x = xp−1. On γ−, zp−1 = e(p−1)log z = e(p−1)(ln x+2πi) = e2pπi xp−1. We can see that f has a pole of
order m at z =−1. By Residue Theorem, we have:∫ R

ρ

xp−1

(1+x)m dx +
∫
γR

zp−1

(1+ z)m dz −
∫ R

ρ

e2pπi xp−1

(1+x)m dx −
∫
γρ

zp−1

(1+ z)m dz = 2πiRes( f ,−1)

Since γR (t ) = R eit , t ∈ [0,2π], we have:∣∣∣∣∫
γR

zp−1

(1+ z)m dz

∣∣∣∣= ∣∣∣∣∫ 2π

0

Rp−1 e(p−1)it

(1+R eit )m
Rieit dt

∣∣∣∣
É 2π · sup

z∈γ∗R

∣∣∣∣Rp−1 e(p−1)it

(1+R eit )m
Rieit

∣∣∣∣É 2π
Rp

(R −1)m → 0

as R →∞, because p < m.

Similarly on γρ , we have: ∣∣∣∣∣
∫
γρ

zp−1

(1+ z)m dz

∣∣∣∣∣É 2π
ρp

(ρ−1)m → 0

as ρ→ 0.

Then by letting R →∞ and ρ→ 0 in the Residue Theorem, we obtain that

(
1−e2pπi)∫ ∞

0

xp−1

(1+x)m dx = 2πiRes( f ,−1)

Now we compute the residue. If m = 1, then

Res( f ,−1) = lim
z→−1

(z +1)
zp−1

(1+ z)
= (−1)p−1 =−epπi

If m > 1, then

Res( f ,−1) = 1

(m −1)!
lim

z→−1

dm−1

dzm−1

(
(z +1)m zp−1

(1+ z)m

)
= 1

(m −1)!
lim

z→−1
(p −1)(p −2) · · · (p −m +1)zp−m



3.5. INFINITE SERIES 61

O 1 N

N +1

−1−N

−N −1

(N + 1
2 )(1+ i)

(N + 1
2 )(1− i)

(N + 1
2 )(−1+ i)

(N + 1
2 )(−1− i)

Re

Im

· · ·· · ·

ΓN

Figure 3.5: A square contour.

=−epπi(1−p)(2−p) · · · (m −1−p)

(m −1)!
=−epπi

m−1∏
j=1

(
1− p

j

)
Hence we have: ∫ ∞

0

xp−1

1+x
dx = 2πi

−epπi

1−e2pπi
= 2πi · 1

2isin pπ
= π

sin pπ

and for m > 1: ∫ ∞

0

xp−1

(1+x)m dx = π

sin pπ

m−1∏
j=1

(
1− p

j

)

3.5 Infinite Series

Residue Theorem are also useful in calculating the sum of an infinite series. We will use the function cotπz. Since sin z has
simple zeros at πZ, cotπz has simple poles at Z. We have the following lemma:

Lemma 3.16

Suppose that ϕ is holomorphic near n ∈Zwith ϕ(n) 6= 0. Then f (z) :=ϕ(z)cotπz has a simple pole at z = n with residue
Res( f ,n) =ϕ(n)/π.

Proof. It is easy to see that z = n is a simple pole of f . So the residue is calculated by

Res( f ,n) = lim
z→n

(z −n)ϕ(z)cotπz =ϕ(n) lim
z→n

(z −n)cosπz

sinπz

=ϕ(n) lim
z→n

(z −n)
cosπz cosπn + sinπz sinπn

sinπz cosπn −cosπz sinπn
(sinπn = 0)

=ϕ(n) lim
z→n

(z −n)cosπ(z −n)

sinπ(z −n)
= ϕ(n)

π
lim
w→0

w(1+O(w2))

w +O(w3)
(w :=π(z −n))

=ϕ(n)/π

Now let us consider the positively oriented square contour ΓN with vertices at (N + 1
2 )(±1± i). The next lemma shows that

cotπz is uniformly bounded on all Γ∗N .

Lemma 3.17

There exists a C > 0 such that sup
{|cotπz| : z ∈ Γ∗N

}<C for all N ∈N.

Proof. We consider the horizontal and vertical sides of the square separately. On the horizontal sides, we have z = x ± (N +
1
2 )i, x ∈ [−(N + 1

2 ), N + 1
2 ].

|cotπz| =
∣∣∣∣eiπz +e−iπz

eiπz −e−iπz

∣∣∣∣=
∣∣∣∣∣eiπ(x±i(N+ 1

2 ))+e−iπ(x±i(N+ 1
2 ))

eiπi(x±(N+ 1
2 ))−e−iπ(x±i(N+ 1

2 ))

∣∣∣∣∣
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=
∣∣∣∣∣eiπx∓π(N+ 1

2 )+e−iπx±π(N+ 1
2 )

eiπx∓π(N+ 1
2 )−e−iπx±π(N+ 1

2 )

∣∣∣∣∣
É

∣∣∣∣∣eπ(N+ 1
2 )+e−π(N+ 1

2 )

eπ(N+ 1
2 )−e−π(N+ 1

2 )

∣∣∣∣∣= |cothπ(N +1/2))|

É
∣∣∣coth

π

2

∣∣∣ (since coth x is decreasing when x > 0)

On the vertical sides, we have z = ±(N + 1
2 )+ y i, y ∈ [−(N + 1

2 ), N + 1
2

]
. From elementary trigonometric equalities, we

know that cot(z +π/2) =− tan z and that tan(z +Nπ) = tan z for N ∈Z. We have:

|cotπz| = |cot(±(π/2+Nπ)+ iπy)| = | taniπy | = | tanhπy | < 1

Hence we have sup
z∈Γ∗N

|cotπz| < min
(
1,

∣∣∣coth
π

2

∣∣∣) for all N ∈N.

Remark. Given the two preceding lemmata, we are now able to sum some infinite series.

Example 3.18

Evaluate
∞∑

n=1

1

n2 .

Solution. By Cauchy’s integral test the series converges. Let f (z) = cotπz/z2. We consider the square contour ΓN defined

above. By Lemma 3.16, we know that f has simple poles at z = n ∈ Z \ {0} with residues Res( f ,n) = 1

πn2 . In addition,

z = 0 is a triple pole of f . The residue is given by

Res( f ,0) = 1

2
lim
z→0

d2

dz2 z cotπz = 1

2
lim
z→0

(
−2

π

sin2πz
+2

π2z cosπz

sin3πz

)
=π lim

z→0

πz cosπz − sinπz

sin3πz

=π lim
z→0

πz(1−π2z2/2+O(z4))− (πz −π3z3/6+O(z5))

(πz +O(z3))3

=π−π
3/2+π3/6

π3 =−π
3

Apply the Residue Theorem to f along ΓN :∮
ΓN

f (z)dz =
N∑

n=−N
Res( f ,n) = π

3
+2

N∑
n=1

1

πn2

By Lemma 3.17, we have ∣∣∣∣∮
ΓN

f (z)dz

∣∣∣∣= ∣∣∣∣∮
ΓN

cotπz

z2 dz

∣∣∣∣É 4 · (2N +1) · C

(N +1/2)2 → 0

as N →∞.

Therefore:

0 =−π
3
+2

∞∑
n=1

1

πn2 =⇒
∞∑

n=1

1

n2 = π2

6

Remark. In the previous example, the residue of cotπz/z2 at z = 0 can also be calculated by directly expanding sin z and cos z
at z = 0:

cot z = cos z

sin z
=

(
1− z2

2
+O(z4)

)(
z − z3

6
+O(z5)

)−1

=
(
1− z2

2
+O(z4)

)
1

z

(
1− z2

(
1

6
+O(z2)

))−1

= 1

z

(
1− z2

2
+O(z4)

)(
1+ z2

(
1

6
+O(z2)

)
+O(z4)

)
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= 1

z
− z

3
+O(z3)

Therefore we obtain the Laurent expansion of f at z = 0:

f (z) = cotπz

z2 = 1

πz3 − π

3z
+O(z)

Hence we have Res( f ,0) =−π/3, which is the same as in the example.

Remark. We will give another example, which sums an alternating series. Instead of cotπz we use cscπz, for which we have
the similar lemmata:

Lemma 3.19

Suppose ϕ is holomorphic near n ∈ Z with ϕ(n) 6= 0. Then f (z) := ϕ(z)/sinπz has a simple pole at z = n with residue
Res( f ,n) = (−1)nϕ(n)/π.

Lemma 3.20

There exists a C > 0 such that sup
{|cscπz| : z ∈ Γ∗N

}<C for all N ∈N.

The proofs are very much similar (and in fact easier).

Example 3.21

Evaluate
∞∑

n=1

(−1)n

n2 +1
.

Solution. By Leibniz’s alternating series test the series converges. Let f (z) = 1

(z2 +1)sinπz
. By Lemma 3.19, f has simple

poles at every integer n ∈Zwith residues Res( f ,n) = (−1)n

π(1+n2)
. In addition, f also has simple poles at z =±i, where the

residues are given by:

Res( f , i) = lim
z→i

(z − i)

(z2 +1)sinπz
= 1

2isin(iπ)
=− 1

2sinhπ

Res( f ,−i) = lim
z→−i

(z + i)

(z2 +1)sinπz
=− 1

2isin(−iπ)
=− 1

2sinhπ

The integration of f along ΓN :∣∣∣∣∮
ΓN

f (z)dz

∣∣∣∣= ∣∣∣∣∮
ΓN

(−1)n

z2 +1
dz

∣∣∣∣É 4 · (2N +1) · C

(N +1/2)2 +1
→ 0

as N →∞.

Therefore by Residue Theorem:∮
ΓN

f (z)dz = Res( f , i)+Res( f ,−i)+
N∑

n=−N
Res( f ,n)

N→∞====⇒ 0 = 2 ·− 1

2sinhπ
+ 1

π
+2

∞∑
n=1

1

π(n2 +1)
=⇒

∞∑
n=1

(−1)n

n2 +1
= π

2sinhπ
− 1

2

3.6 Some More Examples

Example 3.22

Evaluate
∫ +∞

−∞
x

sinh x
dx
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Solution. Let f (z) = z/sinh z. This is a function with infinitely many poles, so we will not be able to choose a contour that
encloses all the poles. However, we can use the periodicity of the function. At z = 0, observe that

lim
z→0

z

sinh z
= lim

z→0

z∑∞
n=0 z2n+1/(2n +1)!

= 1

Then z = 0 is a removable singularity of f . Notice the periodicity of sinh z: sinh(x) = sinh(x + iπ) for x ∈ R. sinh z has
simple zeros at iπZ. f has simple poles at iπZ\ {0} with residues:

Res( f ,nπi) = lim
z→nπi

z(z −nπi)

sinh z
= nπi lim

z→0

z

sinh z
= nπi

We consider the rectangular contour with indentation at z = iπ, as shown in Figure 3.6.

iπ R + iπ−R + iπ

R−R

γ+
γρ

γ−

Re

Im

Figure 3.6: A rectangular contour with indentation at z = iπ.

We observe that f is holomorphic inside and along the above contour. Apply Cauchy’s Theorem:∫ R

−R

x

sinh x
dx +

∫
γ+

z

sinh z
dz +

∫ ρ

R

x + iπ

sinh(x + iπ)
dx

+
∫
γρ

z

sinh z
dz +

∫ −R

−ρ
x + iπ

sinh(x + iπ)
dx +

∫
γ−

z

sinh z
dz = 0

First we inspect the vertical sides of the contour:∣∣∣∣∫
γ+

z

sinh z
dz

∣∣∣∣= ∣∣∣∣∫ π

0

R + it

sinh(R + it )
idt

∣∣∣∣= ∣∣∣∣∫ π

0

R + it

sinhR cos t + icoshR sin t
idt

∣∣∣∣
Éπ · R +π

sinhR
→ 0

as R → 0. And it is similar for γ−.

For the indentation near z = iπ, by Lemma 3.11, we have:

lim
ρ→0

∫
γρ

z

sinh z
dz = iπRes( f , iπ) =−π2

Let R →∞ and ρ→ 0 in Cauchy’s Theorem. Substitute the preceding equations into the equation:∫ +∞

−∞
x

sinh x
dx −π2 −

∫ +∞

−∞
x + iπ

−sinh x
dx = 0

Taking the real part, we have: ∫ +∞

−∞
x

sinh x
dx = π2

2

Example 3.23. Gaussian Integral.

Evaluate
∫ +∞

−∞
e−x2

dx.

Solution. Normally we may consider the function e−z2
. But this is entire and is not well-behaved as z →∞. Here we define

f (z) = eiπz2
/sinπz and consider its integral on a parallelogram contour, as shown in Figure 3.7.
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Re

Im

γ−

γ2

γ+

γ1

π/4

1
2 +R e

iπ
4− 1

2 +R e
iπ
4

− 1
2 −R e

iπ
4 1

2 −R e
iπ
4

O 1−1

Figure 3.7: Contour for the Gaussian Integral.

The nominator of f is entire. By Lemma 3.19, we know that f has a simple pole at z = 0 with residue Res( f ,0) = 1/π. By
Residue Theorem, we have∫

γ1

f (z)dz +
∫
γ−

f (z)dz +
∫
γ2

f (z)dz +
∫
γ+

f (z)dz = 2πiRes( f ,0) = 2i

On γ1, we have γ1(t ) = 1
2 + t eiπ/4, t ∈ [−R,R]. The integral:

∫
γ1

eiπz2

sinπz
dz =

∫ R

−R

exp(iπ( 1
2 + t eiπ/4)2)

sin(π( 1
2 + t eiπ/4))

·eiπ/4 dt

=
∫ R

−R

exp(iπ( 1
2 + it 2 + t eiπ/4))

cos(πt eiπ/4)
dt

= i
∫ R

−R
e−πt 2 exp(iπt eiπ/4)

cos(πt eiπ/4)
dt

Similarly on γ2, we have ∫
γ2

eiπz2

sinπz
dz = i

∫ R

−R
e−πt 2 exp(−iπt eiπ/4)

cos(πt eiπ/4)
dt

Adding up: ∫
γ1

eiπz2

sinπz
dz +

∫
γ2

eiπz2

sinπz
dz = i

∫ R

−R
e−πt 2 exp(iπt eiπ/4)+exp(−iπt eiπ/4)

cos(πt eiπ/4)
dt

= i
∫ R

−R
e−πt 2 2cos(πt eiπ/4)

cos(πt eiπ/4)
dt = 2i

∫ R

−R
e−πt 2

dt

On γ−, the integral: ∣∣∣∣∣
∫
γ−

eiπz2

sinπz
dz

∣∣∣∣∣=
∣∣∣∣∫ −1/2

1/2

exp(iπ(x +R eiπ/4)2)

sin(π(x +R eiπ/4))
dx

∣∣∣∣
= 2

∣∣∣∣∣
∫ 1/2

−1/2

eiπx(x+p2R) e−πR(R+p2x)

eiπ(x+R/
p

2) e−πR/
p

2+e−iπ(x+R/
p

2) eπR/
p

2
dx

∣∣∣∣∣
É 2 sup

x∈[− 1
2 , 1

2 ]

∣∣∣∣∣ e−πR(R+p2x)

eπR/
p

2−e−πR/
p

2

∣∣∣∣∣→ 0

as R →∞. Similarly, the integral along γ+ also vanishes as R →∞.

By letting R →∞ in the Residue Theorem, we have:

2i
∫ +∞

−∞
e−πx2

dx = 2i =⇒
∫ +∞

−∞
e−x2

dx =p
π
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Example 3.24

Evaluate
∫ 2π

0

dθ

3+cosθ+2sinθ
.

Remark. This is an example of integral with finite interval. More generally, consider integrals of the form
∫ 2π

0
R(sinθ,cosθ) dθ,

where the integrand is a rational function of sinθ and cosθ. We use the substitution z = eiθ. Then the integral can be regarded
as a contour integral along the unit disk. Moreover, we have:

sinθ = 1

2i
(eiθ−e−iθ) = 1

2i
(z − z−1)

cosθ = 1

2
(eiθ+e−iθ) = 1

2
(z + z−1)

dθ = (ieiθ)−1d(eiθ) =−iz−1dz

So we can use the Residue Theorem to compute the integral.

Solution. Let γ(0,1) be the positively oriented contour along the unit disk. We have:∫ 2π

0

dθ

3+cosθ+2sinθ
=

∮
γ(0,1)

1

3+ 1
2 (z + z−1)+ 1

i (z − z−1)

1

iz
dz

= 10

i+2

∮
γ(0,1)

dz

(5z +1+2i)(z +1+2i)

Let f be the integrand above. Then f has two simple poles: z = − 1
5 (1+2i) and z = −(1+2i). By Residue Theorem, we

have: ∮
γ(0,1)

dz

(5z +1+2i)(z +1+2i)
= 2πiRes( f ,−1

5
(1+2i))

= 2πi lim
z→− 1

5 (1+2i)

1

5(z +1+2i)
= πi

2(1+2i)

Hence ∫ 2π

0

dθ

3+cosθ+2sinθ
= 10

i+2
· πi

2(1+2i)
=π

Example 3.25

Evaluate
∫ 1

−1

dx

(1+x)2/3(1−x)1/3
.

1−1
R

γρ1

γ−γρ2

γ+

Re

Im

γR

Figure 3.8: A dumbbell contour.
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Solution. Let f (z) = (1− z)−1/3(1+ z)−2/3. This is a multifunction with branch points at z = 1 and z = −1. We shift to polar
coordinates (see Example 0.23 for detail) and write z = 1+ r eiθ = −1+ s eiϕ. Then f (z) = r−1/3s−2/3 e−i(θ+2ϕ)/3. The
admissible contours are those which winds around both or none of the two branch points, so we can obtain a holomor-
phic branch of f by doing the branch cut at [−1,1]. We consider a "dumbbell-shaped" contour γd := γρ1 ?γ−?γρ2 ?γ+
that encloses both poles, as shown in Figure 3.8. Here γρ1 := γ(1,ρ) and γρ2 := γ(−1,ρ). Let γR := γ(0,R) be the posi-
tively oriented circular contour. Then f is holomorphic in the interior of the cycle Γ := γR +γd . By Cauchy’s Theorem
we have: ∮

γR

f (z)dz +
∫
γρ1

f (z)dz +
∫
γρ2

f (z)dz +
∫
γ+

f (z)dz +
∫
γ−

f (z)dz = 0

Notice that

lim
z→∞z f (z) = eiπ/3 lim

z→∞
z

(z −1)1/3(1+ z)2/3

= eiπ/3 lim
z→∞

∣∣∣ z

z −1

∣∣∣1/3 ∣∣∣ z

1+ z

∣∣∣2/3
exp

(
− i

3
arg(z −1)− 2i

3
arg(1+ z)+ iarg(z)

)
= eiπ/3 lim

z→∞exp

(
− i

3
arg(z)− 2i

3
arg(z)+ iarg(z)

)
= eiπ/3

On the circular contour γR , the calculation is very similar to the proof of the Indentation Lemma. Let g (z) = z f (z)−
e−iπ/3. Then lim

z→∞g (z) = 0. Hence:

lim
R→∞

∮
γR

f (z)dz = lim
R→∞

∮
γR

g (z)+e−iπ/3

z
dz

= lim
R→∞

∮
γR

g (z)

z
dz +e−iπ/3 lim

R→∞

∮
γR

1

z
dz

= 2πieiπ/3

On the indented circular arcs γρ1 and γρ2 , since

lim
z→1

(z −1) f (z) = e−iπ/3 lim
z→1

(
z −1

z +1

)2/3

= 0

lim
z→−1

(z +1) f (z) = lim
z→−1

(
z +1

1− z

)1/3

= 0

By the Indentation Lemma, we have:

lim
ρ→0

∫
γρ1

f (z)dz = 0, lim
ρ→0

∫
γρ2

f (z)dz = 0

On the line segment γ+, arg(1− z) = 0, arg(z +1) = 0, therefore

f (z) = (1−x)−1/3(1+x)−2/3

On the line segment γ−, arg(1− z) =−2π, arg(z +1) = 0, therefore

f (z) = (e−2πi(1−x))−1/3(1+x))−2/3 = e2πi/3(1−x)−1/3(1+x)−2/3

Letting R →∞ and ρ→ 0 in Cauchy’s Theorem, we have:∫ 1

−1

dx

(1−x)1/3(1+x)2/3
+

∫ −1

1

e2πi/3 dx

(1−x)1/3(1+x)2/3
+2πieiπ/3 = 0

=⇒
∫ 1

−1

dx

(1−x)1/3(1+x)2/3
= −2πieiπ/3

1−e2πi/3
= π

sin(π/3)
= 2πp

3
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4.1 Extended Complex Plane

In the classification of singularities, we are motivated to process functions in the extended plane C∞ := C∪ {∞} rather than
in C. This is an example of one-point compactification of C. To fully make sense of continuity and holomorphicity in C∞, we
shall use two approaches:

1. Riemann Sphere S2. We will identify points onS2 := {x ∈R3 : ‖x‖ = 1} with points on C through the stereograhic projec-
tion. The north pole on S2 will be identified as ∞.

2. Projective Line CP1. We denote the set of all one-dimensional subspaces in C2 by CP1. We shall indentify points z ∈ C
with the subspace 〈(z,1)〉 ⊆C2. Then the point of infinity is identified as the subspace 〈(1,0)〉.

4.1.1 Riemann Sphere.

We begin our discussion with the stereograhic projection.

68
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N

O

M

P

C

S2

Figure 4.1: Stereographic Projection.

Definition 4.1. Stereographic Projection.

Consider the unit sphere S2 := {x ∈ R3 : ‖x‖ = 1} in R3. Let N (0,0,1) be the north pole of S2. We view the complex plane
C as a copy of R2 in R3: {(x, y,0) ∈ R3 : x, y ∈ R}. Given a point M ∈ S2 \ {N }, the line connecting N and M has a unique
intersection with C at P . The mapping M 7→ P is a bijection between S2 \ {N } and C, and is called the stereographic
projection.

Remark. By some simple calculations the stereographic projection is given explicitly by:

(X ,Y , Z ) 7→ X +Y i

1−Z

The inverse mapping is given by:

x + iy 7→ 1

x2 + y2 +1

(
2x,2y, x2 + y2 −1

)= 1

|z|2 +1
(2Re z,2Im z, |z|2 −1)

Definition 4.2. Riemann Sphere.

If we identify N with ∞ on the plane, then the stereographic projection becomes a bijection between S2 and C∞. The
sphere S2 is called the Riemann sphere.

Lemma 4.3

As a subset R3, the Riemann sphere S2 is naturally a metric space. It induces a metric on C∞:

d(z, w) = 2|z −w |√
1+|z|2

√
1+|w |2

, d(z,∞) = 2√
1+|z|2

for any z, w ∈C.

Proof. For convenience, we denote the image of z ∈ C under the inverse mapping of stereographic projection by S(z). Then
from the previous remark we have

S(z) = 1

|z|2 +1
(2Re(z),2Im(z), |z|2 −1)

For z, w ∈C,

d(z, w) := ‖S(z)−S(w)‖ =
√

2−2S(z) ·S(w)

=
√

2− 2

(|z|2 +1)(|w |2 +1)
(2Re(z),2Im(z), |z|2 −1) · (2Re(w),2Im(w), |w |2 −1)

=
√

2− 8Re(zw)+8Im(zw)+2(|z|2 −1)(|w |2 −1)

(|z|2 +1)(|w |2 +1)

=
√

4|z|2 +4|w |2 −4(zw + zw)

(|z|2 +1)(|w |2 +1)
= 2|z −w |√

1+|z|2
√

1+|w |2
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d(z,∞) := ‖S(z)− (0,0,1)‖ =
√

2−2S(z) · (0,0,1)

=
√

2−2
|z|2 −1

1+|z|2 = 2√
1+|z|2

Remark. We have made C∞ into a metric space, so that we can define continuity of functions on C̃. We can also see that
S(z) →N (0,0,1) as |z|→∞, so it is legitimate to identify N with ∞. In particular, a meromorphic function f : U →C naturally
extends to a continuous function from U to C∞.

Remark. The geometry of Riemann sphere nicely unites lines and circles on the complex plane, as shown in the following
proposition:

Proposition 4.4

The mapping S :C→S2 induces the following bijective correspondence:

(i) Lines in C⇔ circles in S2 containing N ;

(ii) Circles in C⇔ circles in S2 not containing N .

Proof. This is purely calculation in analytic geometry. A circle on S2 is obtained by intersecting the sphere with a plane
{(X ,Y , Z ) ∈R3 : aX +bY + c Z = d} where a2 +b2 + c2 > d 2. The plane contains N (0,0,1) if and only if c = d .

For z = x + iy ∈C, S(z) lies in the above plane, if and only if:

2ax +2by + c(x2 + y2 −1) = d(x2 + y2 +1)

⇔(c −d)(x2 + y2)+2ax +2by − (c +d) = 0

We can see that this is the equation of a line for c = d . If c 6= d , the equation simplifies to(
x + a

c −d

)2
+

(
y + b

c −d

)2

= a2 +b2 + c2 −d 2

(c −d)2 (4.1)

The RHS>0. It is indeed an equation of a circle. Hence circles on S2 corresponds to circles and lines in C.

Conversely, for a line in C, its equation can certainly be expressed as 2ax +2by = c +d , which corresponds to a circle
on S2 containing N . For a circle in C of the form (x + A)2 + (y +B)2 = C 2, we put c − d = 1 and a = A,b = B ,c =
(C 2 − A2 −B 2 +1)/2. Then the equation of the circle becomes Equation (4.1). So it corresponds to a circle on S2 not
containing N .

Proposition 4.5

Suppose U ∈C is a domain. Then U is simply-connected if and only if C∞ \U is connected.

Proof. "⇐=": Suppose C∞ \U is connected. Let γ be a closed path in U and V be the exterior of γ. Then V is connected and
has ∞ as its limit point. Since C∞ \U ⊆C∞ \γ∗ is connected and contains ∞, we have C∞ \U ⊆V ∪ {∞}. Therefore, we
have I (γ, z) = 0 for all z ∈C \U . Hence the interior of γ is contained in U . Since γ is arbitrary, by Proposition 1.38, U is
simply-connected.

"=⇒": See the Appendix B.1 of [Stein].

4.1.2 Projective Line.

Definition 4.6. Projective Line.

The complex projective line CP1 is defined by the set of all one-dimensional subspaces of C2. The subspace generated
by (z, w) ∈ C2 \ {0} would be denoted by [z : w]. The coordinates z, w are called homogeneous coordinates, which are
determined up to simultaneous rescaling.

The mapping that identifies z ∈Cwith [z : 1] ∈CP1 is a bijection between C and CP1 \ {[1 : 0]}. If we identify ∞ with [1 : 0],
then the mapping becomes a bijection between C∞ and CP1.
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Lemma 4.7

C̃ (equipped with the mertic induced by S2) induces a metric on CP1:

d(L1,L2) = 2

√
1− |〈u, v〉|2

‖u‖2‖v‖2

for any u ∈ L1 \ {0} and v ∈ L2 \ {0}.

Proof. Just some simple calculations.

Definition 4.8. Differentiability on CP1.

Now we wish to introduce a differential structure on CP1.

Let U0 :=CP1 \ {[1 : 0]} and U∞ :=CP1 \ {[0 : 1]} be two subsets of CP1. Then the mapping ι0(z) := [z : 1] and ι∞(z) := [1 : z]
are two embeddings from C into CP1, whose images are exactly U0 and U∞. We also have CP1 =U0∪U∞. We say that V ∈
CP1 is an open set, if both ι−1

0 (V ) and ι−1∞ (V ) are open sets inC. This makesCP1 a one-dimensional smooth complex man-
ifold or a Riemann surface. More explicitly, (U0, ι−1

0 ) and (U∞, ι−1∞ ) are two coordinate charts, and {(U0, ι−1
0 ), (U∞, ι−1∞ )} is

an altas of CP1 (check that it meets all the definitions).

Suppose V ⊆ CP1 is open. Suppose f : V → CP1 is continuous. For L ∈ V and f (L) ∈ CP1, we have L ∈Uα and f (L) ∈Uβ

for some α,β ∈ {0,∞}. Now f induces a mapping f̃ : ι−1
α (V ) →C via the following diagram:

V ∩Uα ι−1
α (V )

Uβ C

ι−1
α

f f̃

ιβ

We say that f is differentiable at L ∈ CP1, if f̃ := ι−1
β

◦ f ◦ ια : ι−1
α (V ) → C is differentiable at ι−1

α (L) ∈ C. (One should check
that this is well-defined and is independent of the choice of Uα and Uβ.)

If we identify C∞ with CP1, then the above discussion defines holomorphic functions on C∞.

Remark. The above definition uses the language of differential geometry. It is essentially saying that, a function f :C∞ →C is
differentiable at z0 ∈C∞, if:

1. z0, f (z0) 6=∞: f is differentiable under the usual definition;

2. z0 =∞, f (z0) 6=∞: g (z) := f (1/z) is differentiable at 0;

3. z0 6=∞, f (z0) =∞: g (z) := 1/ f (z) is differentiable at z0;

4. z0 = f (z0) =∞: g (z) := 1/ f (1/z) is differentiable at 0.

Proposition 4.9

(i) f :C∞ →C is holomorphic (in the sense of Definition 4.8) if and only if f ◦ ι0 is constant;

(ii) Suppose f :C→C∞ is non-constant. Then f is holomorphic (in the sense of Definition 4.8) if and only if ι−1
0 ◦ f is

meromorphic;

(iii) Suppose f :C∞ →C∞ is non-constant. Then f is holomorphic (in the sense of Definition 4.8) if and only if ι−1
0 ◦ f ◦ι0

is a rational function.

Proof. (i): The backward argument is trivial. For the forward argument, since C∞ is compact and f is continuous, then f (C∞)
is bounded. By Liouville’s Theorem, f is constant.

(ii): The backward argument is trivial. For the forward argument, it suffices to show that if f (z0) = ∞ = [1 : 0] then
z0 is a pole of ι−1

0 ◦ f . By continuity of f at z0, there exists r > 0 such that f (z) 6= 0 = [0 : 1] for z ∈ B(z0,r ). Hence
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f (B(z0,r ) \ {0}) ⊆U∞∩U0. Let f∞ := ι−1∞ ◦ f and f0 := ι−1
0 ◦ f . Then f∞(z) = 1/ f0(z) for z ∈ B(z0,r ) \ {z0} and f∞(z) = 0.

Hence z0 is a pole of f0.

(iii): The backward argument is trivial. For the forward argument, since f is holomorphic, then f̄ := ι−1
0 ◦ f ◦ ι0 is a

meromorphic function with ∞ as a pole or removable singularity. Since C∞ is compact and the singularities of f̄ are
isolated, f̄ can only have finitely many poles. By Mittag-Leffler Theorem, there exists a meromorphic function g with
the same poles and orders. Hence f̄ − g is holomorphic and bounded on C. By Liouville’s Theorem, f̄ (z)− g (z) = c
is constant. Moreover, g is given by a finite sum of some rational functions. Hence f̄ (z) = g (z)+ c is also a rational
function.

Remark. A meromorphic function is said to be transcendental, if it is not a rational function. As a corollary of the previous
proposition, a transcendental meromorphic function either has ∞ as an essential singularity, or as a limit of poles.

4.2 Conformal Equivalence and Möbius Transformations

In this chapter we will shift our focus from analysis to geometry. The main problem is that, given two open sets U and V in
C, if there exists a holomorphic bijection between these sets. We begin with the definition of conformal mappings, which are
mappings that preserve angles. Informally stated, suppose there are two rays γ1 and γ2 starting at z0. We can define the angle
between the two rays by the difference of their arguments at z0. We say that f is angle-preserving at z0, if f ◦γ1 and f ◦γ2 make
the same angle at z0 as γ1 and γ2 do. The formal definition is as follows:

4.2.1 Conformal Equivalence.

Definition 4.10. Angle Preservation.

Suppose that U ⊆C is open and f : U →C is a function. For z0 ∈U , suppose z0 has a deleted neighbourhood B(z0,r )\{z0}
such that f (z0) ∉ f (B(z0,r ) \ {z0}) (i.e. f is locally injective at z0). We say that f preserves angle at z0, if the limit

lim
r→0

e−iθ f (z0 + r eiθ)− f (z0)∣∣ f (z0 + r eiθ)− f (z0)
∣∣

exists and is independent of θ.

Proposition 4.11

Suppose f : U ⊆C is a function. For z0 ∈U ,

(i) If f is complex differentiable at z0 and f ′(z0) 6= 0, then f preserves angle at z0;

(ii) If f is real differentiable (as a mapping U → R2) at z0 with d fz0 6= 0 and preserves angle at z0, then f is complex
differentiable at z0 and f ′(z0) 6= 0.

Proof. (i): Suppose f ′(z0) = a. Then the limit

lim
r→0

f (z0 + r eiθ)− f (z0)

r eiθ
= a

holds for any θ ∈R.

Then the limit is given by

lim
r→0

e−iθ f (z0 + r eiθ)− f (z0)∣∣ f (z0 + r eiθ)− f (z0)
∣∣ = a lim

r→0

r∣∣ f (z0 + r eiθ)− f (z0)
∣∣ = a

|a|

Hence f preserves angle at z0.

(ii): Since f is real differentiable at z0, we can write

f (z) = f (z0)+λ(z − z0)+η(
z − z0

)+|z| ·O(z) λ,η ∈C

One can check that this is equivalent to real differentiability at z0.
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Angle preservation at z0 implies that:

α= lim
r→0

e−iθ f (z0 + r eiθ)− f (z0)∣∣ f (z0 + r eiθ)− f (z0)
∣∣ = lim

r→0
e−iθ λr eiθ+ηr e−iθ∣∣λr eiθ+ηr e−iθ

∣∣ = λ+ηe−2iθ∣∣λ+ηe−2iθ
∣∣

The value of α is independent of θ. We can infer that η= 0. Since d f0 6= 0, we must have λ 6= 0. Hence

f (z) = f (z0)+λ(z − z0)+|z| ·O(z)

We conclude that f is complex differentiable at z0 with f ′(z0) =λ 6= 0.

Remark. Under our definition, there exists angle-preserving mappings which are not holomorphic. For example, f (z) = z|z|
preserves angle at z = 0 and the differential at that point is a zero map, but clearly f is not holomorphic at z = 0.

Definition 4.12. Conformal Mapping.

We say that f is a conformal mapping, if f is holomorphic with non-vanishing derivatives.

Corollary 4.13

A conformal mapping preserves angle at every point in its domain.

Remark. If f : U → C is holomorphic and injective, then we must have f ′(z) 6= 0 for all z ∈U . Hence biholomorphisms (and
their inverses) are conformal mappings.

Definition 4.14. Conformal Equivalence.

Suppose U ,V ∈C are two open sets. We say that U and V are conformally equivalent, if there exists a bijective conformal
mapping f : U →V .

4.2.2 Möbius Transformations.

Definition 4.15. Projective General Linear Group PGL(2,C).

The General Linear Group GL(2,C) is the group of all invertible linear operators in C2 with compositions. That is,

GL(2,C) :=
{(

a b
c d

)
: a,b,c,d ∈C; ad −bc 6= 0

}
GL(2,C) acts naturally on C2 and hence on CP1. The operators that fix all elements of CP1 are exactly all the scalar
multiplications, Z(2,C), which is exactly the center of GL(2,C). The quotient group, GL(2,C)/Z (2,C), which is the group of
all invertiable projective transformations inCP1, is called the projective general linear group and is denoted by PGL(2,C).

Remark. Now let us calculate the action of PGL(2,C) on CP1. For

f =
(

a b
c d

)
∈ GL(2,C)

it induces f̄ ∈ PGL(2,C). For [z,1] ∈CP1:

f̄ ([z,1]) =
[(

a b
c d

)(
z
1

)]
= [az +b : cz +d ] =

[
az +b

cz +d
: 1

]
(z 6= −d/c)

(If z =−d/c, then f̄ ([z : 1]) = [1 : 0].)

For [1,0] ∈CP1,
f̄ ([1,0]) = [a : c] = [a/c : 1]

If we identify CP1 with C∞, then PGL(2,C) is isomorphic to a group of automorphisms on C∞, namely the Möbius transforma-
tions.
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Definition 4.16. Möbius Transformations.

For a,b,c,d ∈ C such that ad −bc 6= 0, the following mapping on C∞ are called the fractral linear transformations or the
Möbius transformations:

z 7→ az +b

cz +d
, ∞ 7→ a

c

All Möbius transformations forms a group under mapping compositions, which is denoted by Mob. From the previous
remark we have Mob ∼= PGL(2,C).

Definition 4.17. Dilations, Translations, and Inversion

There are three special types of Möbius transformations:

• For a ∈C\ {0}, z 7→ az is called a dilation.

• For b ∈C, z 7→ z +b is called a translation.

• z 7→ z−1 is called inversion.

Lemma 4.18

Any Möbius transformation is a composition of dilations, translations, and an inversion.

Proof. Suppose f (z) = az +b

cz +d
is a Möbius transformation. If c 6= 0, we observe that

f (z) = az +b

cz +d
= a

c
+

(
b − ad

c

)
1

cz +d
= t1 ◦d1 ◦ i ◦ t2 ◦d2(z)

where
d2(z) = cz, t2(z) = z +d , i (z) = z−1, d1(z) = (b −ad/c)z, t1(z) = z +a/c

If c = 0, we trivially have f (z) = a/d + (b/d)z.

Remark. The subgroup of Mob generated by translations and dilations is the group of C-affine transformations Aff(C) :=
{ f (z) = az +b : a 6= 0} of the complex plane. It is the automorphism group of C (see 4.44) and is the stablizer of ∞ in Mob.

Proposition 4.19

Möbius transformation f (z) = az +b

cz +d
is a biholomorphism on C∞.

Proof. Trivial.

Now we shall explore some geometric properties of the Möbius transformations.

Proposition 4.20

Möbius transformations preserve circles in S2 (which are circles or lines on C by Proposition 4.4).

Proof. It suffices to prove that circles in S2 are preserved under dilations, translations, and inversion. The first two cases are
trivial. For the inversion mapping f (z) = 1/z = z̄/|z|2, we apply the inverse stereographic mapping:

z 7→ 1

|z|2 +1
(2Re z,2Im z, |z|2 −1);

z̄

|z|2 7→ 1
1

|z|2 +1

(
2

1

|z|2 Re z,−2
1

|z|2 Im z,
1

|z|2 −1

)
= 1

|z|2 +1
(2Re z,−2Im z,1−|z|2)

Hence f induces a transformation (x, y, z) 7→ (x,−y,−z) on S2, which is a rotation about the x-axis by π and certainly
preserves circles in S2.
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Proposition 4.21

Given two triples of distinct points z1, z2, z3 and w1, w2, w3 in C∞, there exists a unique Möbius transformation f such
that f (zi ) = wi for i = 1,2,3.

Proof. Consider the mapping f :C∞ →C∞ defined by

f (z) = (z − z1)(z2 − z3)

(z − z3)(z2 − z1)

It is a Möbius transformation and sends z1, z2, z3 to 0,1,∞. Similarly, consider g :C∞ →C∞ defined by

g (z) = (z −w1)(w2 −w3)

(z −w3)(w2 −w1)

which sends w1, w2, w3 to 0,1,∞.

Hence g−1 ◦ f is a Möbius transformation that sends z1, z2, z3 to w1, w2, w3.

For the uniqueness part, suppose h is another such mapping. Then g ◦h ◦ f −1 is a Möbius transformation that sends
0,1,∞ to 0,1,∞. Suppose

g ◦h ◦ f −1(z) = az +b

cz +d
We observe that

g ◦h ◦ f −1(0) = 0 =⇒ b = 0

g ◦h ◦ f −1(1) = 1 =⇒ a = (c +d)

g ◦h ◦ f −1(∞) =∞=⇒ c = 0

Therefore we have a = d and g ◦h ◦ f −1 = idC∞ =⇒ h = g−1 ◦ f .

Remark. The Möbius transformation f given in the previous proposition is very crucial. It motivates us to give the following
concept:

Definition 4.22. Cross Ratio.

For a quadruple of points z, z1, z2, z3 ∈C∞, we define the cross ratio of it to be

(z, z1, z2, z3) = (z − z1)(z2 − z3)

(z − z3)(z2 − z1)

Proposition 4.23. Möbius transformation preserves cross ratio.

Suppose f is a Möbius transformation that maps z1, z2, z3, z4 ∈C∞ to w1, w2, w3, w4 ∈C∞, then the cross ratio:

(z1, z2, z3, z4) = (w1, w2, w3, w4)

Proof. The only non-trivial case is that z2, z3, z4 are distinct. By Proposition 4.21, the unique mapping g−1 ◦ f maps z2, z3, z4

to w2, w3, w4. Since f (z) = (z, z2, z3, z4), g (z) = (z, w2, w3, w4), and g (w1) = f (z1), then we have

(z1, z2, z3, z4) = (w1, w2, w3, w4)

as claimed.

Definition 4.24. Symmetric Points.

Suppose that C ⊆C is a circle centered at a with radius r . We say that z, w ∈C∞ is a pair of symmetric points with respect
to C , if they lies on the same ray starting from a and satisfies

|z −a| · |w −a| = r 2

Suppose that L ⊆C is a line. r . We say that z, w ∈C∞ is a pair of symmetric points with respect to L if L is the perpendicular
bisector of z and w .
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Lemma 4.25

z and w are symmetric with respect to a circle C ∈C∞ (which is a circle or a line in C) if and only if the cross ratio

(w, z1, z2, z3) = (z, z1, z2, z3)

for any z1, z2, z3 ∈C .

Proof. We have to do some explicit calculations.

First, suppose that C is a line in C that passes through a and makes angle θ with the real axis. We have |z −a| = |w −a|
and arg(z −a)+arg(w −a) = 2θ (draw a diagram and do some middle school geometry). Hence

w −a = |w −a|eiarg(w−a) = |z −a|ei(2θ−arg(z−a)) = (z −a)e2iθ

=⇒ w = a + (z̄ − ā)e2iθ

Compute the cross ratio:

(w, z1, z2, z3) = (w − z1)(z2 − z3)

(w − z3)(z2 − z1)
= (a + (z̄ − ā)e2iθ−z1)(z2 − z3)

(a + (z̄ − ā)e2iθ−z3)(z2 − z1)

Since z1, z2, z3 ∈C , we have z j = a + (z̄ j − ā)e2iθ for j = 1,2,3. Then

(w, z1, z2, z3) = (a + (z̄ − ā)e2iθ−(a + (z̄1 − ā)e2iθ))(a + (z̄2 − ā)e2iθ−(a + (z̄3 − ā)e2iθ))

(a + (z̄ − ā)e2iθ−(a + (z̄3 − ā)e2iθ))(a + (z̄2 − ā)e2iθ−(a + (z̄1 − ā)e2iθ))

= (z̄ − z̄1)(z̄2 − z̄3)

(z̄ − z̄3)(z̄2 − z̄1)
= (z, z1, z2, z3)

Second, suppose that C is a circle inC centered at a with radius r . We have |z−a|·|w−a| = r 2 and arg(z−a) = arg(w−a).
Hence

w −a = |w −a|eiarg(w−a) = r 2

|z −a| eiarg(z−a) = r 2

(z −a)

=⇒ w = a + r 2

z̄ − ā
Compute the cross ratio:

(w, z1, z2, z3) = (w − z1)(z2 − z3)

(w − z3)(z2 − z1)
= (a + r 2

z̄−ā − z1)(z2 − z3)

(a + r 2

z̄−ā − z3)(z2 − z1)

=
(

1
z̄−ā − 1

z̄1−ā

)(
1

z̄2−ā − 1
z̄3−ā

)
(

1
z̄−ā − 1

z̄3−ā

)(
1

z̄2−ā − 1
z̄1−ā

) = (z̄ − z̄1)(z̄2 − z̄3)

(z̄ − z̄3)(z̄2 − z̄1)

= (z, z1, z2, z3)

Proposition 4.26. Möbius transformation preserves symmetric points.

Suppose f is a Möbius transformation. Suppose z1 and z2 are symmetric with respect to a circle C ∈C∞. Then f (z1) and
f (z2) are symmetric with respect to f (C ).

Proof. This is immediate by Lemma 4.25 and Proposition 4.23.

In next section, we shall see how we utilize Möbius transformations and other elementary functions to build up common
conformal mappings.

4.3 Examples of Conformal Mappings

Definition 4.27. Upper Half Plane; Unit Disk.

We will frequently encounter these special subsets of C in this chapter. For notational convenience, we writeH := {z ∈C :
Im z > 0} and D := B(0,1) = {z ∈C : |z| < 1}.
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4.3.1 Using Möbius Transformations.

Example 4.28

Find a conformal mapping fromH onto D.

Solution. We expressH as follows:

H= {z ∈C : Im(z) > 0} = {z ∈C : |z − i| < |z + i|} =
{

z ∈C :

∣∣∣∣ z − i

z + i

∣∣∣∣< 1

}
We immediately observe that the Möbius transformation

f (z) = z − i

z + i

is a conformal mapping fromH onto D. The inverse mapping from D ontoH is given by

f −1(z) = i
z −1

z +1

Remark. Some conformal mappings from other half planes to D are given by:

• From lower half plane to D: f (z) = z − i

z + i
;

• From left half plane to D: f (z) = z +1

z −1
;

• From right half plane to D: f (z) = z −1

z +1
(notice that this mapping is self-inverse).

Example 4.29

Find a conformal mapping fromH onto D that maps a ∈H to 0.

Solution. We can make use of Proposition 4.26 to find a Möbius transformation satisfying the conditions. Suppose f is such a
mapping. For a ∈H, the symmetric point of a is ā. As f should maps the real axis to the unit circle, f (a) and f (ā) are
symmetric with respect to the unit circle. f (a) = 0 implies f (ā) =∞. Hence we can choose

f (z) = z −a

z − ā

It is easy to observe that | f (z)| É 1 and that f ′(z) 6= 0. Then f is a conformal mapping. Moreover, f is unique up to
composition of dilations (this is obvious after we prove Riemann Mapping Theorem).

Example 4.30

For |a| < 1, find the conformal mapping from D onto D that swaps a with 0.

Solution. We again use Proposition 4.26 to construct a Möbius transformation. Suppose ϕa is such a mapping. For a ∈D, the
symmetric point of a is 1/ā. ϕa should fix the unit circle and maps a to 0. Hence ϕa(1/ā) =∞. We write

ϕa(z) =λ a − z

1− āz

where λ ∈C. Moreover, we have ϕa(0) = a. Hence a =λa =⇒λ= 1. The mapping with desired properties is given by

ϕa(z) = a − z

1− āz

Remark. The mapping ϕa constructed in the previous example is an automorphism of the unit disk. In next section we shall
prove that any automorphism of the disk is a composition of such mappings and rotations. Moreover,ϕa is self-inverse, which
means that ϕ2

a = idD or ϕa =ϕ−1
a .

Example 4.31

Find a conformal mapping from a cresent U := {z ∈C : |z| < 2, |z −1| > 1} onto a strip V := {w ∈C : −1 < Re w < 0}.
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Solution. We want a Möbius transformation that maps the circle |z −1| = 1 to the imaginary axis and maps circle |z| = 2 to the
line Re w =−2. By geometric intuitions, this could be done by mapping 0,2,−2 to 0,∞,−2, as shown in Figure 4.2.

Let f (z) =λ z

z −2
for some λ ∈C. Since f (−2) =−2, we have λ= 4. The desired mapping is given by f (z) = 4z

z −2
.

2O 1

1+ i

Re

Im

f−−−−−→ −2 O

Re

Im

Figure 4.2: Conformal mapping from a cresent area to a strip area.

Example 4.32

Find a conformal mapping from a lozenge-shaped area
{

z ∈C : |z − i| <p
2, |z + i| <p

2
}

onto the first quadrant {z ∈ C :
Re z > 0,Im z > 0}.

Solution. The lozenge area is bound by two arcs which intersects at −1 and 1. If we apply a Möbius transformation that maps
−1 to 0 and 1 to ∞, then the two arcs will be mapped to two rays starting from 0, and the image of the lozenge would

be a sector. Let f (z) = λ
z +1

z −1
for some λ ∈ C. Since Möbius transformation preserves angle at −1, we know that the

angle of the sector is exactly π/2. In order to map the lozenge onto the first quadrant, we may need a rotation, which is
determined by λ ∈ ∂B(0,1). f maps i−p

2 to a point on the real axis. Hence

Im f (i−p
2) = 0 =⇒ Im

(
λ

i−p
2+1

i−p
2−1

)
= 0 =⇒ Im(λ(i−1)) = 0

=⇒λ= (i+1)η for some η ∈R

We choose η = −1 (the sign is to ensure that f (0) lies in the first quadrant). Then the desired mapping is given by

f (z) = (i+1)
1+ z

1− z
.

1−1

i

−i

Re

Im

f−−−−−→
Re

Im

Figure 4.3: Conformal mapping from a lozenge to a sector.
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Upper Half PlaneH

Aut(H) =
{

f (z) = az +b

cz +d
: a,b,c,d ∈R, ad −bc = 1

}

Unit Disk D

f (z) = z − i

z + i

f (z) = i
z −1

z +1

Möbius
Transformations

Aut(D) =
{

f (z) = eiθ a − z

1−az
: θ ∈R, a ∈D

}

θ

Infinite Sector

f (z) = zθ/π

f (z) = zπ/θ

Functions
Power

Quarter Plane

Functions
Power

Upper Half Disk

Möbius
Transformations

f (z) =−1

2

(
z + 1

z

)

Joukowski
Transformation

θ

Circular Sector

Power
Functions

πi

Horizontal Semi-Infinite Strip

f (z) = exp z

f (z) = log z

Hyperbolic
Functions

−π
2

π
2

Vertical Semi-Infinite Strip

f (z) = sin z

f (z) = arcsin z

Trigonometric
Functions

Affine
Transformations

θi

Horizontal Infinite Strip

f (z) = exp z

f (z) = log z

Crescent Area

Möbius
Transformations

Polygonal Area

Schwarz-Christoffel
Mapping

−πi

πi

a b

A Special Square Schwarz-
Christoffel
Mapping

ea
eb

Annulus with a cut

f (z) = exp zf (z) = log z

Figure 4.4: Summary of Bihomomorphisms between Common Regions
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4.3.2 Using other Elementary Functions.

Example 4.33. Power Functions.

Consider the power function f (z) = zn for n ∈ Z+. f preserves angle everywhere except at z = 0, where angles are
magnified by a factor of n.

f maps the sector {z ∈ C : arg z ∈ (0,π/n)} to H, as shown in Figure 4.5. The inverse function f −1(z) = z1/n maps H to
{z ∈C : arg z ∈ (0,π/n)} (we need to take a branch cut in this case).

Re

Im

π/n

f : z 7→ zn

−−−−−−−−−−−−→

Re

Im

Figure 4.5: Conformal mapping from a sector toH.

Example 4.34. Exponential Function.

The exponential function exp z is conformal everywhere. It maps the vertical line x = a to the circle |z| = ea , and maps
the horizontal line y = b to the ray arg z = c.

Therefore exp z maps the vertical strip {z ∈C : Re z ∈ (a,b)} to the annulus A(0,ea ,eb) (this mapping is not injective!), and
maps the horizontal strip {z ∈C : Im z ∈ (c,d)} to the sector {z ∈C : arg z ∈ (c,d)}, as shown in Figure 4.6.

In reverse log z can maps a sector to a vertical strip, but again we should choose the branch cut carefully.

a b Re

Im

z 7→ exp z−−−−−−−−−−−−→
ea

eb

Re

Im

c

d

Re

Im

z 7→ exp z−−−−−−−−−−−−→

Re

Im

d − c

Figure 4.6: Conformal mapping of strips by exponential function.

Example 4.35. Trigonometric Functions.

The cosine function cos z = (eiz +e−iz )/2 is conformal everywhere. Consider the strip area U := {z ∈C : Re z ∈ (0,π), Im z >
0}. We would like to investigate how cos z maps the boundary lines. It is obvious that cos z maps (0,π) to (−1,1) with
orientation reversed. For positive imaginary axis, notice that

cos(iy) = cosh y ∈ (1,∞) for y > 0
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Hence cos z maps the positive imaginary axis to (1,∞). For the half-line {z ∈C : Re z =π, Im z > 0}, notice that

cos(π+ iy) =−cosh y ∈ (−∞,−1) for y > 0

Hence cos z maps the half-line to (−1,∞). In conclusion, cos z maps ∂U to the entire real axis. However, it is still unclear
whether cos z maps U to the upper half plane or the lower half plane. So consider z = π/2+ iy for some y > 0. Then
cos(π/2+iy) =−sin(iy) =−isinh y has a negative imaginary part. Hence we conclude that cos z maps U to the lower half
plane, as shown in Figure 4.7.

Similarly, the hyperbolic function cosh z maps a horizontal semi-infinite strip to a half plane.

πO
Re

Im

z 7→ cos z−−−−−−−−−−−−→
−1 1 Re

Im

π/2−π/2 O
Re

Im

z 7→ sin z−−−−−−−−−−−→
−1 1 Re

Im

Figure 4.7: Conformal mapping by trigonometric functions.

Example 4.36. Joukowsky Transformation.

The simplest form of Joukowsky Transformation is given by:

f (z) = 1

2

(
z + 1

z

)

The derivative is given by f ′(z) = 1

2

(
1− 1

z2

)
. Hence the mapping is holomorphic on C \ {0} and preserves angle every-

where except at z =±1. If we put w = f (z), then

2w z = z2 +1 or
w +1

w −1
=

(
z +1

z −1

)2

We can regard the Joukowsky transformation as the composition g−1 ◦h ◦ g , where g (z) := z +1

z −1
maps the left half plane

to the unit disk and h(z) := z2 doubles the angles subtended at 0.

Suppose that z = r eiθ is mapped to w = u + iv . Then

u = 1

2
(r + r−1)cosθ v = 1

2
(r − r−1)sinθ

The circles {z ∈C : |z| = ρ} (ρ > 0) are mapped to

u2

1
4 (ρ+ρ−1)2

+ v2

1
4 (ρ+ρ−1)2

= 1

which are ellipses on the plane for ρ 6= 1. When ρ = 1, the Joukowsky transformation maps the unit circle to (−1,1), as
shown in Figure 4.8. In particular, Joukowsky transformation maps the unit diskD to the "cut plane"C\[−1,1], and maps
the upper unit disk {z ∈C : |z| < 1,Im z > 0} to the lower half plane {z ∈C : Im z < 0}.

The Joukowsky transformation is important in fluid dynamics as it maps certain circles to aerofoil shapes, as shown in
Figure 4.8.
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1−1 Re

Im

z 7→ 1
2

(
z + 1

z

)
−−−−−−−−−−−−−−−→ 1−1 Re

Im

−1 Re

Im

z 7→ 1
2

(
z + 1

z

)
−−−−−−−−−−−−−−−→

Re

Im

−1

Figure 4.8: Joukowsky Transformation.

4.4 Automorphism Groups*

Definition 4.37. Automorphisms.

A conformal mapping from an open set U onto itself is called an automorphism on U . The set of all automorphisms on
U forms a group Aut(U ).

4.4.1 Automorphisms of the Unit Disk.

We begin with discussion of the automorphisms on the unit disk D.

Lemma 4.38. Schwarz’s Lemma.

Suppose that f :D→D is holomorphic with f (0) = 0. Then we have:

(i) | f (z)| É |z| for all z ∈D;

(ii) | f ′(0)| É 1;

(iii) if ∃z0 ∈D\ {0}
(| f (z0)| = |z0|

)
or | f ′(0)| = 1, then f is a rotation.

That is, f (z) = eiθ z for some θ ∈ [0,2π].

Proof. (i). Let g : D \ {0} → D defined by g (z) = f (z)/z. Notice that z = 0 is a zero of f of multiplicity at least 1. So z = 0 is a
removable singularity of g . If we put g (0) = f ′(0), then g is holomorphic on D. Fix r ∈ (0,1), then by Corollary 2.11:

sup
z∈B(0,r )

|g (z)| = sup
z∈∂B(0,r )

|g (z)| = sup
|z|=r

| f (z)|
|z| É 1

r

We let r → 1 and obtain sup
z∈D

|g (z)| É 1. Hence | f (z)| É |z| for all z ∈D.

(ii). This is immediate as | f ′(0)| = |g (0)| É 1.

(iii). First we assume that ∃z0 ∈D\{0}
(| f (z0)| = |z0|

)
. Then g attains maximum modulus 1 at some z0 ∈D. By Maximum

Modulus Principle, g is constant. Hence f (z) = cz for some c ∈ C. Since |g (z0)| = |c| = 1, we can write c = eiθ and
conclude that f is a rotation.

Second, we assume that | f ′(0)| = 1. This implies that g (0) = 1 and g attains maximum modulus 1 at z = 0. By the similar
argument, f is a rotation.
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Remark. We have shown that the Möbius transformation

ϕa(z) = a − z

1− āz

is an automorphism of D that swaps a ∈Dwith 0. Schwarz’s Lemma can be generalized as follows:

Corollary 4.39. Schwarz-Pick Lemma.

Suppose that f :D→D is holomorphic with f (a) = b for some a,b ∈D, then:

(i) |ϕb ◦ f (z)| É |ϕa(z)| for all z ∈D;

(ii) | f ′(a)| É 1−|b|2
1−|a|2 ;

(iii) if ∃z0 ∈D\ {a} (|ϕb ◦ f (z0)| = |ϕa(z0)|) or | f ′(a)| = 1−|b|2
1−|a|2 , then f ∈ Aut(D).

Proof. Let g := ϕb ◦ f ◦ϕa . Then g is an automorphism of D and g (0) = ϕb ◦ f ◦ϕa(0) = ϕb ◦ f (a) = ϕb(b) = 0. We can apply
Schwarz’s Lemma to g .

(i). By Schwarz’s Lemma (i), |g (z)| É |z| =⇒ |ϕb ◦ f ◦ϕa(z)| É |z| =⇒ |ϕb ◦ f (z)| É |ϕa(z)|.
(ii). By Schwarz’s Lemma (ii), |g ′(0)| É 1, where

g ′(0) =ϕ′
b(b) · f ′(a) ·ϕ′

a(0)

= f ′(a) ·
( |b|2 −1

(1− b̄z)2

)
z=b

·
( |a|2 −1

(1− āz)2

)
z=0

= f ′(a) · 1−|a|2
1−|b|2

Hence | f ′(a)| É 1−|b|2
1−|a|2 .

(iii). If ∃z0 ∈ D \ {a} (|ϕb ◦ f (z0)| = |ϕa(z0)|), then |g (z0)| = |z0|. If | f ′(a)| = 1−|b|2
1−|a|2 , then |g ′(0)| = 1. In either case we

deduce from Schwarz’s Lemma that g is an rotation. Hence f =ϕb ◦ g ◦ϕa ∈ Aut(D).

Theorem 4.40. Automorphism Group of the Unit Disk.

Aut(D) =
{

f (z) = eiθ a − z

1− āz
: θ ∈R, a ∈D

}
Proof. Suppose that f is an automorphism of D. Then there exists a unique a ∈D such that f (a) = 0. Let g := f ◦ϕa . g is also

an automorphism of D. We have g (0) = f ◦ϕa(0) = f (a) = 0 and g−1(0) = 0. Apply Schwarz’s Lemma to g and g−1:

∀z ∈D : |g (z)| É |z|, |g−1(z)| É |z|
=⇒∀z ∈D : |g (z)| É |z|, |z| É |g (z)|
=⇒∀z ∈D : |g (z)| = |z|

Hence by Schwarz’s Lemma (iii), g is a rotation. There exists θ ∈ [0,2π] such that g (z) = eiθ z. Hence f (z) = g ◦ϕ−1
a (z) =

eiθ a − z

1− āz
as claimed.

Corollary 4.41

The only mappings in Aut(D) that fix the origin are the rotations.

Remark. We can see that Aut(D) acts transitively on D in the sense that for any a,b ∈D, we have ϕa ,ϕb ∈ Aut(D) and ϕb ◦ϕa :
a 7→ b.
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4.4.2 Automorphisms of the Upper Half Plane.

We have proven in Example 4.28 and 4.29 that H and D are conformally equivalent. This leads to the group isomorphism
Aut(D) ∼= Aut(H) via Γ : Aut(D) → Aut(H) defined by conjugation Γ(ψ) = f −1 ◦ψ◦ f , where f is any conformal mapping from H

onto D. In the next theorem, we shall give the elements of the group Aut(H) and show that it is isomorphic to PSL(2,R).

Definition 4.42. Projective Special Linear Group PSL(2,R).

The Special Linear Group SL(2,R) is the group of all linear operators in R2 with determinant 1. That is,

SL(2,R) :=
{(

a b
c d

)
: a,b,c,d ∈R; ad −bc = 1

}
Just like PGL(2,C), PSL(2,R) is the group of all special projective transformations in RP1:

PSL(2,R) = SL(2,R)/{I ,−I }

Remark. We recall from Definition 4.16 that Mob ∼= PGL(2,C). We should warn readers that, while PSL(2,C) = PGL(2,C),
in fact PSL(2,R) < PGL(2,R). This corresponds to RP1 being orientable, and PSL(2,R) only being the orientation-preserving
transformations.

Theorem 4.43. Automorphism Group of the Upper Half Plane.

Aut(H) =
{

f (z) = az +b

cz +d
: a,b,c,d ∈R, ad −bc = 1

}
∼= PSL(2,R)

Proof. Let SL(2,R) acts onH by

M =
(

a b
c d

)
7→ fM (z) = az +b

cz +d

It is easy to check that fM (H) ⊆H and that fM ◦ fN = fM N , f I = idH so that this is indeed a group action. In particular,
fM ∈ Aut(H) for every M ∈ SL(2,R) as it has a holomorphic inverse fM−1 .

First we shall prove that the group action is transitive. It suffices to prove that ∀α ∈H ∃M ∈ SL(2,R) : fM (α) = i. Notice
that

M =
(

Reα −|α|2
Imα 0

)
∈ SL(2,R), fM (α) = αReα−|α|2

α Imα
= i

Next, for θ ∈R, let Mθ ∈ SL(2,R) defined by the rotation

Mθ :=
(
cosθ −sinθ
sinθ cosθ

)

And let F := z − i

z + i
be a conformal mapping fromH onto D. Then F ◦ fMθ

◦F−1(z) = e−2iθ z is a rotation on D.

Finally, for any automorphism f ∈ Aut(H), suppose that f (i) = α. There exists N ∈ SL(2,R) such that fN (α) = i. Hence
fN ◦ f (i) = i. Since F maps i to 0, F ◦ fN ◦ f ◦F−1 ∈ Aut(D) fixes the origin. By Corollary 4.41, this is a rotation. Hence
there exists θ ∈R such that F ◦ fN ◦ f ◦F−1 = F ◦ fMθ

◦F−1. Hence f = f −1
N ◦ fMθ

= fN−1Mθ
. There exists a,b,c,d ∈R with

ad −bc = 1 such that f (z) = az +b

cz +d
.

4.4.3 Automorphisms of the Complex Plane.

Theorem 4.44. Automorphism Group of the Complex Plane.

Aut(C) = { f (z) = az +b : a,b ∈C, a 6= 0} = Aff(C)

Proof. Suppose that f ∈ Aut(C). We first show that ∞ cannot be an essential singularity of f . Suppose for contradiction that
∞ is an essential singularity. Let g (z) := f (1/z). Then g has an essential singularity at z = 0. By Casorati-Weierstrass
Theorem, g (D \ {0}) is dense in C. Notice that the inversion z 7→ 1/z maps C \ B(0,1) to B(0,1) \ {0} = D \ {0}. Therefore
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f (C \ B(0,1)) is dense in C. Since f is continuous and bijective, it maps the closure of C \ B(0,1) to the closure of f (C \
B(0,1)) 1, which implies that f (C\ B(0,1)) =C. Hence f cannot be injective, contradicting that f is an automorphism.

We know that ∞ is a removable singularity or a pole of f . By Proposition 4.9 (iii), f is a rational function. Moreover f
must be a polynomial since it is holomorphic on C. By injectivity of f let f −1(0) = b ∈ C. Then f (z) = a(z −b)n where
n = deg f and a ∈ C. If n Ê 2, then f cannot be injective, as f (b + 1) = f (b + e2πi/n) = a. Hence f = az +b for some
a,b ∈C.

Remark. Notice that we define Aut(C) to be the group of all biholomorphisms on C, It should not be confused with the group
of all (continuous) field automorphisms of C, which appears in field theory and sometimes shares the same notation.

4.4.4 Automorphisms of the Extended Complex Plane.

Theorem 4.45. Automorphism Group of the Extended Complex Plane.

Aut(C∞) = { f (z) = az +b

cz +d
: a,b,c,d ∈C, ad −bc 6= 0} = Mob

Proof. Suppose that f ∈ Aut(C∞) and that f (∞) =∞. Since f is bijective we have f |C ∈ Aut(C) (more rigorously f ◦ ι0 ∈ Aut(C)).
By Theorem 4.44 we have f (z) = az +b for some a,b ∈C.

Suppose that f ∈ Aut(C∞) and that f (∞) = z0 ∈C. Then g (z) := 1/( f (z)−z0) satisfies g (∞) =∞. Hence g (z) = cz+d for
some c,d ∈C.

cz +d = 1

f (z)− z0
=⇒ f (z) = z0 + 1

cz +d
= az +b

cz +d

where a := cz0 and b := d z0 +1.

Remark. In this section we present four examples of automorphism groups: Aut(D), Aut(H), Aut(C) and Aut(C∞). We have
Aut(D) ∼= Aut(H), but they are not isomorphic to Aut(C) or Aut(C∞). They are all subgroups of Mob, the group of all Möbius
Transformations. The Uniformisation Theorem 4.55 tell us that these groups can completely discribe any automorphism
group of simply-connected domain in C∞ up to isomorphism.

4.4.5 Automorphisms of an Annulus.

Theorem 4.46. Automorphism Group of Annulus.

Suppose that A = A(0,r,R) is an annulus, where 0 < r < R <∞. Then we have

Aut(A) =
{

f (z) = eiθ z or eiθ Rr

z
: θ ∈R

}

We will present the proof in next section, after we prove the generalized Schwarz Reflection Principle.

4.5 Schwarz Reflection Principle*

In this section we will investigate holomorphic extension of functions and its application in constructing conformal mappings.
The key theorem is Schwarz Reflection Theorem and its generalisation.

Lemma 4.47. Painlevé’s Theorem.

Suppose that U ⊆C is a domain and γ : [0,1] →C is a piecewise smooth path. Suppose that f : U →C is continuous on U
and holomorphic on U \γ∗. Then f is holomorphic in the whole U .

1We know that if f : X → Y is a continuous mapping between topological spaces, and Z ⊆ X , then f (Z ) ⊆ f (Z ). Moreover, if f is bijective, then

Z = f −1( f (Z )) =⇒ f −1( f (Z )) ⊆ Z =⇒ f (Z ) ⊆ f (Z )

Hence we have f (Z ) = f (Z ).
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Sketch of Proof. It suffices to prove that f is holomorphic in any open disk B(z0,r ) ⊆ U . By Morera’s Theorem, it suffices to
prove that Cauchy’s Theorem holds for any triangle T ⊆ B(z0,r ):∮

T
f (z)dz = 0

γ∗ divides T into finitely many parts, each part is enclosed by a closed curve with a part of it on γ∗. For each closed
curve we choose the positive orientation to integrate so that the integral on γ∗ cancels out. Apply Cauchy’s Theorem to

each closed path and we obtain that
∮

T
f (z)dz = 0 as claimed.

Theorem 4.48. Schwarz Reflection Principle.

Suppose that U ⊆H is a domain with I = (a,b) ∈R∩∂U . Suppose that f : U ∪ I →C satisfies

1. f is continuous on U ∪ I ;

2. f is holomorphic in U ;

3. f is real-valued on I .

Then f can be holomorphically extended to U ′ ⊆ C, a domain symmetric to U with respect to the real axis, such that
f (z) = f (z̄) on U ′.

Proof. We extend f to U ′ by defining f (z) = f (z̄) on U ′. For x0 ∈ I , the limit from the lower part:

lim
U ′3z→x0

f (z) = lim
U3z→x0

f (z̄) = f (x0) = f (x0)

Hence f is continuous on U ∪ I ∪U ′.

To prove that f is holomorphic in U ′, for z, z0 ∈ U ′, we have z̄, z̄0 ∈ U . The Taylor expansion of f near z̄0 is given by
f (z̄) =∑

an(z̄ − z̄0)n , which implies that f (z) =∑
ān(z − z0)n . Hence f is analytic in U ∪U ′.

Now by Painlevé’s Theorem, f is holomorphic on U ∪ I ∪U ′.

We can replace R by any circle in C∞. Recall that symmetric in Definition 4.24 we give the definition of a pair of symmetric
points with repsect to a circle or line. We say that U and V are symmetric with respect to the circle or line, if V contains all the
symmetric points of points in U and vise versa.

Theorem 4.49. Schwarz Reflection Principle for a Circle.

Suppose that γ(z0,r ) is a path whose image γ∗ = ∂B(z0,r ) is a circle in C. We denote the two connected components of
C \γ∗ by Ω+ and Ω−. Suppose that U ⊆Ω+ is a domain such that I := ∂U ∩γ∗ is non-empty. Suppose that f : U ∪ I →C

satisfies

1. f is continuous on U ∪ I ;

2. f is holomorphic in U ;

3. f (I ) ⊆ Γ∗ := ∂B(w0,ρ);

4. w0 ∉ f (U ).

Then f can be holomorphically extended to U ′ ⊆Ω−, a domain symmetric to U with respect to γ∗, such that f maps a
pair of symmetric points with respect to γ∗ to a pair of symmetric points with respect to Γ∗.

Proof. By Lemma 4.25, we know that z is symmetric to z0+ r 2

z̄ − z̄0
with respect to B(z0,r ) and w is symmetric to w0+ ρ2

w̄ − w̄0
with

respect to B(w0,ρ). We define f on U ′ by

f (z) = w0 + ρ2

f

(
z0 + r 2

z̄ − z̄0

)
− w̄0

f is well defined on U ′ as w0 ∉ f (U ), which suggests that the denominator is never zero. Let w = f (z). Then we have

w0 + ρ2

w̄ − w̄0
= f

(
z0 + r 2

z̄ − z̄0

)
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Let φρ(w) := w0 + ρ2

w̄ − w̄0
and φr (z) := z0 + r 2

z̄ − z̄0
. Then φρ ◦ f (z) = φρ(w) = f ◦φr (z). Notice that φr and φρ are

self-inverse. For each open disk B(z1,δ) ⊆U ′, we can expand f (z) into power series near φr (z1) ∈U :

f ◦φr (z) =
∞∑

n=0
an(φr (z)−φr (z1))n =

∞∑
n=0

an

(
r 2

z̄ − z̄0
+ r 2

z̄1 − z̄0

)n

=
∞∑

n=0
anr 2n

(
z̄1 − z̄

(z̄ − z̄0)(z̄1 − z̄0)

)n

Hence

f (z) =φρ ◦ f ◦φr (z) =φρ
( ∞∑

n=0
anr 2n

(
z̄1 − z̄

(z̄ − z̄0)(z̄1 − z̄0)

)n)
= w0 + ρ2

∞∑
n=0

ānr 2n (z1 − z)n

(z − z0)n(z1 − z0)n − w̄0

Then f is holomorphic in U ′.

Next we prove that f is continuous on I . Fix any ζ ∈ I . For z ∈U ′, φr (z) ∈U . As z → ζ, we also have φr (z) → ζ. Since f is
continuous on U ∪ I , we have f ◦φr (z) → f (ζ) ∈ Γ∗. Then f (z) =φρ ◦ f ◦φr (z) → f (ζ). Hence f is continuous at ζ ∈ I .

By Painlevé’s Theorem, f is holomorphic on U ∪ I ∪U ′.

Remark. The theorem still holds if we replace γ∗ and Γ∗ by circles in C∞ (circles or lines in C). The proof is very similar and
we are not going to do it here.

Theorem 4.50. Conformal equivalence classes of annuli.

Let A(0,r,R) = {z : r < |z| < R} be an annulus with the smaller radius r and the larger radius R. In the case 0 < ri and
Ri <∞, A (0,r1,R1) and A (0,r2,R2) are conformally equivalent if and only if R1/r1 = R2/r2.

For the degenerate cases, the annulus A(0,0,∞) =C\ {0} is not conformally equivalent to any other annulus. The annuli
A(0,0,R) and A(0,r,∞) with r > 0 and R <∞ are conformally equivalent to each other and not equivalent to any other
annuli.

Proof. We first consider the non-degenerate case. Suppose that R1/r1 = R2/r2. Then f (z) = R2

R1
z maps A(0,r1,R1) bijectively

to A(0,r2,R2). Conversely, suppose that f : A(0,r1,R1) → A(0,r2,R2) is a biholomorphism. We claim that f extends to a
homeomorphism from A(0,r1,R1) to A(0,r2,R2). For the boundary behavior of biholomorphisms, we need to use the
tools discussed in Section 4.7. Since the boundary of A(0,r1,R1) is the union of two disjoint simple closed paths, with
some minor adaptation of Proposition 4.62 and Proposition 4.63 we can prove that the claim is true. In particular, f
maps ∂A(0,r1,R1) continuously and bijectively to ∂A(0,r2,R2).

Suppose that f maps ∂B(0,r1) to ∂B(0,r2) and maps ∂B(0,R1) to ∂B(0,R2). By Schwarz Reflection Theorem for a cir-
cle, we can "reflect" A(0,r1,R1) across ∂B(0,r1). Since R1 is symmetric to r 2

1 /R1 with respect to ∂B(0,r1), we extend

f holomorphically to A

(
0,

r 2
1

R1
,R1

)
. Now f is a biholomorphism from A

(
0,

r 2
1

R1
,R1

)
to A

(
0,

r 2
2

R2
,R2

)
. We repeat the re-

flection. After n times, f is a biholomorphism from A

(
0,R1

(
r1

R1

)2n

,R1

)
to A

(
0,R1

(
r2

R2

)2n

,R2

)
. Let n →∞. Then f is

biholomorphism from A(0,0,R1) to A(0,0,R2). In particular f maps 0 to 0. Then f is a biholomorphism from B(0,R1)
to B(0,R2). Let φ1(z) := z/R1 and φ2(z) := R2z. Then φ2 ◦ f ◦φ1 ∈ Aut(D). By Theorem 4.40, there exists θ ∈ R such that

f (z) = eiθ R2

R1
z. Hence we must have R1/r1 = R2/r2.

Suppose that f maps ∂B(0,r2) to ∂B(0,r1) and maps ∂B(0,R2) to ∂B(0,R1). Then g (z) := R2r2/ f (z) is a biholomorphism
that maps ∂B(0,r1) to ∂B(0,r2). We return to the previous case and conclude that R1/r1 = R2/r2.

Now we consider the degenerate case. f (z) = r2

r1
z is a biholomorphism from A(0,r1,∞) to A(0,r2,∞); f (z) = R2

R1
z is a

biholomorphism from A(0,0,R1) to A(0,0,R2); f (z) = Rr

z
is a biholomorphism from A(0,0,R) to A(0,r,∞). The remain-

ing parts are trivial if we again invoke the boundary correspondence. Suppose that A(0,0,R1) are conformally equiv-
alent to A(0,r2,R2) via biholomorphism f , where r2,R1,R2 ∈ (0,∞). Then f is a homeomorphism from ∂A(0,0,R1) =
{0}∪∂B(0,R1) tp ∂A(0,r2,R2) = ∂B(0,r2)∪∂B(0,R2). Such f cannot be bijective, contradiction. Similarly we can prove
that A(0,0,∞) is not conformally equivalent to any other annuli.
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Proof of Theorem 4.46. Suppose that f ∈ Aut(A). In the proof of Theorem 4.46, we have already shown that there are only two

cases about how f maps the boundary of A. They corresponds to f (z) = eiθ z and f (z) = eiθ Rr

z
respectively.

4.6 Riemann Mapping Theorem*

Theorem 4.51. Riemann Mapping Theorem.

Suppose that U (C is a simply-connected domain and z0 ∈U . Then there exists a unique bijective holomorphic function
f which maps U onto the unit disk D such that f (z0) = 0 and f ′(z0) > 0.

Remark. Riemann Mapping Theorem in fact implies that any two proper simply-connected domains in C are conformally
equivalent. This is a very profound result which establishes the connection between topological properties and holomorphic
properties. We regard this theorem as the cornerstone of the theory of simple-variable complex analysis.

4.6.1 Normal Families

Before proving Riemann Mapping Theorem we shall first introduce normal families and Montel’s Theorem.

Definition 4.52. Normal Families.

Suppose U ⊆ C is an open set. A set F of functions U → C is called a normal family, if any sequence in F has a subse-
quence that converges uniformly on every compact subset of U (the limit is not necessarily in F ). The convergence is
called normal convergence.

Theorem 4.53. Montel’s Theorem.

Suppose that F is a set of holomorphic functions on U such that F is uniformly bounded on any compact subset of U ,
then F is a normal family.

Proof. Since F is uniformly bounded, ther exists M > 0 such that | f (z)| É M for all z ∈U and f ∈F . Now we define a sequence
of compact subsets of U :

Kn :=
{

z ∈U : dist(z,C\U ) Ê 1

n

}
=

{
z ∈U : inf

w∈C\U
|z −w | Ê 1

n

}

It follows easily from definition that Kn ⊆ Kn+1 for n ∈Z+ and that
∞⋃

n=1
Kn =U . We say that {Kn} is an exhaustion of U .

First we shall prove that F is equicontinuous. For each compact subset Kn ∈ U , let r := 3 ·dist(Kn−1,Kn) > 0. For
z, w ∈ Kn such that |z − w | < r , we consider the circular path γ(z,2r ) which lies entirely in Kn+1 and apply Cauchy’s
Intgeral Formula to any given f ∈F :

f (z)− f (w) =
∮
γ(z,2r )

f (ζ)

(
1

ζ− z
− 1

ζ−w

)
dζ

Hence

| f (z)− f (w)| É 2πr sup
ζ∈∂B(z,2r )

∣∣∣ f (ζ)

(
1

ζ− z
− 1

ζ−w

)∣∣∣
É 2πr M sup

ζ∈∂B(z,2r )

|z −w |
|ζ− z| |ζ−w |

É 2πr M
|z −w |
2r · r

= 2πMr−1|z −w |

Let L := 2πMr−1 be a constant which only depends on K . Then | f (z)− f (w)| É L|z −w | for all f ∈ F and all z, w ∈ Kn

that is sufficiently closed. This is a uniform Lipschitz property of F and it implies that F is equicontinuous on Kn .

Next, suppose { fn} ⊆ F is a sequence. By Arzelà-Ascoli Theorem 0.75, { fn} has a subsequence { fs(1,n)} that converges
uniformly on K1 (without loss of generality we may assume that K1 6=∅), where n 7→ s(1,n) is an injective increasing
function on Z+.
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By the same argument { fs(1,n)} has a subsequence { fs(2,n)} that converges uniformly on K2. Inductively we obtain a
sequence of subsequences { fs( j ,n)}. By the diagonal argument, { fs(n,n)} is a subsequence of { fn} which converges uni-
formly on every Kn . We further notice that any compact subset of U lies entirely in some Kn . Hence we conclude that
{ fn} converges normally. F is a normal family.

Remark. Montel’s Theorem guarantees the existence of the limit function, but it says nothing about the behavior of the limit
function other than it is holomorphic. The following theorem gives a particular case which we can have some dichotomy
information about the limit function.

Theorem 4.54. Hurwitz’s Theorem.

Suppose that { fn} is a sequence of injective holomorphic functions on U . If fn converges normally to f on U , then f is
either injective or constant.

Proof. Suppose that f is non-constant. We argue for contradiction and suppose that f is not injective. There exists z1, z2 ∈U
such that f (z1) = f (z2). Let gn(z) := fn(z)− fn(z2) and g (z) = f (z)− f (z2). Since g is holomorphic, by identity theorem
the roots of g are isolated. There exists r > 0 such that g is non-zero in the deleted closed disk B(z1,r ) \ {z1}. We know
that fn → f normally on U . Therefore gn → g uniformly on B(z1,r ). Let

ε= inf
z∈∂B(z1,r )

|g (z)| > 0

By uniformly convergence, sup
z∈∂B(z1,r )

|gn(z)− g (z)| < ε for sufficiently large n.

It implies that |g (z)| > |gn(z)− g (z)| for all z ∈ ∂B(z1,r ). By Rouché’s Theorem, g (z) and gn(z) has the same number of
zeros in B(z1,r ). However, fn is injective and gn has no zeros in B(z1,r ), whereas g has one zero g (z1) = 0 in B(z1,r ).
This is a contradiction. Hence f is injective.

4.6.2 Proof and Consequences of RMT

Now we can proceed to the proof of Riemann Mapping Theorem.

Proof of Riemann Mapping Theorem. .

Step 1: U is conformally equivalent to a bounded simply-connected domain.

Since U 6=C, we pickα ∈C\U . Since U is simply-connected, by Proposition 1.38 (vii) we can define a holomorphic
function f (z) = log(z−α) on U , which has all the desired properties of logarithm. f is injective as exp◦ f (z) = z−α.
Fix any w ∈U . We claim that f (z) 6= f (w)+2πi for all z ∈U . If this is not the case, then f (z) = f (w) for some z ∈U .
Then

z −α= exp◦ f (z) = exp( f (w)+2πi) = w −α=⇒ z = w =⇒ f (z) = f (w)

which is a contradiction.

In fact, f (w)+2πi ∉ f (U ). Suppose that there exists {zn} ⊆U such that lim
n→∞ f (zn) = f (w)+2πi, Then lim

n→∞zn = w

as the exponential function is continuous. But this implies that lim
n→∞ f (zn) = f (w), which is a contradiction. Hence

we can define F : U →C by

F (z) = 1

f (z)− ( f (w)+2πi)

The above discussion suggests that F (U ) is bounded. Moreover, F is injective holomorphic. Hence U and F (U )
are conformally equivalent. We have hence proven that any simply-connected domain is conformally equivalent
to some bounded simply-connected domain. So from now on we may assume that U is bounded.

Step 2: We consider the following set of holomorphic function:

F = {
f : U →D

∣∣ f is injective holomorphic, f (z0) = 0
}

We claim that F is non-empty.

Since U is bounded, there exists R > 0 such that |g (z)| É R. We consider the mapping g (z) = (z − z0)/2R. Clearly f
is injective holomorphic; g (z0) = 0; and |g (z)| = |z − z0|/2R É 1. Hence g ∈F .

Step 3: F is a normal family, because it is uniformly bounded by 1 and we can use Montel’s Theorem.
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Step 4: The maximiser of the functional f 7→ | f ′(z0)| lies in F .

Since U is open and z0 ∈U , there exists r > 0 such that B(z0,r ) ⊆U . For any f ∈F , by Cauchy’s Inequality 1.22 we
have

| f ′(z0)| É 1

r
sup

z∈∂B(z0,r )
| f (z)| É 1

r

Hence M := sup
f ∈F

| f ′(z0)| < +∞. We can choose a sequence { fn} ⊆ F such that lim
n→∞ | f ′(z0)| = M . Since F is a

normal family, { fn} has a subsequence { fnk } that converges uniformly to f0 on every compact subset of U . Then
| f ′

0(z0)| = M . By Hurwitz’s Theorem, f0 is either injective or constant. If f0 is constant, then | f ′
0(z0)| = M = 0.

However, g (z) = (z − z0)/2R ∈F and |g ′(z0)| = 1/2R > 0, which implies that M Ê 1/2R > 0. This is a contradiction.
Hence f0 is injective holomorphic. We have f0 ∈F .

Step 5: The maximiser f0 is surjective.

Suppose for contradiction that f0(U ) 6=D. We shall construct explicitly h ∈F such that |h′(z0)| > | f ′(z0)|. We pick
u ∈D\ f0(U ). The following Möbius transformation maps u to 0:

ϕu(z) = z −u

1− ūz

Notice that ϕu ◦ f0(U ) is simply-connected and does not contain 0, we can define a holomorphic branch of the
square root function η(z) = z1/2 on ϕu ◦ f0(U ).

Let v = η◦ϕu ◦ f0(z0) and h =ϕv ◦η◦ϕu ◦ f0. We observe that h is a compositon of
injective holomorphic functions and |h(z)| É 1. Moreover, h(z0) =ϕv (v) = 0. Hence h ∈F .

We write f0 =ϕ−1
u ◦λ◦ϕ−1

v ◦h where λ(z) := z2. LetΦ=ϕ−1
u ◦λ◦ϕ−1

v . Notice thatΦmapsD intoD and thatΦ(v) = 0.
By Schwarz’s Lemma, |Φ′(0)| < 1 because Φ is not a rotation. Hence

| f ′
0(z0)| = |Φ′(0) ·h′(z0)| < |h′(z0)|

which contradicts that | f ′
0(z0)| = sup

f ∈F

| f ′(z0)|. Hence f0 is surjective.

We have obtained a bijective holomorphic function f0 : U →D. To adjust the derivative at z0, we put

f̃0(z) = | f ′
0(z0)|

f ′
0(z0)

f0(z)

so that f̃ ′
0(z0) = | f ′

0(z0)| > 0. f̃0 is a conformal mapping U →D such that f̃0(z0) = 0 and f̃ ′
0(z0) > 0.

Step 6: f̃0 is unique.

Suppose that f̃1 is another function that satisfies the desired properties. Thenψ := f̃0 ◦ f̃ −1
1 is an automorphism of

D. By Theorem 4.40, there exists a ∈D and θ ∈ [0,2π] such that

ψ(z) = eiθ z −a

1− āz

Since ψ(0) = 0 and ψ′(0) > 0, we must have θ = 0 and a = 0. Hence ψ= id and f̃0 = f̃1 as claimed.

Remark. The only property of simply-connected domain we use is the existence of holomorphic logarithm (existence of holo-
morphic square root follows directly). Thus we have finished the proof of Proposition 1.38 (vii)=⇒(i) by proving that the do-
mains satisfying (vii) are conformally equivalent (which is much stronger than homeomorphic) to the unit disk D.

In the language of extended complex plane (more rigorously Rimeann surfaces, or one-dimensional complex manifolds),
Riemann Mapping Theorem can be slightly strengthened as follows:

Corollary 4.55. Poincaré-Koebe Uniformisation Theorem.

Suppose U ⊆C∞ is a simply-connected domain. Then U is conformally equivalent to one of C∞, C and D. More specif-
ically, if C∞ \U contains more than two points, then U is conformally equivalent to D; if C∞ \U contains exactly one
point, then U is conformally equivalent to C; if C∞ \U is empty, then U is conformally equivalent to C∞. Furthermore,
C∞, C and D are not conformally equivalent.
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Proof. C∞ is not conformally equivalent to C or D, as they are not even homeomorphic. C is not conformally equivalent to D,
as any holomorphic function from C to D is constant by Liouville’s Theorem.

For U = C∞, there is really nothing to prove. For U = C∞ \ {w} and w ∈ C, the Möbius transformation f (z) = 1/(z −w)
maps U conformally onto C. For the case that C∞ \U contains more than two points, if ∞∈ C∞ \U , then this is just
Riemann Mapping Theorem; if ∞∉C∞ \U , we can always use a Möbius transformation to map some w ∈C∞ \U to ∞,
which changes the problem to the previous case.

Remark. The classification of the conformal equivalence classes of multiply-connected domains are much more complicated.
The conformal equivalence of annuli has been given in Theorem 4.50. The following theorem completely describes the con-
formal equivalence class of doubly-connected domains. We are not going to give the proof here.

Theorem 4.56. Conformal equivalence of doubly-connected domains.

Suppose that U ⊆C is a doubly-connected domain. Then U is conformally equivalent to an annulus with outer radius 1.
Moreover, the conformal mapping is unique up to translations, rotations, and inversion.

Proof. See [Belyaev] Theorem 2.6.3.

4.7 Boundary Correspondence*

In the previous section, we have proven that any two proper simply-connected domains are conformally equivalent. Sup-
pose that f : U → V is a biholomorphism between two simply-connected domains. It is generally unclear if f can maps ∂U
bijectively onto ∂V . The main result we are about to prove is as follows:

Theorem 4.57. Carathéodory Extension Theorem.

Suppose that U is a domain and f is a biholomorphism from U onto D. Then f can be continuous extended to a home-
omorphism U → B(0,1) if and only if ∂U is the image of a simple closed path.

The result has the following equivalent statement:

Theorem 4.58. Boundary Correspondence Theorem.

Suppose that U is a domain and f is a biholomorphism from U ontoD. Then f maps ∂U bijectively to ∂Dwith orientation
preserved if and only if ∂U is the image of a simple closed path.

Definition 4.59. Accessible Points.

Suppose that U ⊆ C is open and α ∈ ∂U . We say that ζ is an accessible point of U , if for any sequence {zn} ⊆ U with
lim

n→∞zn = ζ there exists a path γ : [0,1] →C such that:

γ(1) = ζ; γ([0,1)) ⊆U ;

and an increasing sequence {tn} ⊆ [0,1) such that γ(tn) = zn .

In other words, the path γ passes through all points in {zn} and lies entirely in U except for one of the end points.

Example 4.60. Inaccessible Points.

Let U := {z ∈ C : 0 < Re z < 1, 0 < Im z < 1} and In := {x +2−n i ∈ C : 0 É x É 1/2}. Let V :=U \
(⋃∞

n=1 In
)
. Then [0,1/2) are

inaccessible points of V , as shown in Figure 4.9. In other words, there are no paths in V that can approach points on
[0,1/2).
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Re

Im

Figure 4.9: A domain with inaccessible boundary points.

The key result is that for accessible points, the limit of the mapping on the boundary exists. First we present a lemma due to
Lindelöf and Koebe.

Lemma 4.61. Koebe’s Lemma

Let {zn}, {z ′
n} ⊆ D be two sequences such that zn → ζ and z ′

n → ζ′, where ζ,ζ′ ∈ ∂D and ζ 6= ζ′. Let γn be a simple path
joining zn and z ′

n which lies in the annulus A(0,1−εn ,1) where εn → 0 as n →∞.

Suppose that f :D→C is holomorphic and bounded. If sup
z∈γ∗n

| f (z)|→ 0 as n →∞, then f is identically zero on D.

Proof. Suppose that f is not identically zero. Without loss of generality we may assume that f (0) = 0. If f has a zero of
multiplicity n at 0, then we can replace f by f (z)/zn which satisfies all conditions of the lemma. By applying a rotation,
we may further assume that ζ= ζ′. That is, ζ and ζ′ are symmetric about the real axis.

We can find a angle π/m < argζ and a sector S := {z ∈C : arg z ∈ (−π/m,π/m)} such that there are infinitely many n with
γ∗n ∩S 6=∅ and zn , z ′

n ∉ S, as shown in Figure 4.10.

Re

Im

1

ζ

ζ′

zn

z ′
n

εn

π/m

γn

Re

Im

γn(un)

γn(vn)

γn(un)

Figure 4.10: The dashed line on the second diagram is the reflection of γn about the real axis.

Let un ∈ [0,1] be the largest number such that argγn(un) = π/m and let vn > un be the smallest number such that
argγn(vn) = 0. Then γn restricted to [un , vn] is a path in the sector which joins γn(un) and γn(vn). Let γ be the reflection
of γ about the real axis. Then we obtain a path joining γn(vn) and γn(un), as shown in Figure 4.10. Let σn be the
concatenation of the two paths such that σn is a path joining γn(un) and γn(un) and is symmetric about the real axis.

Let T (z) := eπi/m z be the rotation by 2π/m. We consider the concatenation of successive rotations of σn :

ηn :=σn ? (T ◦σn)? · · ·? (
T m−1 ◦σn

)
Hence we obtain a simple closed curve ηn which lies entirely in the annulus A(0,1−εn ,1).

Finally, define F (z) := f (z) f (z̄) and
G(z) := F (z) ·F ◦T (z) · ... ·F ◦T m−1(z)
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Suppose that rn := sup
z∈γ∗n

| f (z)| and M := sup
z∈D

| f (z)|. By Schwarz Reflection Principle, f (z̄) is also holomorphic in D and

bounded by M . In particular F is bounded by rn M on σn . G is holomorphic in D. For any z ∈ η∗n , one of the factors
of G is bounded by rn M and the rest are bounded by M 2. Hence G is bounded by rn M 2m−1 on η∗n . Suppose that f is
non-constant. By Maximum Modulus Principle, we have

| f (0)|2m = |G(0)| < sup
z∈η∗n

|G(z)| É rn M 2m−1

Let n →∞. Since rn → 0, we have f (0) = 0, which is a contradiction. Hence f is identically zero.

Proposition 4.62. Existence of Continuous Extension.

Suppose that f : U → D is a biholomorphism and ζ ∈ ∂U is accessible. If there exists r > 0 such that B(ζ,r ) ∩U is
connected, then lim

z→ζ
f (z) exists and has modulus 1.

Proof. First, for any {zn} ⊆U with lim
n→∞zn = ζ, let γ be a path that satisfies the conditions in Definition 4.59. γ(tn) = zn for each

n ∈Z+. We claim that lim
t→1

| f ◦γ(t )| = 1. Suppose for contradiction that there exists ε> 0 and a subsequence {sn} of {tn}

such that | f ◦γ(sn)| É 1−ε for all n ∈ Z+. Let {un} be a subsequence of {sn} such that w := lim
n→∞ f ◦γ(un) exists. Then

|w | É 1−ε or w ∈D. The inverse function f −1 :D→U maps

f −1(w) = lim
n→∞ f −1 ◦ f ◦γ(un) = lim

n→∞γ(un) = γ(1)

which suggests that ζ= γ(1) does not lie on the boundary of U , contradiction.

Next, supppose for contradiction that lim
z→ζ

f (z) does not exists. Since B(0,1) is compact, there exists {an}, {bn} ⊆U such

that lim
n→∞an = lim

n→∞bn = ζ but lim
n→∞ f (an) =: a 6= b := lim

n→∞ f (bn). By connectivity, we can find a simple path γ : [0,1] →
U ∪ {ζ} joining a1,b1, a2,b2, · · · and γ(1) = ζ. For each n ∈ Z+, let γn be the restriction of γ on [γ−1(an),γ−1(bn)]. Then
f ◦γn is a simple path joining f (an) and f (bn).

Let g (z) := f −1(z)−ζ defined on D. We apply Koebe’s Lemma to g . By the previous part, we know that lim
t→1

| f ◦γ(t )| = 1,

which implies that εn := inf
z∈γ∗n

| f (z)|→ 0 as n →∞. In other words, f ◦γn tends to the unit circle uniformly. Moreover, we

have
sup

w∈( f ◦γn )∗
|g (w)| = sup

z∈γ∗n
|z −ζ|→ 0 as n →∞

since γ is uniformly continuous and γ(1) = ζ. By Koebe’s Lemma, g is identically zero, which is obviously impossible.
In conclusion, lim

z→ζ
f (z) exists and is unique. We can continuous extend f to ζ ∈ ∂U .

Remark. For the case that ζ ∈ ∂U has no connected neighbourhood in U , the limit does not exists generally. However, if
we extend the definition of accessible boundary points, and associate each connected component of B(ζ,r )∩U with one
"accessible point", then the proposition still holds.

We should also point out that there are cases when B(ζ,r )∩U has no connected components. The formal definition of an
accessible point is an equivalence class of paths whose end point is ζ. This defintion works even if B(ζ,r )∩U has no connected
components, where ζ corresponds to infinitely many accessible points.

Proposition 4.63. Injectivity of Continuous Extension.

Suppose that f : U → D is a biholomorphism and ζ1,ζ2 ∈ ∂U are two distinct accessible points. Suppose that f extends
to ζ1,ζ2 by continuity (existence proven in the previous proposition), then f (ζ1) 6= f (ζ2).

Proof. Suppose for contradiction that f (ζ1) = f (ζ2) = w0 ∈ ∂D. By applying a rotation we may assume that w0 = −1. Let
γ1 : [0,1] →C and γ2 : [0,1] →C be two paths such that γ1(1) = ζ1, γ2(1) = ζ2, and γ1([0,1)),γ2([0,1)) ⊆U . Since ζ1 6= ζ2,
there exists t0 ∈ (0,1) such that |γ1(t )−γ2(t )| > |ζ1 −ζ2|/2 for all t ∈ (t0,1). There exists δ> 0 such that B(−1,δ) does not
intersect with γ1([0, t0]) or γ2([0, t0]).

Let A :=D∩B(−1,δ). In the polar coordinates centered at −1, there exists a suitable function ϕ(r ) such that A = {−1+
r eiθ : 0 É r É δ, −ϕ(r ) É θ É ϕ(r )}. For each r ∈ (0,δ), let w1 ∈ ( f ◦γ1)∗∩∂B(−1,r ) and w2 ∈ ( f ◦γ2)∗∩∂B(−1,r ). Let
g := f −1 be the inverse function. Then we have |g (w1)− g (w2)| > |ζ1 −ζ2|/2.
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Let η be the circular arc joining w1 and w2. Then we have:

1

2
|ζ1 −ζ2| < |g (w1)− g (w2)| =

∣∣∣∣∫
η

g ′(z)dz

∣∣∣∣É ∫
η
|g ′(z)|dz É

∫ ϕ(r )

−ϕ(r )
|g ′(−1+ r eiθ)|r dθ

=⇒ 1

4
|ζ1 −ζ2|2 <

(∫ ϕ(r )

−ϕ(r )
|g ′(−1+ r eiθ)|r dθ

)2

É
(∫ ϕ(r )

−ϕ(r )
|g ′(−1+ r eiθ)| dθ

)2 (∫ ϕ(r )

−ϕ(r )
r dθ

)2

(Cauchy-Schwarz Inequality)

Éπ2r 2 ·
∫ ϕ(r )

−ϕ(r )
|g ′(−1+ r eiθ)|2 dθ

Integrate with respect to r : ∫ δ

0

|ζ1 −ζ2|2
4π2r

dr É
∫ δ

0

∫ ϕ(r )

−ϕ(r )
|g ′(−1+ r eiθ)|2r dθ dr =

Ï
A
|g ′|2

The left hand side diverges unless ζ1 = ζ2, whereas the right hand side is equal to the area of g (A) and is finite. Contra-
diction. Hence we must have f (ζ1) 6= f (ζ2).

Remark. By cosine theorem, ϕ(r ) is given by:

ϕ(r ) = arccos

(
r 2 +1−δ2

2r

)
We do not need this form in the proof of the proposition.

Proof of Theorem 4.57. "=⇒": If f : U →D can be extended to a homeomorphism f : U → B(0,1), then f |∂U is a homeomor-
phism from ∂U to the unit circle ∂D. Therefore ∂U is a simple closed path.

"⇐=": Suppose that ∂U is a simple closed path. In particular, every point on ∂U is an accessible point of U . By Propo-
sition 4.62 and Proposition 4.63, there exists a continuous injective extension of f to ∂U which is in fact bijective, as f
is invertible. The continuity of the extension follows trivially.

The following converse of Boundary Correspondence Theorem is very useful:

Theorem 4.64. Converse of Boundary Correspondence Theorem.

Suppose that U →C is a simply-connected domain whose boundary ∂U is the image of a simple closed path. f : U →C

is holomorphic in U and continuous on U . If f maps ∂U bijectively to ∂D, then f is a biholomorphism from U to D.

Proof. Suppose that w0 ∈D. There exists a neighbourhood V ⊆U of ∂U such that f (z) 6= w0 in V . For any simple closed curve
γ : [0,1] →U , we consider the increment of the argument of f (z)−w0 as z goes along γ:

∆γ arg( f (z)−w0)

which is invariant under homotopy. Suppose that Γ is a simple closed path with Γ∗ = ∂U . and Λ := γ(0,1). By the
statement of the theorem we know that

∆Γ arg( f (z)−w0) =∆Λ arg(w −w0) = 2π

The same relation also holds for a positively-oriented simple closed path γ : [0,1] → V that is homotopic to Γ in V . By
Argument Principle, f (z)−w0 has exactly one zero in D , the interior of γ. But f (z) 6= w0 for z ∈U \ D ⊆V . We conclude
that there exists exactly one z0 ∈U such that f (z0) = w0.

Similarly, we can prove that no points in U is mapped to ∂D or C\ B(0,1). Hence f is a bijection between U and D.

4.8 Schwarz-Christoffel Mappings*

In this section, we aim to construct the explicit formula for a conformal mapping from the upper half plane to a polygonal
area. We say that P is a polygonal area, if ∂P is the image of a piecewise-linear simple closed path.
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We denote the vertices of ∂P by w1, ..., wn . By Riemann Mapping Theorem, there exists a biholomorphism f : D→ P . By
Boundary Correspondence Theorem, f extends to a bijection between ∂D and ∂P . On the other hand, we know that φ(z) :=
(z−i)/(z+i) is a biholomorphism fromH toD, which maps ∂H=R bijectively to ∂D\{1}. Hence f ◦φ is a biholomorphism from
H to P which maps R bijectively to ∂P with one point removed.

We shall first give the Schwarz-Christoffel Intgeral and prove that it maps R to a polygon. Then we shall show that any biholo-
morphism between the upper half plane and a polygonal area can be written in the form of the Schwarz-Christoffel Intgeral.
After that we will investigate the behavior if we include the point of infinity. We will conclude the section with some examples
of the use of the Schwarz-Christoffel Mapping.

For ai ∈R and βi < 1, the function (z −ai )−βi could be multi-valued. We can define a holomorphic branch of it by cutting the
plane along the ray {ai + iy ∈C : y É 0}. For x ∈R, we define:

(z −ai )−βi =
{
|x −ai |−βi x > ai

|x −ai |−βi e−iπβi x < ai

In particular, s(z) := (z −a1)−β1 · · · (z −an)−βn has a holomorphic branch in the cut plane C \
⋃n

i=1{ai + iy ∈ C : y É 0}. The cut
plane is simply-connected, so s(z) has a primitive, namely the Schwarz-Christoffel Integral:

Definition 4.65. Schwarz-Christoffel Integral.

Suppose that −∞< a1 < ·· · < an <+∞ and β1, · · ·βn ∈ (−∞,1). On the cut plane C\
⋃n

i=1{ai + iy ∈C : y É 0}, the function
defined by the integral

S(z) =
∫ z

z0

(ζ−a1)−β1 · · · (ζ−an)−βn dζ

is called the Schwarz-Christoffel Integral, where z0 is a fixed point and the intgeral is taken along any piecewise smooth
path from z0 to z on the cut plane.

The condition βi < 1 implies that (z−ai )−βi is integrable near the singularity ai . Hence S(z) can be continuously extended on

the real line R. In addition, if
n∑

i=1
βi > 1, then

(|z|−a1)−β1 · · · (|z|−an)−βn É c|z|−
∑n

i=1βi

for sufficiently large |z|. It is not difficult to show that the integral S(z) converges as |z| →∞. We denote the limit by w∞ :=
lim

z→∞S(z).

Proposition 4.66

Let S(z) be the Schwarz-Christoffel Integral defined in Definition 4.65. Let wi := S(ai ) for i = 1, ...,n.

(i) If
n∑

i=1
βi = 2, then S maps R to a ∂P \ {w∞}, where ∂P is a n-sided polygon whose vertices are given in order by

w1, ..., wn . The point w∞ lies on the line segment between wn and w1. Moreover, the interior angle of ∂P at the
vertex wi is π(1−βi ).

(ii) If 1 <
n∑

i=1
βi < 2, then S maps R to a ∂P \{w∞}, where ∂P is a (n +1)-sided polygon whose vertices are given in order

by w1, ..., wn , w∞. Moreover, the interior angle of ∂P at the vertex wi is πβi , and interior angle at the vertex w∞ is

π

(
n∑

i=1
βi −1

)
.

Proof. We can see that (i) is in fact a special case of (ii), where the interior angle at w∞ is π. So we only need to prove (ii).

For i ∈ {0, ...,n} and x ∈ (ai−1, ai ), we have

S′(x) =
i−1∏
k=1

(x −ak )−βk
n∏

k=i
(x −ak )−βk =

n∏
k=1

|x −ak |−βk e−iπ
∑n

k=i βi
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Hence argS′(x) =−π
n∑

k=i
βk is constant for x ∈ (ai−1, ai ). As

S(x) = S(ai )+
∫ x

ai

S′(t )dt = wi +argS′(x)
∫ x

ai

|S′(t )|dt

It suggests that S maps (ai−1, ai ) to a line segment (wi−1, wi ) on the complex plane, which makes angle −π
n∑

k=i
βi with

the real axis. For x > an , we have argS′(x) = 0. Hence S maps (an ,+∞) to a line segment (wn , w∞) parallel to the real

axis. For x < a1, argS′(x) =−π
n∑

k=1
βi . S maps (−∞, a1) to a line segment (w∞, w1).

For i ∈ {1, ...,n}, the interior angle θi at the vertex wi is given by:

θi =π−
(

lim
x→a−

i

argS′(x)− lim
x→a+

i

argS′(x)

)
=π−

(
π

n∑
k=i

βi −π
n∑

k=i+1
βi

)
=π(1−βi )

The interior angle θ∞ at the vertex w∞ is given by:

θ∞ = (n +1)π−
n∑

k=1
θk =π

(
n∑

i=1
βi −1

)

Theorem 4.67. Schwarz-Christoffel Theorem.

Suppose that the open set P ⊆ C is a polygonal area whose boundary ∂P is a n-sided polygon with vertices (in order)
w1, ..., wn . Suppose that the interior angle of ∂P at the vertex wi is π(1−βi ) where β1 ∈ (−1,1). If f :H→ P is a biholo-
morphism, then there exists −∞< a1 < ·· · < an <∞ such that

f (z) =C1

∫ z

z0

(ζ−a1)−β1 · · · (ζ−an)−βn dζ+C2

where z0, C1 and C2 are complex constants. Moreover, the extension of f to the homeomorphism from H to P implies
that f (ai ) = wi for i ∈ {1, ...,n}.

Proof. By Boundary Correspondence Theorem f extends to a homeomorphism f :H→ P . Let ai := f −1(wi ) for i = 1, ...,n. f
maps the real line bijectively to ∂P .

For i ∈ {2, ...,n−1}, the interior angle at the vertex wi is π(1−βi ). Hence we define gi : {z ∈H : Re z ∈ (ai−1, ai+1)} →C by

gi (z) = ( f (z)−wi )1/(1−βi )

Then gi (ai ) = 0. And gi extends the angle subtended by two line segments near w0 to π. As a result, gi maps the infinite
half-strip to an infinite half-strip. By Schwarz Reflection Principle, gi can be holomorphically extended across the real
axis and becomes a holomorphic function on the infinite strip ai−1 < Re z < ai+1. On the upper half strip, we have:

f (z) = wi + gi (z)1−βi =⇒ f ′(z)

f (z)−wi
= (1−βi )

g ′
i (z)

gi (z)

Since f is bijective, we have f ′(z) 6= 0. Hence g ′
i (z) 6= 0. The Schwarz Reflection Principle suggests that we also have

g ′
i (z) 6= 0 in the lower half strip. By some continuity argument we must have that gi is injective on the real interval

(ai−1, ai+1), which implies that g ′
i (z) 6= 0 on (ai−1, ai+1). In conclusion, g ′

i (z) 6= 0 on the whole strip ai−1 < Re z < ai+1.

Next we shall prove that ai is a simple pole of f ′′/ f ′. The derivatives of f :

f ′(z) = (1−βi )gi (z)−βi g ′
i (z) f ′′(z) =−βi (1−βi )gi (z)−βi−1 (

g ′
i (z)

)2 + (1−βi )gi (z)−βi g ′′
i (z)

Hence
f ′′(z)

f ′(z)
=−βi

g ′
i (z)

gi (z)
+ g ′′

i (z)

g ′
i (z)

Notice that the power series expansion of gi near ai is given by gi (z) = g ′
i (ai )(z −ai )+O((z −ai )2) and that gi is non-

zero. Then ai is a simple pole of g ′
i /gi with residue Res(g ′

i /gi , ai ) = 1. In addition, g ′′
i /g ′

i is holomorphic in the strip.
Therefore there exists a holomorphic function qi on ai−1 < Re z < ai+1 such that

f ′′(z)

f ′(z)
=−βi

1

z −ai
+qi (z)
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Similarly, for the infinite strip {z ∈C : −∞< Re z < a2} and {z ∈C : an−1 < Re z <+∞}, there exists holomorphic functions
q1 and qn defined on the respective strips such that

f ′′(z)

f ′(z)
=−βi

1

z −a1
+q1(z)

f ′′(z)

f ′(z)
=−βi

1

z −an
+qn(z)

Next we investigate the behavior of f ′′/ f ′ at the infinity. For sufficiently large R > 0, f maps (−∞,−R)∪ (R,+∞) to a
line segment of wn−−w1. By Schwarz Reflection Principle, f is holomorphically extended to C\ B(0,R). Since f maps
∞∈C to a point on the line segment wn−−w1, f is bounded and hence holomorphic at the infinity. There exists m ∈N
and cm 6= 0 such that

f (z) = f (∞)+ cm

zm + cm+1

zm+1 +·· ·

The derivative of f :

f ′(z) =−m
cm

zm+1 − (m +1)
cm+1

zm+2 +·· · =−m
cm

zm+1 +p(z)

where p is holomorphic on C\ B(0,R) and p(∞) 6= 0. Hence we have

f ′′(z)

f ′(z)
=−m +1

z
+ p ′(z)

p(z)

Hence lim
z→∞

f ′′(z)

f ′(z)
= 0. In particular f ′′/ f ′ is bounded near the infinity.

Finally we let h(z) := f ′′(z)

f (z)
+

n∑
i=1

βi

z −ai
. Then h is a bounded entire function with lim

z→∞h(z) = 0. By Liouville’s Theorem

h(z) = 0 on the whole plane. Hence for z ∈Hwe have

f ′′(z)

f ′(z)
=−

n∑
i=1

βi

z −ai

We integrate the equation along any piecewise smooth curve from z0 to z on the upper half plane. Then

log f ′(z) =−
n∑

i=1
βi log(z −ai )+const

Hence
f ′(z) =C1(z −a1)−β1 · · · (z −an)−βn

Integrate again along any piecewise smooth curve from z0 to z on the upper half plane:

f (z) =C1

∫ z

z0

(ζ−a1)−β1 · · · (ζ−an)−βn dζ+C2

which completes the proof.

Remark. If one of the vertices of ∂P is at the infinity, the mapping formula still applies. Suppose that wk =∞, as shown in
Figure 4.11. We pick w ′

k on the line segment wk−1−−wk and w ′′
k on the line segment wk−−wk+1. We connect w ′

k and w ′′
k by a

line segment and obtain a (n +1)-sided polygon ∂P ′ : w1−−·· ·−−wk−1−−w ′
k−−w ′′

k−−wk+1−−·· ·−−wn .

By Schwarz-Christoffel Theorem, the mapping fromH to P ′ is given by

f (z) =C1

∫ z

z0

(ζ−a1)−β1 · · · (ζ−a′
k )−β

′
k (ζ−a′′

k )−β
′′
k · · · (ζ−an)−βn dζ+C2

where a′
k := f −1(w ′

k ) and a′′
k := f −1(w ′′

k ). The interior angle at the vertices w ′
k and w ′′

k are π(1−β′
k ) and π(1−β′′

k ) respectively.

As w ′
k , w ′′

k →∞, we have P ′ → P and a′
k , a′′

k → ak . The factor (z−a′
k )−β

′
k (z−a′′

k )−β
′′
k → (z−ak )−β

′
k−β′′

k . If −π(1−βk ) is the angle
of intersection of the line wk−1−−w ′

k and w ′′
k−−wk+1, then we have π(1−βk )+π(1−β′

k )−π(1−β′′
k ) =π or −β′

k −β′′
k =−βk . In

this case, the mapping formula is exactly same as the finite polygon case:

f (z) =C1

∫ z

z0

(ζ−a1)−β1 · · · (ζ−ak )−βk · · · (ζ−an)−βn dζ+C2

But notice that we give a slightly different definition of βk .



98 CHAPTER 4. CONFORMAL MAPPINGS

−π(1−βk )

π(1−β′k )

π(1−β′′k )

w ′
k

w ′′
k

wk−1

wk+1

wk

Figure 4.11: A polygonal area with one vertex at the infinity.

Schwarz-Christoffel Theorem ensures that any biholomorphism between the upper half plane and the polygonal area is ex-
pressed in terms of Schwarz-Christoffel Integral. However, the points a1, ..., an are often unknown when we want to find such
mapping to a given polygonal area. The next proposition demonstrates the uniqueness of the mapping if we fix three points
on the real line.

Proposition 4.68

Suppose that the open set P ⊆ C is a polygonal area whose boundary ∂P is a n-sided polygon (n Ê 3) with vertices (in
order) w1, ..., wn . Given three points on the real line −∞ < a1 < a2 < a3 < +∞, there exists a unique biholomorphism
f :H→ P such that f (ai ) = wi for i = 1,2,3.

Proof. We know that there exists a biholomorphism g :H→ P . Suppose that for i ∈ {1,2,3}, bi = g−1(wi ) ∈ R. By Proposition
4.21, there exists a Möbius transformation T such that T (ai ) = bi for i = 1,2,3. Moreover, T ∈ Aut(H) by Theorem 4.43
since a1, a2, a3,b1,b2,b3 ∈R. Therefore f := g ◦T is a biholomorphism fromH to P such that f (ai ) = wi .

Next we prove uniqueness. Suppose that f̄ is another biholomorphism from H to P such that f̄ (ai ) = wi . Then f̄ ◦ f ∈
Aut(H). In particular, f̄ ◦ f is a Möbius transformation by Theorem 4.43 which fixes a1, a2, a3. By Proposition 4.21, there
is a unique Möbius transformation that fixes three points in C∞, namely the identity mapping. Hence we must have
f̄ = f as claimed.

Next we look at the case when the biholomorphism maps the infinity to a vertex of the polygon. We shall prove that the formula
is obtained by deleting the last term (z −an)−βn in the integral.

Theorem 4.69

Suppose that the open set P ⊆ C is a polygonal area whose boundary ∂P is a n-sided polygon with vertices (in order)
w1, ..., wn . Suppose that the interior angle of ∂P at the vertex wi is π(1−βi ) where β1 ∈ (−1,1). f :H→ P is a biholomor-
phism. If there are −∞< a1 < ·· · < an−1 <∞ such that f (ai ) = wi for i = 1, ...,n −1 and f (∞) = wn , then

f (z) =C1

∫ z

z0

(ζ−a1)−β1 · · · (ζ−an−1)−βn−1 dζ+C2

where z0, C1 and C2 are complex constants.

Proof. We choose a < a1 and consider the Möbius transformation T (z) = 1/(a − z) ∈ Aut(H). T maps a1, ..., an−1 and an =∞
to b1, ...,bn−1 and bn = 0. Now g := f ◦T −1 is a biholomorphism from H to P which maps b1, ...,bn to w1, ..., wn . By
Schwarz-Christoffel Theorem, we have

g (z ′) =C1

∫ z ′

z ′0
(η−b1)−β1 · · ·η−βn dη+C2

Change of variable:

η= 1

a −ζ dη= 1

(a −ζ)2 dζ

Since bi = 1

a −ai
, we have η−bi = 1

a −ζ −
1

a −ai
= ζ−ai

(a −ζ)(a −ai )
. The integral becomes

f ◦T −1(z ′) =C ′
1

∫ T −1(z ′)

T −1(z ′0)
(ζ−a1)−β1 · · · (ζ−an−1)−βn−1 (a −ζ)

∑n
i=1βi−2 dζ+C2
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where C ′
1 =C1(a −a1)β1 · · · (a −an−1)βn−1 . Since

∑n
i=1βi = 2, we have

f ◦T −1(z ′) =C ′
1

∫ T −1(z ′)

T −1(z ′0)
(ζ−a1)−β1 · · · (ζ−an−1)−βn−1 dζ+C2

Put z = T −1(z ′), z0 = T −1(z ′
0). We obtain the desired formula

f (z) =C ′
1

∫ z

z0

(ζ−a1)−β1 · · · (ζ−an−1)−βn−1 dζ+C2

Example 4.70. Trigonometric Functions Again.

Find a conformal mapping fromH to the infinite half-strip U := {z ∈C : −π/2 < Re z <π/2,Im z > 0}.

Solution. We can consider U as a polygonal area with vertices w1 = −π/2, w2 = π/2 and w3 =∞. The interior angle at each
vertex is π/2, π/2 and 0 respectively. Hence β1 = 1/2, β2 = 1/2, β3 = 1. We choose a1 =−1, a2 = 1 and a3 =∞ on the real
line. By Theorem 4.69, the mapping is given by

f (z) =
∫ z

0
(ζ+1)−1/2(ζ−1)−1/2 dζ+C2 =

∫ z

0

1√
ζ2 −1

dζ+C2 =C1 arcsin z +C2

Since f (−1) =−π/2 and f (1) = π/2, we have C1 = 1, C2 = 0. Hence the desired mapping is given by f (z) = arcsin z. We
can compare this result with Example 4.35.

4.9 Harmonic Functions and Dirichlet Problem

In this section we shall investigate the properties of harmonic functions and solutions to Dirichlet boundary value problem
with the help of conformal mappings. For simply-connected domain U enclosed by simple closed curve ∂U , we can always trans-
form the problem into Dirichlet BVP on a unit disk, by Riemann Mapping Theorem and Boundary Correspondence Theorem.
First, We repeat the definition of harmonic functions here.

4.9.1 Harmonic Functions.

Definition 0.12: Laplacian, Harmonic Functions.

The differential operator ∇2 := ∂2

∂x2 + ∂2

∂y2 acting on twice differentiable functions in R2 is called the Laplacian. f : U →R

is called a harmonic function if f ∈ ker∇2.

For Dirichlet boundary value problem on an open set U , we need to find a harmonic function with prescribed value on the
boundary. More formally:

Definition 4.71. Dirichlet Boundary Value Problem.

The Dirichlet boundary value problem consists of solving

∇2u = 0 in U u = f on ∂U

for some given function f defined on ∂U .

Remark. Recall that the real and imaginary parts of a holomorphic function are harmonic. On the contrary, any harmonic
function is the real part of some holomorphic function.

Proposition 4.72

Suppose that U ⊆ C is a simply-connected domain and u ∈C 2(U ) is a harmonic function. Then there exists a holomor-
phic function f : U →C such that Re f = u. Moreover, u is analytic.
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Proof. Consider g : U → C defined by g (z) = ∂u

∂x
− i

∂u

∂y
. g is real-differentiable as u ∈ C 2(U ) and it is easy to check that g

satisfies Cauchy-Riemann equations. Therefore by Proposition 0.11, g is holomorphic. Since U is simply-connected,
by Proposition 1.38 g has a primitive G on U .

Suppose that G(z) = a(z)+ ib(z). Then

∂a

∂x
− i
∂a

∂y
=G ′ = g = ∂u

∂x
− i
∂u

∂y
for z ∈U

Hence
∂a

∂x
= ∂u

∂x
and

∂a

∂y
= ∂u

∂y
. In particular ∇(a −u) = 0. By chain rule, a and u differ by a constant on U . Then

f (z) := G(z)+ (a(z0)−u(z0)) is a holomorphic function that satisfies Re f = u on U . By Theorem 1.19, f is analytic. It
follows that u = Re f is analytic.

Theorem 4.73. Mean Value Property of Harmonic Functions.

Suppose that u : B(z0,r ) →R is harmonic. Then

u(z0) = 1

2π

∫ 2π

0
u(z0 + r eiθ) dθ

Proof. The mean value property of harmonic functions follows directly from the mean value property of holomorphic func-
tions, which is a direct corollary of Cauchy’s Integral Formula:

By Proposition 4.72, there exists a holomorphic function f : U → C such that Re f = u. By Cauchy’s Integral Formula,
we have

f (z0) = 1

2πi

∮
γ(z0,r )

f (z)

z − z0
dz = 1

2πi

∫ 2π

0

f (z0 + r eiθ)

r eiθ
ir eiθ dθ = 1

2π

∫ 2π

0
f (z0 + r eiθ) dθ

Take the real part:

u(z0) = 1

2π

∫ 2π

0
u(z0 + r eiθ) dθ

Remark. We say that u : U →R satisfies the mean value property, if for all B(z0,r ) ⊆U we have

u(z0) = 1

2π

∫ 2π

0
u(z0 + r eiθ) dθ

We shall prove a converse of Theorem 4.73 in Theorem 4.80, which states that any function satisfying the mean value property
is harmonic.

Theorem 4.74. Extreme Value Property of Harmonic Functions.

Suppose that U ⊆ C is a domain and u : U → C is harmonic and non-constant. Then u cannot attain maximum or
minimum value in U .

Proof. It suffices to prove that u cannot attain maximum in U . Suppose for contradiction that u attains maximum value at
z0 ∈U . Choose r > 0 such that B(z0,r ) ⊆U . Since u is harmonic and satisfies mean value property, we have

u(z0) = 1

2π

∫ 2π

0
u(z0 + r eiθ) dθ É sup

θ∈[0,2π]
u(z0 + r eiθ)

Hence u(z0) = sup
θ∈[0,2π]

u(z0 + r eiθ) and u is constant on ∂B(z0,r ). This holds for any r > 0. By continuity u must be

constant on B(z0,r ). Notice that B(z0,r ) has limit points in U . Since u is analytic, by identity theorem u is constant on
the whole U , which is a contradiction.

Lemma 4.75

Suppose that f : U →V is holomorphic and u : V →R is harmonic. Then u ◦ f : U →R is also harmonic.

Proof. Being harmonic is a local property. It suffices to consider any B(z0,r ) ⊆U . Suppose that w0 := f (z0). Fix ε> 0 such that
B(w0,ε) ⊆ V . By continuity of f we can find δ> 0 such that f (B(z0,δ)) ⊆ B(w0,ε). Since B(w0,ε) is simply-connected,
we can find a holomorphic function g : B(w0,ε) → C such that Re g = u. Hence on B(z0,δ) we have u ◦ f = Re(g ◦ f ).
u ◦ f is harmonic on B(z0,r ) and hence on the whole U .
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4.9.2 Poisson Kernel.

Now we turn to the simplest case of Dirichlet BVP. We can express the value of a harmonic function in the unit disk in terms
of its value on the boundary by the so-called Poisson formula. All we need is the mean value property of harmonic func-
tions.

Theorem 4.76. Poisson Formula for Harmonic Functions on the Unit Disk.

Suppose that u : B(0,1) →C is harmonic on D. For z ∈D, we have:

u(z0) = 1

2π

∫ 2π

0

1−|z0|2
|eiθ−z0|2

u(eiθ) dθ

Proof. For any z0 ∈D, the automorphism

ϕz0 (z) = z0 − z

1− z̄0z

of the unit disk exchanges 0 and z0. Let v := u ◦ϕz0 . Then v is also harmonic on D and v(0) = u(z0). By mean value
property, we have

v(0) = 1

2π

∫ 2π

0
v(eiβ) dβ

Notice that ϕz0 maps ∂D to ∂D by

eiθ = z0 −eiβ

1− z̄0 eiβ
=⇒ eiβ = z0 −eiθ

1− z̄0 eiθ

Take the differential and modulus on both sides:

ieiβdβ= ieiθ dθ
|z0|2 −1

(1− z̄0 eiθ)2
=⇒ dβ= dθ

1−|z0|2
|1− z̄0 eiθ |2 = dθ

1−|z0|2
|eiθ−z0|2

Substitute back to the integral and we have:

u(z0) = 1

2π

∫ 2π

0

1−|z0|2
|eiθ−z0|2

u(eiθ) dθ

Remark. The factor
1−|z0|2
|eiθ−z0|2

is called the Poisson kernel of the unit disk:

P (ζ, z) := 1−|z|2
|ζ− z|2 = Re

(
ζ+ z

ζ− z

)
The factor (ζ+ z)/(ζ− z) is called Schwarz kernel.

The Poisson Integral Formula is also written in the following form:

u(z) = 1

2π

∫ 2π

0
P (ζ, z)u(ζ) dθ where ζ= eiθ

Alternatively, in the polar coordinates, the Poisson kernel is given by

P (ζ, z) = P (φ−θ,r ) = 1− r 2

1−2r cos(φ−θ)+ r 2 where ζ= eiθ, z = r eiφ

u(r,φ) = 1

2π

∫ 2π

0

1− r 2

1−2r cos(φ−θ)+ r 2 u(1,θ) dθ

Corollary 4.77. Properties of Poisson Kernel.

(i) P (ζ, z) > 0 for all z ∈D and ζ ∈ ∂D;

(ii)
∫ 2π

0
P (ζ, z) dθ = 2π for all z ∈D;

(iii) Fix ζ ∈ ∂D. Then P (ζ, z) is harmonic in D.
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Proof. (i). Trivial by definition.

(ii).
∫ 2π

0
P (ζ, z) dθ =

∫ 2π

0

1−|z0|2
|eiθ−z0|2

dθ =
∫ 2π

0
dβ= 2π.

(iii). P (ζ, z) = Re

(
ζ+ z

ζ− z

)
and the Schwarz kernel is holomorphic in D.

4.9.3 Dirichlet Boundary Value Problems.

Now we can discuss the existence and uniqueness of the solution to Dirichlet BVP on the unit disk.

Lemma 4.78

Suppose that f : ∂D→R is continuous. Then u :D→R defined by the Poisson integral

u(z) =
∫ 2π

0
P (ζ, z) f (ζ) dθ

is a bounded harmonic function. Moreover, u(z) → f (ζ) as z → ζ at any ζ ∈ ∂D.

Proof. Since ∂D is compact, and P (ζ, z) and f (ζ) are continuous, P (ζ, z) f (ζ) is bounded. Hence u(z) is bounded. u is harmonic
because

∇2u(z) =∇2
(∫ 2π

0
P (ζ, z) f (ζ) dθ

)
=

∫ 2π

0
f (ζ)∇2P (ζ, z) dθ = 0

Now we fix ζ= eiθ0 ∈ ∂D and ε> 0. Since f is continuous at ζ, there exists δ> 0 such that | f (eiθ)− f (eiθ0 )| É ε whenever
|θ−θ0| É δ. Then∣∣∣u(z)− f (eiθ0 )

∣∣∣= ∣∣∣∣ 1

2π

∫ 2π

0
P (eiθ, z)

(
f (eiθ)− f (eiθ0 )

)
dθ

∣∣∣∣
É 1

2π

∫
|θ−θ0|<δ

P (eiθ, z)
∣∣∣ f (eiθ)− f (eiθ0 )

∣∣∣dθ+ 1

2π

∫
|θ−θ0|Êδ

P (eiθ, z)
∣∣∣ f (eiθ)− f (eiθ0 )

∣∣∣dθ

=: I1 + I2

For I1, since | f (eiθ)− f (eiθ0 )| É ε, we have

I1 := 1

2π

∫
|θ−θ0|<δ

P (eiθ , z)
∣∣∣ f (eiθ)− f (eiθ0 )

∣∣∣dθ É 1

2π

∫
|θ−θ0|<δ

εP (eiθ , z) dθ < ε

For I2, for |θ−θ0| Ê δ the Poisson kernel

P (eiθ, z) = P (φ−θ,r ) = 1− r 2

1−2r cos(φ−θ)+ r 2 É 1− r 2

1−2r cosδ+ r 2 → 0

as r → 1. Hence for fixed ε and δwe can find η> 0 such that P (φ−θ,r ) < εwhenever |θ−θ0| Ê δ and |z−eiθ0 | < η. Then

I2 := 1

2π

∫
|θ−θ0|Êδ

P (eiθ , z)
∣∣∣ f (eiθ)− f (eiθ0 )

∣∣∣dθ < 1

2π

∫
|θ−θ0|Êδ

ε
∣∣∣ f (eiθ)− f (eiθ0 )

∣∣∣dθ < Mε

where M := sup
θ∈[0,2π]

| f (eiθ)|. Hence
∣∣u(z)− f (eiθ0 )

∣∣< (1+M)ε. The convergence hence follows.

Theorem 4.79. Dirichlet BVP on the Unit Disk.

Suppose that f : ∂D→R is continuous. Then u :D→R defined by the Poisson integral

u(z) =
∫ 2π

0
P (ζ, z) f (ζ) dθ = 1

2π

∫ 2π

0

1−|z0|2
|eiθ−z0|2

f (eiθ) dθ

is the unique solution to the Dirichlet BVP:

∇2u = 0 in D u = f on ∂D
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Proof. By the previous lemma, the Poisson integral u(z) is a solution to the Dirichlet BVP. Suppose there is another solution v .
Then u−v is a harmonic with u−v = 0 on ∂D. By extreme value property u−v is constant in D and by continuity u = v
as claimed.

Remark. Very often we are dealing with piecewise continuous functions as boundary value condition instead. In this case the
uniqueness does not hold. However, if we restrict to bounded harmonic functions on D which agrees with f at those points
on ∂Dwhere f is continuous, Dirichlet BVP still has unique solution.

Remark. As an application of Theorem 4.79, we can prove the converse of Theorem 4.73.

Theorem 4.80

Suppose that U ⊆C is a domain and u : U →R satisfies the mean value property. Then u is a harmonic function.

Proof. For any B(z0,r ) ⊆ U , u satisfies the mean value property on B(z0,r ). By Theorem 4.79, (with an appropriate linear
mapping) there exists a unique harmonic function v : B(z0,r ) → R such that u = v on ∂B(z0,r ). Both u and v satisfies
the mean value property and hence the extrem value property. It follows that u = v in B(z0,r ). Since B(z0,r ) is arbitrary,
u = v in U . Therefore u is a harmonic function.

Remark. The Dirichlet BVP on any simply-connected domain with well-behaved boundary can be transformed to the Dirich-
let BVP on the unit disk. As an example we give the explicit formula for the solution to Dirichlet BVP on the upper half plane.

Theorem 4.81. Dirichlet BVP on the Upper Half Plane.

Suppose that f :R→R is continuous and both lim
x→−∞ f (x) and lim

x→+∞ f (x) exists and are finite. Then u :H→R defined by

the integral

u(z) = Re

(
1

πi

∫ +∞

−∞
f (t )

t − z
dt

)
is the unique solution to the Dirichlet BVP:

∇2u = 0 inH u = f on ∂H

Proof. For any z0 ∈H, consider the biholomorphism

ψ(z) = z − z0

z − z̄0

which mapsH onto D, (−∞,+∞) onto ∂D\ {1}, and z0 to 0. Then ψ◦ f is continuous on ∂D\ {1} and bounded on ∂D. By
Theorem 4.79 and the remark after it, there exists a unique bounded harmonic function v : D→ R such that v =ψ◦ f
on ∂D\ {1}. Hence u :=ψ−1 ◦ v is the unique solution to the Dirichlet BVP onH.

Now we turn to the computation of the explicit formula of the solution. By mean value property we have

v(0) = 1

2π

∫ 2π

0
v(eiθ) dθ

Since ψ maps (−∞,+∞) onto ∂D\ {1},

eiθ = t − z0

t − z̄0
=⇒ θ =−i log

(
t − z0

t − z̄0

)
Take the differential:

dθ =−i
t − z̄0

t − z0
·
(
− z̄0 − z0

(t − z̄0)2

)
dt = i

z̄0 − z0

(t − z0)(t − z̄0)
dt = 2Im z0

t 2 −2t Re z0 +|z0|2
dt = Re

(
2

i(t − z0)

)
dt

Since v(0) = u(z0), we have

u(z0) = 1

2π

∫ +∞

−∞
f (t )Re

(
2

i(t − z0)

)
dt = Re

(
1

πi

∫ +∞

−∞
f (t )

t − z
dt

)

Remark. In the Cartesian coordinates, the result can be written as

u(x, y) = y

π

∫ +∞

−∞
f (t )

(t −x)2 + y2 dt
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