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Convention: All spaces are topological spaces. Maps of spaces are always continuous.

Question 1

Construct a degree d map S — S" forany n = 1.

Proof.  * Constructa degreed map f:S' — S'.
Let f: S' — S! given by f(z) = z%. For each z € S, the local map f/, is an oyientation-preserving homeo-
morphism. So deg, f = 1. Since f is d to one, we deduce that deg f = d.
For g : S" — S", construct a suspension map £g : S"*1 — S"*! and prove that deg g = degX g.
The suspension £S" is the quotient CS"/S", where CS" is the cone of S. We note that 5" = §"*! and
CS"™ =D". Note that (CS", §™) is a good pair. We have a long exact sequence
19
= Hps1(8") — Hun1 @) — Hp1 (S™) — Hu(S") — Hp(@") — -
Since Hy,.1(D™) =0and H,(D") =0, §, is in fact an isomorphism.
The map S§" x [0,1] — g(S™) x [0, 1] descends to a suspension of map £g : §"*1 — §7*1 We have a commuta-
tive diagram by y\au)fu\r()l\ \-d ol ) ES
1

Hy1 (S™1) — Hy(S™)

(£9).] 2 ammja,\k,ﬁ

Hys1 (8™1) —— Hy(S")

n
Hence degg = deg(Zg).
Combining the results above, deduce that 2" f : S" — S" is a map of degree d.
Inductively we have deg(Z"~! f) = deg f = d. \[ O
Question 2

Given finitely generated Abelian groups A, ..., A, construct a space with

Z =0
H(X)Z{ Ay e=kell,..,n

0 otherwise

Hint. CW-complex.

Proof.

e Form=2andn =1, construct a CW-complex X with H,(X) = Z/m and H(X) =0 for k # n.

Let X := §" U, D"*!, where the attaching map ¢ : S — S" has degree m. The cellular chain complex is given
by

0 — Hp (X, 8" —> HS™ — 0

o F

7 ———— 7

Taking the homology. We have HSX\Q (X) =0and HSW(X) = Z/dege = Z/m. All other homology groups are
zero obviously. OO -

The space X = M(Z/m, n) is ¢alled the Moore space.



* For a finitely generated Abelian group A, construct a CW-complex with H,(X) = A and H.(X) =0 for k # n.

By the structure theorem for Z-modules, we can write
A=Z7%Zld1®---®Z/d

Then we take the space of wedge sums:
a b /
Xn:=\/S"v\/ Mzid;in
i=1 i=1

Therefore

i=1 i

i N A 7%e7/di®---®Zld, k=n
W%F@WWW@WWW%W%O 1 bk¢ L/
=1 , n

* Back to the question.

For the group A;, we have
Ai=Z%eZldi)®---0Zld;),

We take the space
n n (a . b
X=\X= (\/ s'v\/ M(Z/dl-,]-,i))
i=1 i=1\j=1 j=1
Then
_ no_ n Ap, kefl,..,n
He(X) =@ Hr(X) =P Aibir = _
i=1 i=1 0, otherwise
The homology group
Z, k=0
\
Hy(X) =1 A, kefl,..n} SQ:D—D\ . O
0, otherwise
<
Question 3

Let f,g:S" — S" satisfy f(x) # g(x) for all x € S". Prove that f = —idog.

(Hint. Consider P where o, =tf—-(1-1g.)

o«

Deduce that
e if f:S8" — S has no fixed point then f = —id.
« if G is a group acting continuously and freely on $?" then G = 1 or Z/2. (Hint. Degree.)

tf(x)-1-0gx)

tf(0-0-ngw|
[tf(x)—1-1ngx)| =0, then tf(x) = (1 - 1)g(x). Taking the norm we have ¢ = (1 - 1) and f(x) = g(x). This
contradicts the assumption. Hence H: S" x [0,1] — S is well-defined.

Proof. Let H(x,t) = . This is well-defined if || tfx)-1-10gx) H #0forall t€[0,1] and x € S"™. If

We have H(x,0) = f(x) and H(x,1) = —g(x). H defines a homotopy from f to —g. f =~ —idog. \/
e Take g =id. f has no fixed points implies that f(x) # g(x) for all x € S”. Hence f =~ —id. \_/

* The action of G on S?" defines a group homomorphism G — Homeo(S?"*). Each homeomorphism on §2”"
has degree +1. So we have a group homomorphism deg: G — Z/2. Since the action is free, each g € G\ {e}
has no fixed point. Hence g = —id and deg g = deg(—id) = (-2l =_1.In particular, kerdeg = {e}. By first
isomorphism theorem, G is isomorphic to a subgroup of Z/2. Hence G = {e} or Z/2. \j O



Question 4

a)

b)

c)

Proof.

18 caovksd o

In the CW complex for CP” from the course notes, show that the attaching maps commute with the obvious
inclusions S~ ¢ Sk via R¥ = R* x 0 c R¥*!, and CP* < CP¥*! via Ck*! = Ck*1 x 0 c Ck*2,

(You have to decide in which dimensions to consider these inclusions, and also recall R = C, (x, y) — x +iy.)
Explain why RP" = D"/(+1id action on 6D").

Under this identification, show that the i-th hyperplane x; = 0 intersects RP" in a copy of RP"~1, Show that
the corresponding inclusion ind; : RP" 1 — RP" induces isomorphisms H. (RP"1:7/2) — H,(RP™;Z/2) =
Z12 for e # n.

(Hint. "Homotope it".)
State and prove an analogous result for CP” (using Z).
Use the cultural remark on page 57 of the notes for this exercise. Compute the cup product to deduce

H*(CP™ = Z[x]/x"*! x| =
H*'(RP;Z/2) = (2/2) [yl y"+! lyl=1

You may assume as known that CP" and RP" are compact connected smooth manifolds, and that CP" is
orientable.

a) We need to verify that the following diagram commutes:

SZn—l S 82n+1
\\ /
Pn [RZn =Cnr — R2n+2 EG:’H'I POn+1
[]:D/ ﬂ
cprl > CP"

The upper and lower trapezia in the diagram commute by definition. The left triangle commutes because
both the attaching map ¢, and the projectivisation [P are given by modulo S! action. Similarly the right
triangle commutes. Hence the whole diagram commutes. j

b) We have an isomorphism D"/ (x ~ —x: x € AD") = §"/{(x ~ —x: x € §") =: RP" as follows. In RP", the upper
and lower hemisphere of S” are identified” So we take the upper hemisphere X = )". The equator 0X is
identified via the antipodal map. So we have the isomorphism as claimed above.

Let P = {x; = 0} be a hyperplane in R”. Under this identification, RP" is D"* < R" with x ~ —x on S"~!. Note

thatD"NP=D""'cPand S !nP=S5"2cP. Hence RP"NnP =RP" 1, M‘J be Loviidmr \27 3
We note that (RP",RP"~!) is a good pair, and RP"/RP"~! ~ §”. We have the long exact sequence T
. — H.(RP"1,7/2) ——— Hi(RP™;Z2/2) ——— Hi(S;Z/2) Lgatc 0¥
) - subseowg
Ok
o} ok
L HeRPYLZ/2) = A (RPZ12) — Hea(872/2) — - nstead
o
We note that
o 7212, k=n
H(S™212) = -
0, otherwise 7
£t el '&-V\\(Q )

Hence for k # n, the abqve exact sequence breaks into an isomorphism ﬁk(RPn_l; Z/2) = H.(S";Z/2). For
k # n, every non-zero homology group involved is isomorphic to Z/2, and there is exactly a unique way to

W(I:IZ‘DM‘Z/‘ZB &'Qre,.f\ one Law So\u) k’a&) @{PL’I

make this sequence exaﬁt

X
Ls O\.C,Q—UQJ\)L)\G O~ c@,[A LMRG C,LAQL ?Jc/{. H/'(’— r\‘w l:SDLMD\’\?(AL&W\S’



&/‘ﬂ,\m\ Y(@MCJ\ .\18 O\(" £%in
0y 22 14y 72
O/u—»_
— .

7212 —— Z/2 > 0 > e
id

0 > 212

Hence Hu-1 RP"1Z/2) = Hy®PZ12). pov Limeh vou L02e SUE@DS@‘{ de o
TN NN N e —

For cohomology, we can prove tha:[ the inclusion induces isomorphisms H kRP",7/12) — H*®RP*1,7/2)
for k # n.

For CP", we have a similar result: the inclusion CP"*~! — CP" induces isomorphisms Hy(CP""!) — Hi(CP")
and H*(CP") — H*(CP" Y fork#2n.

c) For CP", let a be a generator for H?(CP™) = 7. We use induction on 7 to prove that H2 (CP") is generated

b%a’mfﬁralz<n o S L4 e ML oo 9 »%{;{au,\iﬁ[ 3@@& mvﬁ/\

Suppose that the result holds for CP” y (b), we have the isomorphisms of cohomology groups H2(Cprhz
H?'(CP™ for i < n. So H*(CP™) is generated by a' for all i < n. For i = n, since CP" is compact, connected,
and orientable, by Poincaré duality, there exists § €€ H2"2(CP") such that a — B generates H2"(CP").
By induction hypothesis § = ma”~!. Hence a — 8 = ma”. We must have m = +1. Thus a" generates
H?"(CP™). This completes the induction. In particular, we have H*(CP™) = Z[x]/(x"*1) with |x| =

For RP?, we note that it is compact, connected, and Z/2-orientable. We can apply the same method to
obtain that H*(RP™) = (2/2)[y]/ {y"*!) with |y| = 1. Vi 7 O

O< ~—
Question 5

LetCP® = | JCP", 8§ = §", and RP* = | J RP", using the natural inclusions from 4.(a).

n=0 n=0 n=0

a) Describe a CW-complex structure on these spaces and compute H..
b) Compute H.(RP>;Z/2).

¢) Describe the ring structure on their cohomologies (for RP*° work over Z/2).
Proof. a) CP%, §*and RP are infinite CW-complexes.
e For X =CP®°, we have

XO — pt, X2n+1 X2n (I:Pn X2n Xn 1 <Pn [DZn’ where On: SZn—l N (I:Pn_l = SZn—l/Sl

¢ For X = §°°, we have

X%=2pts, X"=(Xx""1 Ugp, D) Uy, D", where ¢, = id: gl gn-l J

¢ For X = RP*, we have

X°=pt, X"=Xx""lu,, D", wherep,:S" ' —RP" 1 =5""1/(2/2) V4
_?
W =

b) For each n e N, RP* has exactly one n-cell. The cellular chain complex is given by

v 712 9%y 710 %y 710 920 719 1y 5

ForneZ,,0,: Hy(RP",RP"1) — H,_{(RP"!,RP"?) is determined by the degree of the map

op" = sn-1 Ly gpn-t Ay gpn-1jgpn-2 = gn-1



J

which is degid + deg(—id) = 1+ (-1)". Hence 8,, = 2 for odd n and d,, = 0 for even n. Since we are using
Z/2-modules, 8, =0 for all n € Z,.. The cellular chain complex is given by

s 712 -0y 710 Oy 710 Oy 710 Oy 7p0

Hence the homology Z/2-modules are given by

H,(RP>®;Z/2)=7/2, neN k/

¢) Note that the infinite-dimensional spaces are filtered colimits in Top: CP*® = lim CP", 8§ = lirn S", and
RP> = hm RP". The weak topology on the CW complexes implies that the the cochaln complex c (CP"O) is
the ﬁltered limit hm C*(CP™ andsi i/ar for other spaces. We would like to invoke a general result:

Lemma 1. (Application 3.5.9 in Weibel)

Suppose that {Xj}ren is an ascending chain of CW-complexes with X = li_n}k Xk = Uken Xk There is a
short exact sequence

0 — lim} H"'(X;R) — H"(X;R) — lim, H"(Xi;R) — 0
where lim' is the first right derived functor of lim.

W YS c,gof\lom*

In particular, lim1 H" (X;;R) = 0 and therefore H"(X;R) = lim H "(Xy; R), provided that the following

M OVt “tower satisfies the Mittag-Leffler condltlon
Pr@u Cs cav obso be fadvres
\w?MM l o " (Xpa) —>‘ H'™ (X0 — H' X)) — bk by
C)Ov\/\)\ Suee Gy
°.q. A€ We shall see that X = CP*°, RP*™ and S* satisfies this condition trivially, because H"~ Lxk)is independent
V\MFWLJ‘\\ﬁ of nfor n> k.
4] # EUQ From Question 4 and from the lectures we have
Prodb
k ny ~ k n ~ kogny ~ Z, k=0,n
H*(CP") =7, H"(RP™;,7/2)=7]/2, H*(§") =
PAOAA X 0, otherwise
Therefore we have
H*(CP*™) =27, H'RP*™;Z/2)=17/2, H*"(S*®)=0 (n>0)
Erbrn
The cohomology rings are given by
H*(CP>®) = Z[x], H' (RP>;7/2)= (Z/Z)[x],%
|2l =2 [x] o L/(.AQJ‘(QB ﬂ(\»a\\\»-g
Question 6

Let Y = X u, D" with the attaching map ¢ : 0D™ — X, Prove that

H.(X) eZFm—-1,m
H.(Y)={ Hp1(X)/imp, e=m-1
Huy(X)okerp, eo=m

(Hint. Consider (Y, Y \ D) where D < D™ is a closed disc in the interior of D™.)

Proof. We note that (Y, X) is a good pair, because Y \ D deformation retracts onto X. We have the long exact sequence:

"4



v —— Hiy(X) —— Hp(Y) — Hi(Y,X)
He 1 (X) ~— H (V) — H1 (Y, X) — -

7 7 7 Z; k: m
He(Y, X) = He(Y/X) = He(S™) = \/
{0, k#m

We have

For k ¢ {m, m — 1}, we have the exact sequence

0 — Fp(X) — Hi(Y) — 0 J

which implies that Hy(X) = Hy(Y). For k € {m, m + 1}, we have the exact sequence

0 — Ap(X) — s Fp(V) -1 H(vIX)
5
-1 (0 gm_lm ——0 VA

The connecting map 6, : Hy,(Y/X) =Z — H,,_(X) is exactly the push-out ¢, 1 : H;;,_1(0D™) = Z — Hy,_1(X)

of the attaching map ¢ : D" — X. To prove this, we consider the map of the paired spaces: (D™,dD™) i} Y, X)
¢ induces a map between the corresponding long exact sequences

~ 6. - ~
coo — Hp(@™) — Hp(D™,0D0™) —=5 Hpy (OD™) — Hpp (D) — -+
1o l(p'm loma 1o
~ o ~ ~
coo —— Hp(Y) —— Hp(Y,X) —— Hp1(X) — Hpoa (V) — -
Since H,,(D™) = 0 and H,,,_; (D™) = 0, 8, Hp(D™,0D™) — Hy,—1(0D™) is an isomorphism. By excision theo-
rem, ¢, : H,(D",0D™) — H,, (Y, X) is also an isomorphism. Hence ¢,,_1 = 8, if we identify H,,(Y, X) = Z and
H,,_1(0D™) = Z by the corresponding isomorphisms.
Hpa(X)  Hp(X)  Hp(X)
keri,,—; imé,, ime,_1

Therefore Hy,— (V) =
For H,,(Y), we break the long exact sequence into short exact sequences. We have

0 — An(X) 2% Hp(y) I kers, — 0

Note that ker 6, = ker¢,,,— is a submodule of the free Z-module Z. Since Z is a principal ideal domain, ker¢,_;
is also a free Z-module, and hence is projective. This implies that the short exact sequence above splits. We have
ﬁm(Y) = ﬁm(X) @ ker,,—1. In conclusion:

Huy(X)ekerpy,—1, k=m /
Hy(Y) =1 Hpo1 (X)) im@_1, k=m—1 O
Hi(X), otherwise

Question 7

a) Prove thatif each x; € X; has a contractible neighbourhood, then

H* (\/X,-) =[[H° X)), =1

is an isomorphism of rings.



b) Show that S v S! v $? and T2 have the same homology, but different cohomology rings.

Proof. a) We have to assume that the index set is finite.
First we prove that
n n
H”(v Xi) =P H"X)
i=1 i=1
as Z-modules. The proof is essentially the same as that of Question 4 of Sheet 2. We use the Mayer-Vietoris
sequence for cohomology.

Let Y7, Y> be contractible neighbourhoods of x1, x» in X7, X> respectively. With abuse of notation we may set
A=X;vYand B:= X, Vv Y], sothat AUB = X; v X, and AnB =Y; v Y. The Mayor-Vietoris sequence is

given by
I? 5()&/\ w£€
L o — H"Y(Y1VY,) = HY X1V Xy) — HY X vY) @ H (XovY)) — HY(Y1VYs) — -
E<Cis 10w
Hoaorian Since Y; v Y» is contractible, H"(Y; v Y») = 0 for all n € N. We have
Hon qn

H'(X1vXp) EH'"(XivY) e H (X, v Y) = H (X)) @ H(X5)

ﬁ”(\’}Xﬁ)zéﬁ"(Xﬁ)

Next we consider the cup product on these two groups. For each i, the inclusion of spaces ¢; : X; — VI, X;

Lot wa M L\VQL'M\\»-E w@?ﬁ;

Inductively we have

induces the ring homomorphism ¢} : H *( " Xi)— H*(X;) by the naturality of the cup productv"f herefore
we have a ring homomorphism

[1¢: FI‘(V Xi) —[]1H X
i=1 i=1

= i=1
It is an ring isomorphism because it is bijective as a group homomorphism.

b) In Question 4.(c) of Sheet 2 we have proven that S 1y 8!y §2 and T2 has the same homology groups.

By (a), we have the ring isomorphism
H*(S'vStvs?) = i (SYx H(SY) x H* (5%
Suppose that f: H*(SY x H*(SY) x H*(S8?) — H*(T?)is a graded ring isomorphism.

Let a, b be the generators of the two H(SH=zz respectively. Then a — b = b — a. On the other hand,
f(a), f(b) € H'(T?). Therefore f(a) — f(b) = (D" f(b) — f(a) = —f(b) — f(a). Hence we must have
f(a) — f(b) = 0. But in the lectures we have known that f(a) — f(b) is a generator of H>(T?). /This is a
contradiction. Hence the cohomology graded rings of S' v S! v §? and T? gre not isomorphic. O

Question 8

a) Let X be the Moore space M (Z/m,n) = S" U, D"*!, where the attaching map ¢ : 0D"*! = §” — S" has
degree m. Compute HEW(X) and He,, (X).

b) Let Y = CP? Ugp D3, where the attaching map ¢ : D3 = S? — S? = CP! < CP? has degree p. Compute Hey(Y).

c) For X = M(Z/p,2), show that H*(Y) = H*(X v S*) asrings but H*(Y;Z/p) Z H* (X v $%;Z/ p).

Proof. a) In Question 2, we have shown that the cellular chain complex is given by



0 — C ) — V(X)) — 0

F oy

de
7 %% 5
and the homology groups are given by
Z, k=0
HYMZImn)=432/m, k=n \/
0, otherwise

The cellular cochain complex is obtained by dualising the cellular chain complex:

0 — Cly(X) — C&'(X) — 0

I gy L

de
7 %% 5
Therefore the cohomology groups are given by
z, k=0 /
HEM@ZIm,n) =3 Z/m, k=n+1
0, otherwise

b) We note that Y is a CW-complex with
Y'=y'=pt, v*=cpP', VY’=cP'u,D’° Y=Y'=Y’y,D*
We shall calculate the cellcular chain complex. It is obvious that
Hi(Y1,Y0)=0, H(Y3LY)=H(CPHYZZ,  Hy (Y, YHZHy(S)=Z,  Hy(Y,Y)=Hy(SH=Z
Using the result of Question 6, we can patch the

e — H) - m v L By vy —Bs Fyy) ——— -

. 0 s B (%) B myv3,erhy 25 Byepl) — -

which gives the cellular chain complex

d d _
Hy(v, v3) B mvs,eph) 8¢ mep) — 0 — 7

We know that deg¢ = p. Note that v : dD* = §3 — CP! = §? ¢ §3 is not surjective onto S. So degy = 0. So
we have:

7 97 Py oy

Taking the dual, we obtain the cellular cochain complex:

z—s0—z7-272 O)Z\/

Z, k=0,4 /
HE (W) =S 7ZIp, k=3

0, otherwise

Taking the cohomology:

c) We consider the cup product structure on H*(Y). Let a be a generator for H*(Y) and 8 be a generator for



H3(Y). Thena —a =0, f— B=0,and a — 8 = 0 for degree reason. Therefore the cohomology ring is given

by

H(Y) = Z1% ¥l '

g MVL S % \\/Lf»-k |
22 x R < e
(x2,y%,xy,py) | Aot Mpuvh—

On the other hand, for H* (X v §%), we have the ring isomorphism . a \
{oa \ restoMud)
Z[x] Z[x]

H'(XVSHhZH X)xH' (ShHhz — x ———
(x2) (32 py) (dor L kA

Finally, we note that there exists a ring isomorphism

) Z[x,y] éZ[x]X Zx]
(22, y%,xy,py) (%) (¥4 py)

1—-(1,1), x~—(x0), y—1(0,y)

Hence H*(Y) = H*(X v S3) as cohomology rings. |/
Next we consider the cohomologies in Z/ p-coefficients.
For Y, we have the cochain complex

Zip —s 0 — 21p -2 21p %5 21

Taking the cohomology:

. Zip, k=0234 /
H*(Y;Z/p) =
0, otherwise

For X, we have the cochain complex

Zip —3 0 — 2ip -2 2ip — 0
Taking the cohomology:
Zlp, k=0,2,3
Hx;zip =17 v
0, otherwise

For S*, we have
Zlp, k=0,4

o b ety misan-f?

Let a be a generator of H*(Y;Z/p). pose that f: H*(Y;Z/p) — H (X v SQ;Z/p) is a graded ring iso-
morphism. Then f(a) is a generator of ﬂf_@(ﬂ). For degree reason f(a) — f(a) =0. Butsince Y is a
compact, connected, orientable 4-dimensional manifold, by Poincaré duality, « — a # 0 € H*(Y;Z/p). This
is contradictory. Hence H*(Y;Z/p) # H*(X v S%;Z/ p) as graded rings. O

otherwise

Question 9
Compute directly the cup product structure on H*(K) and H*(K;Z/2), where K is the Klein bottle.

(Do not use the intersection theory, only use CW-complexes and the definition of —.)

Proof. To compute the cup products it is Wexes rather than CW-complexes. From Question 6 of
Sheet 1, the simplicial chain complex of K is given b . w . .
P P & v nok Ou()r Beh Qe s A l'wLU\\\‘\ ©w o

(i _11) to v o\rﬂg\‘\/\ﬂ U own CW-—cx
-1 1
0— s 7087L —— !y Zawzbozc — % 5 7y ' 0

Taking the dual we obtain the simplicial cochain complex
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iy v

1 -1 1
0 v 72y — 9 s 7avezbV ez — S 7UVeZLY —— 5 0
Taking the cohomology, we have
H g (K) Generators
n=0 VA vV /
n=1 VA ZZV:=(bV+cV)L/
n=2 ZI2 uv

We note that H*(K) has an obviously unique cup product structure, where vV is the identity, a¥ — a" = 0 (by

graded commutativity), UY — UY =0, a¥ — U" = 0 (by the degree). In summary, we have

(1)

1 1 1
0— v 70" — 9 s 2V ezb 07y — N 20V e 7L —— 50

For Z/2-coefficients, we have the cochain complex!

Taking the cohomology, we have

H K (K;Z12) Generators
Z12 vV
(Z12)? A=a"-b"Y,B:=b" -V \/
Z12 uv

N = O

n
n=
n

To determine the cup product structure on H*(K; Z/2) it suffices to compute A— A, B— B, and A— B. From the

diagram:
& v b v
U
a C a
L
v b v '
We have

(A—B)U) = AWUljgp,01) BWl(gp.00) = (@ = bY@ (B" —cV)(b) =1
(A— B)(L) = A(Ll(¢y,e,) B(Ll{e, ,)) = (@ = b¥) (D) (BY — ¢¥)(-a) = 0 /
(A= AU) = AWUligy 1) AU, ) = (@” =B (@ (@’ = b)) =1
(A— AL) = ALleo.e, VAL fe, ;) = (@* = D) (R) (@ = b") (@) =)
(B— B)(U) = BUl{¢y e,) BWljeye,)) = (BY = c¥) (@) (B¥ —c¥)(b) =0

(B— B)(L) = B(Lligy e,)B(Llfe e,) = (0" =) (D) (BY = c*)(=a) =0

Hence in the cohomology H?(K;Z12) we have
A—B=U", AvA:UV+LV:/<‘K B—B=0
In summary, we have
(Z12)[x,y,2)  _ (Z12)[x,Y] ‘
(Zyhay-z22)  (dyt) APTTny yredivy

' |
1For typographical reason we use Z» to denote Z/2. (JM S(Q \/LQL %M' &,-e {\89/\)(

|

H*(K;Z/2) =
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Question 10
Let I = [0, 1]. Build orientation-preserving homeomorphisms of pairs
", s Y=o =l x 1%,01° x I"u I x 01%) = (D x D¥,0D? x D* LD’ x AD¥)

where ¢ + k = n.

Proof. The canonical isomorphism o : R” — R¢ x R* restricts to an homeomorphism o’: 1" — jx 1%, which is obviously
orientation-preserving. o maps the boundary 81" to d(I¢ x 1¥) = a1¢ x I* U I x 8IF.

On the other hand, for each m = 1, we have a orientation-preserving homeomorphism ¢, : D" — " given by

0, x=0
Pm(x) =19 llxl2 \/

X, x#0
lxl1

with ¢,,(0D™) = 0I". Since the norms ||—||; and |||, are equivalent, ¢, is a homeomorphism. Now, (cp;l, (pEl) o
o’ o, is an orientation-preserving homeomorphism from the pair (D", S" 1 to (DY x IDk, D! xDFuD? xaDk). O

\



