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Convention: All spaces are topological spaces. Maps of spaces are always continuous.

Question 1

Construct a degree d map Sn → Sn for any n � 1.

Proof. • Construct a degree d map f : S1 → S1.

Let f : S1 → S1 given by f (z) = zd . For each z ∈ S1, the local map f |z is an orientation-preserving homeo-

morphism. So degz f = 1. Since f is d to one, we deduce that deg f = d .

• For g : Sn → Sn, construct a suspension map Σg : Sn+1 → Sn+1 and prove that deg g = degΣg .

The suspension ΣSn is the quotient CSn/Sn , where CSn is the cone of Sn . We note that ΣSn ∼= Sn+1 and

CSn ∼=Dn . Note that (CSn ,Sn) is a good pair. We have a long exact sequence

· · · Hn+1(Sn) Hn+1(Dn) Hn+1(Sn+1) Hn(Sn) Hn(Dn) · · ·δn

Since Hn+1(Dn) = 0 and Hn(Dn) = 0, δn is in fact an isomorphism.

The map Sn × [0,1] �→ g (Sn)× [0,1] descends to a suspension of map Σg : Sn+1 → Sn+1. We have a commuta-

tive diagram

Hn+1(Sn+1) Hn(Sn)

Hn+1(Sn+1) Hn(Sn)

δn

(Σg )∗

δn

g∗

Hence deg g = deg(Σg ).

• Combining the results above, deduce that Σn−1 f : Sn → Sn is a map of degree d.

Inductively we have deg(Σn−1 f ) = deg f = d .

Question 2

Given finitely generated Abelian groups A1, ..., An , construct a space with

H•(X ) ∼=





Z • = 0

Ak • = k ∈ {1, ...,n}

0 otherwise

Hint. CW-complex.

Proof. • For m � 2 and n � 1, construct a CW-complex X with �Hn(X ) ∼=Z/m and �Hk (X ) = 0 for k �= n.

Let X := Sn ∪ϕD
n+1, where the attaching mapϕ : Sn → Sn has degree m. The cellular chain complex is given

by

0 Hn+1(X ,Sn) �H(Sn) 0

Z Z

� �
degϕ

Taking the homology. We have H CW
n+1(X ) = 0 and H CW

n (X ) ∼= Z/degϕ= Z/m. All other homology groups are

zero obviously.

The space X = M(Z/m,n) is called the Moore space.
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• For a finitely generated Abelian group A, construct a CW-complex with �Hn(X ) ∼= A and �Hk (X ) = 0 for k �= n.

By the structure theorem for Z-modules, we can write

A ∼=Za ⊕Z/d1 ⊕ · · ·⊕Z/db

Then we take the space of wedge sums:

Xn :=
a�

i=1
Sn ∨

b�
i=1

M(Z/di ,n)

Therefore

�Hk (Xn) =
a�

i=1

�Hk (Sn)⊕
b�

i=1

�Hk (M(Z/di ,n)) =
�
Za ⊕Z/d1 ⊕ · · ·⊕Z/db , k = n

0, k �= n

• Back to the question.

For the group Ai , we have

Ai
∼=Zai ⊕Z/di ,1 ⊕ · · ·⊕Z/di ,bi

We take the space

X :=
n�

i=1
Xi =

n�
i=1

�
ai�

j=1
Si ∨

bi�
j=1

M(Z/di , j , i )

�

Then

�Hk (X ) =
n�

i=1

�Hk (Xi ) =
n�

i=1
Aiδi k =

�
Ak , k ∈ {1, ...,n}

0, otherwise

The homology group

Hk (X ) =





Z, k = 0

Ak , k ∈ {1, ...,n}

0, otherwise

Question 3

Let f , g : Sn → Sn satisfy f (x) �= g (x) for all x ∈ Sn . Prove that f �− id◦g .

(Hint. Consider
ϕt��ϕt

�� where ϕt = t f − (1− t )g .)

Deduce that

• if f : Sn → Sn has no fixed point then f �− id.

• if G is a group acting continuously and freely on S2n then G = 1 or Z/2. (Hint. Degree.)

Proof. Let H(x, t ) = t f (x)− (1− t )g (x)��t f (x)− (1− t )g (x)
�� . This is well-defined if

��t f (x)− (1− t )g (x)
�� �= 0 for all t ∈ [0,1] and x ∈ Sn . If

��t f (x)− (1− t )g (x)
�� = 0, then t f (x) = (1− t )g (x). Taking the norm we have t = (1− t ) and f (x) = g (x). This

contradicts the assumption. Hence H : Sn × [0,1] → Sn is well-defined.

We have H(x,0) = f (x) and H(x,1) =−g (x). H defines a homotopy from f to −g . f �− id◦g .

• Take g = id. f has no fixed points implies that f (x) �= g (x) for all x ∈ Sn . Hence f �− id.

• The action of G on S2n defines a group homomorphism G → Homeo(S2n). Each homeomorphism on S2n

has degree ±1. So we have a group homomorphism deg : G → Z/2. Since the action is free, each g ∈ G \ {e}

has no fixed point. Hence g �− id and deg g = deg(− id) = (−1)2n+1 =−1. In particular, kerdeg = {e}. By first

isomorphism theorem, G is isomorphic to a subgroup of Z/2. Hence G = {e} or Z/2.
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Question 4

a) In the CW complex for CP n from the course notes, show that the attaching maps commute with the obvious

inclusions Sk−1 ⊆ Sk via Rk ≡Rk ×0 ⊆Rk+1, and CP k ⊆CP k+1 via Ck+1 ≡Ck+1 ×0 ⊆Ck+2.

(You have to decide in which dimensions to consider these inclusions, and also recall R2 ∼=C, (x, y) �→ x + iy .)

b) Explain why RP n ∼=Dn/(± id action on ∂Dn).

Under this identification, show that the i -th hyperplane xi = 0 intersects RP n in a copy of RP n−1, Show that

the corresponding inclusion indi : RP n−1 → RP n induces isomorphisms H•(RP n−1;Z/2) → H•(RP n ;Z/2) ∼=
Z/2 for • �= n.

(Hint. "Homotope it".)

State and prove an analogous result for CP n (using Z).

c) Use the cultural remark on page 57 of the notes for this exercise. Compute the cup product to deduce

H•(CP n) ∼=Z[x]/xn+1 |x| = 2

H•(RP n ;Z/2) ∼= (Z/2)[y]/yn+1 |y | = 1

You may assume as known that CP n and RP n are compact connected smooth manifolds, and that CP n is

orientable.

Proof. a) We need to verify that the following diagram commutes:

S2n−1 S2n+1

R2n ∼=Cn R2n+2 ∼=Cn+1

CP n−1 CP n

ι

P

ι

ϕn+1ϕn

P

The upper and lower trapezia in the diagram commute by definition. The left triangle commutes because

both the attaching map ϕn and the projectivisation P are given by modulo S1 action. Similarly the right

triangle commutes. Hence the whole diagram commutes.

b) We have an isomorphism Dn/〈x ∼−x : x ∈ ∂Dn〉 ∼= Sn/〈x ∼−x : x ∈ Sn〉=: RP n as follows. In RP n , the upper

and lower hemisphere of Sn are identified. So we take the upper hemisphere X ∼= Dn . The equator ∂X is

identified via the antipodal map. So we have the isomorphism as claimed above.

Let P = {xi = 0} be a hyperplane in Rn . Under this identification, RP n is Dn ⊆ Rn with x ∼−x on Sn−1. Note

that Dn ∩P =Dn−1 ⊆ P and Sn−1 ∩P = Sn−2 ⊆ P . Hence RP n ∩P =RP n−1.

We note that (RP n ,RP n−1) is a good pair, and RP n/RP n−1 � Sn . We have the long exact sequence

· · · �Hk (RP n−1;Z/2) �Hk (RP n ;Z/2) �Hk (Sn ;Z/2)

�Hk−1(RP n−1;Z/2) �Hk−1(RP n ;Z/2) �Hk−1(Sn ;Z/2) · · ·
δk

We note that

�Hk (Sn ;Z/2) =
�
Z/2, k = n

0, otherwise

Hence for k �= n, the above exact sequence breaks into an isomorphism �Hk (RP n−1;Z/2) ∼= �Hk (Sn ;Z/2). For

k �= n, every non-zero homology group involved is isomorphic to Z/2, and there is exactly a unique way to

make this sequence exact:
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0 Z/2 Z/2 Z/2

Z/2 Z/2 0 · · ·

0 id

0

id

Hence Hn−1(RP n−1;Z/2) ∼= Hn(RP n ;Z/2).

For cohomology, we can prove that the inclusion induces isomorphisms H k (RP n ;Z/2) → H k (RP k−1;Z/2)

for k �= n.

ForCP n , we have a similar result: the inclusionCP n−1 �→CP n induces isomorphisms Hk (CP n−1) → Hk (CP n)

and H k (CP n) → H k (CP n−1) for k �= 2n.

c) For CP n , let α be a generator for H 2(CP n) ∼= Z. We use induction on n to prove that H 2i (CP n) is generated

by αi for all i � n.

Suppose that the result holds forCP n−1. By (b), we have the isomorphisms of cohomology groups H 2i (CP n−1) ∼=
H 2i (CP n) for i < n. So H 2i (CP n) is generated by αi for all i < n. For i = n, since CP n is compact, connected,

and orientable, by Poincaré duality, there exists β ∈∈ H 2n−2(CP n) such that α � β generates H 2n(CP n).

By induction hypothesis β = mαn−1. Hence α� β = mαn . We must have m = ±1. Thus αn generates

H 2n(CP n). This completes the induction. In particular, we have H•(CP n) ∼=Z[x]/
�

xn+1
�

with |x| = 2.

For RP 2, we note that it is compact, connected, and Z/2-orientable. We can apply the same method to

obtain that H•(RP n) ∼= (Z/2)[y]/
�

yn+1
�

with |y | = 1.

Question 5

Let CP∞ =
�

n�0
CP n , S∞ =

�
n�0

Sn , and RP∞ =
�

n�0
RP n , using the natural inclusions from 4.(a).

a) Describe a CW-complex structure on these spaces and compute H•.

b) Compute H•(RP∞;Z/2).

c) Describe the ring structure on their cohomologies (for RP∞ work over Z/2).

Proof. a) CP∞, S∞ and RP∞ are infinite CW-complexes.

• For X =CP∞, we have

X 0 = pt, X 2n+1 = X 2n =CP n , X 2n = X n−1 ∪ϕn D
2n , where ϕn : S2n−1 →CP n−1 ∼= S2n−1/S1

• For X = S∞, we have

X 0 = 2 pts, X n = (X n−1 ∪ϕn D
n)∪ϕn D

n , where ϕn = id : Sn−1 → Sn−1

• For X =RP∞, we have

X 0 = pt, X n = X n−1 ∪ϕn D
n , where ϕn : Sn−1 →RP n−1 ∼= Sn−1/(Z/2)

b) For each n ∈N, RP∞ has exactly one n-cell. The cellular chain complex is given by

· · · Z/2 Z/2 Z/2 Z/2 Z/2
∂3 ∂2 ∂1∂4

For n ∈Z+, ∂n : Hn(RP n ,RP n−1) → Hn−1(RP n−1,RP n−2) is determined by the degree of the map

∂Dn = Sn−1 RP n−1 RP n−1/RP n−2 ∼= Sn−1ϕn qn
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which is degid+deg(− id) = 1+ (−1)n . Hence ∂n = 2 for odd n and ∂n = 0 for even n. Since we are using

Z/2-modules, ∂n = 0 for all n ∈Z+. The cellular chain complex is given by

· · · Z/2 Z/2 Z/2 Z/2 Z/20 0 00

Hence the homology Z/2-modules are given by

Hn(RP∞;Z/2) =Z/2, n ∈N

c) Note that the infinite-dimensional spaces are filtered colimits in Top: CP∞ = lim−−→n
CP n , S∞ = lim−−→n

Sn , and

RP∞ = lim−−→n
RP n . The weak topology on the CW complexes implies that the the cochain complex C •(CP∞) is

the filtered limit lim←−−n
C •(CP n) and similar for other spaces. We would like to invoke a general result:

Lemma 1. (Application 3.5.9 in Weibel)

Suppose that {Xk }k∈N is an ascending chain of CW-complexes with X = lim−−→k
Xk = �

k∈N Xk . There is a

short exact sequence

0 lim←−−
1
k

H n−1(Xk ;R) H n(X ;R) lim←−−k
H n(Xk ;R) 0

where lim←−−
1 is the first right derived functor of lim←−−.

In particular, lim←−−
1
k

H n−1(Xk ;R) = 0 and therefore H n(X ;R) ∼= lim←−−k
H n(Xk ;R), provided that the following

tower satisfies the Mittag-Leffler condition:

· · · H n−1(Xk+1) H n−1(Xk ) H n−1(Xk−1) · · ·

We shall see that X =CP∞, RP∞ and S∞ satisfies this condition trivially, because H n−1(X k ) is independent

of n for n > k.

From Question 4 and from the lectures we have

H k (CP n) ∼=Z, H k (RP n ;Z/2) ∼=Z/2, H k (Sn) ∼=
�
Z, k = 0,n

0, otherwise

Therefore we have

H n(CP∞) =Z, H n(RP∞;Z/2) =Z/2, H n(S∞) = 0 (n > 0)

The cohomology rings are given by

H•(CP∞) ∼=Z[x], H•(RP∞;Z/2) ∼= (Z/2)[x], H•(S∞) ∼=Z

Question 6

Let Y = X ∪ϕD
m with the attaching map ϕ : ∂Dm → X . Prove that

H•(Y ) ∼=





H•(X ) • �= m −1,m

Hm−1(X )/ imϕ• • = m −1

Hm(X )⊕kerϕ• • = m

(Hint. Consider (Y ,Y \ D) where D ⊆Dm is a closed disc in the interior of Dm .)

Proof. We note that (Y , X ) is a good pair, because Y \ D deformation retracts onto X . We have the long exact sequence:
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· · · �Hk (X ) �Hk (Y ) Hk (Y , X )

�Hk−1(X ) �Hk−1(Y ) Hk−1(Y , X ) · · ·
δk

We have

�Hk (Y , X ) ∼= �Hk (Y /X ) ∼= �Hk (Sm) =
�
Z, k = m

0, k �= m

For k ∉ {m,m −1}, we have the exact sequence

0 �Hk (X ) �Hk (Y ) 0

which implies that �Hk (X ) ∼= �Hk (Y ). For k ∈ {m,m +1}, we have the exact sequence

0 �Hm(X ) �Hm(Y ) �Hm(Y /X )

�Hm−1(X ) �Hm−1(Y ) 0

im qm

δm

im−1

The connecting map δm : �Hm(Y /X ) ∼= Z→ �Hm−1(X ) is exactly the push-out ϕm−1 : �Hm−1(∂Dm) ∼= Z→ �Hm−1(X )

of the attaching map ϕ :Dn → X . To prove this, we consider the map of the paired spaces: (Dm ,∂Dm) (Y , X )
ϕ

ϕ induces a map between the corresponding long exact sequences

· · · �Hm(Dm) Hm(Dm ,∂Dm) �Hm−1(∂Dm) �Hm−1(Dm) · · ·

· · · �Hm(Y ) Hm(Y , X ) �Hm−1(X ) �Hm−1(Y ) · · ·

δ�m

δm

ϕ�
m

ϕm−10 0

Since �Hm(Dm) = 0 and �Hm−1(Dm) = 0, δ�m : Hm(Dm ,∂Dm) → Hm−1(∂Dm) is an isomorphism. By excision theo-

rem, ϕ�
m : Hm(Dm ,∂Dm) → Hm(Y , X ) is also an isomorphism. Hence ϕm−1 = δm if we identify Hm(Y , X ) ∼= Z and

�Hm−1(∂Dm) ∼=Z by the corresponding isomorphisms.

Therefore �Hm−1(Y ) ∼=
�Hm−1(X )

ker im−1
=

�Hm−1(X )

imδm
=

�Hm−1(X )

imϕm−1
.

For �Hm(Y ), we break the long exact sequence into short exact sequences. We have

0 �Hm(X ) �Hm(Y ) kerδn 0
im qm

Note that kerδn
∼= kerϕm−1 is a submodule of the free Z-module Z. Since Z is a principal ideal domain, kerϕm−1

is also a free Z-module, and hence is projective. This implies that the short exact sequence above splits. We have
�Hm(Y ) ∼= �Hm(X )⊕kerϕm−1. In conclusion:

Hk (Y ) =





Hm(X )⊕kerϕm−1, k = m

Hm−1(X )/ imϕm−1, k = m −1

Hk (X ), otherwise

Question 7

a) Prove that if each xi ∈ Xi has a contractible neighbourhood, then

H•
�
�

i
Xi

�
∼=

�
i

H•(Xi ), •� 1

is an isomorphism of rings.
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b) Show that S1 ∨S1 ∨S2 and T 2 have the same homology, but different cohomology rings.

Proof. a) We have to assume that the index set is finite.

First we prove that

�H n

�
n�

i=1
Xi

�
∼=

n�
i=1

�H n(Xi )

as Z-modules. The proof is essentially the same as that of Question 4 of Sheet 2. We use the Mayer-Vietoris

sequence for cohomology.

Let Y1,Y2 be contractible neighbourhoods of x1, x2 in X1, X2 respectively. With abuse of notation we may set

A := X1 ∨Y2 and B := X2 ∨Y1, so that A ∪B = X1 ∨ X2 and A ∩B = Y1 ∨Y2. The Mayor-Vietoris sequence is

given by

· · · H n−1(Y1 ∨Y2) H n(X1 ∨X2) H n(X1 ∨Y2)⊕H n(X2 ∨Y1) H n(Y1 ∨Y2) · · ·

Since Y1 ∨Y2 is contractible, �H n(Y1 ∨Y2) = 0 for all n ∈N. We have

H n(X1 ∨X2) ∼= H n(X1 ∨Y2)⊕H n(X2 ∨Y1) ∼= H n(X1)⊕H n(X2)

Inductively we have

�H n

�
n�

i=1
Xi

�
∼=

n�
i=1

�H n(Xi )

Next we consider the cup product on these two groups. For each i , the inclusion of spaces ιi : Xi �→
�n

i=1 Xi

induces the ring homomorphism ι∗i : �H•��n
i=1 Xi

�→ �H•(Xi ) by the naturality of the cup product. Therefore

we have a ring homomorphism
n�

i=1
ι∗i : �H•

�
n�

i=1
Xi

�
→

n�
i=1

�H•(Xi )

It is an ring isomorphism because it is bijective as a group homomorphism.

b) In Question 4.(c) of Sheet 2 we have proven that S1 ∨S1 ∨S2 and T 2 has the same homology groups.

By (a), we have the ring isomorphism

�H•(S1 ∨S1 ∨S2) ∼= �H•(S1)× �H•(S1)× �H•(S2)

Suppose that f : �H•(S1)× �H•(S1)× �H•(S2) → �H•(T 2) is a graded ring isomorphism.

Let a,b be the generators of the two �H 1(S1) ∼= Z respectively. Then a � b = b � a. On the other hand,

f (a), f (b) ∈ �H 1(T 2). Therefore f (a) � f (b) = (−1)1·1 f (b) � f (a) = − f (b) � f (a). Hence we must have

f (a) � f (b) = 0. But in the lectures we have known that f (a) � f (b) is a generator of �H 2(T 2). This is a

contradiction. Hence the cohomology graded rings of S1 ∨S1 ∨S2 and T 2 are not isomorphic.

Question 8

a) Let X be the Moore space M(Z/m,n) = Sn ∪ϕ D
n+1, where the attaching map ϕ : ∂Dn+1 = Sn → Sn has

degree m. Compute H CW
• (X ) and H•

CW(X ).

b) Let Y =CP 2 ∪ϕD
3, where the attaching map ϕ : ∂D3 = S2 → S2 ∼=CP 1 ⊆CP 2 has degree p. Compute H•

CW(Y ).

c) For X = M(Z/p,2), show that H•(Y ) ∼= H•(X ∨S4) as rings but H•(Y ;Z/p) �∼= H•(X ∨S4;Z/p).

Proof. a) In Question 2, we have shown that the cellular chain complex is given by
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0 C CW
n+1(X ) C CW

n (X ) 0

Z Z

� �
degϕ

and the homology groups are given by

H CW
k (M(Z/m,n)) =





Z, k = 0

Z/m, k = n

0, otherwise

The cellular cochain complex is obtained by dualising the cellular chain complex:

0 C n
CW(X ) C n+1

CW (X ) 0

Z Z

� �
degϕ

Therefore the cohomology groups are given by

H k
CW(M(Z/m,n)) =





Z, k = 0

Z/m, k = n +1

0, otherwise

b) We note that Y is a CW-complex with

Y 0 = Y 1 = pt, Y 2 =CP 1, Y 3 =CP 1 ∪ϕD
3, Y = Y 4 = Y 3 ∪ψD

4

We shall calculate the cellcular chain complex. It is obvious that

H1(Y1,Y0) = 0, H2(Y 2,Y 1) = �H2(CP 1) ∼=Z, H3(Y 3,Y 2) ∼= H3(S3) ∼=Z, H4(Y ,Y 3) ∼= H4(S4) ∼=Z

Using the result of Question 6, we can patch the

· · · H4(Y ) H4(Y ,Y 3) �H3(Y 3) �H3(Y ) · · ·

· · · 0 �H3(Y 3) H3(Y 3,CP 1) �H2(CP 1) · · ·

ψ∗

q3 ϕ∗

i3q4

which gives the cellular chain complex

H4(Y ,Y 3) H3(Y 3,CP 1) �H2(CP 1) 0 Z
degψ degϕ

We know that degϕ = p. Note that ψ : ∂D4 = S3 → CP 1 = S2 ⊆ S3 is not surjective onto S3. So degψ = 0. So

we have:

Z Z Z 0 Z
0 ·p

Taking the dual, we obtain the cellular cochain complex:

Z 0 Z Z Z
·p 0

Taking the cohomology:

H k
CW(Y ) =





Z, k = 0,4

Z/p, k = 3

0, otherwise

c) We consider the cup product structure on H•(Y ). Let α be a generator for H 4(Y ) and β be a generator for
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H 3(Y ). Then α�α= 0, β�β= 0, and α�β= 0 for degree reason. Therefore the cohomology ring is given

by

H•(Y ) ∼= Z[x, y]�
x2, y2, x y, py

�

On the other hand, for H•(X ∨S4), we have the ring isomorphism

H•(X ∨S4) ∼= H•(X )×H•(S4) ∼= Z[x]�
x2

� × Z[x]�
y2, py

�

Finally, we note that there exists a ring isomorphism

f :
Z[x, y]�

x2, y2, x y, py
� → Z[x]�

x2
� × Z[x]�

y2, py
� , 1 �→ (1,1), x �→ (x,0), y �→ (0, y)

Hence H•(Y ) ∼= H•(X ∨S3) as cohomology rings.

Next we consider the cohomologies in Z/p-coefficients.

For Y , we have the cochain complex

Z/p 0 Z/p Z/p Z/p
·p 0

Taking the cohomology:

H k (Y ;Z/p) =
�
Z/p, k = 0,2,3,4

0, otherwise

For X , we have the cochain complex

Z/p 0 Z/p Z/p 0
·p

Taking the cohomology:

H k (X ;Z/p) =
�
Z/p, k = 0,2,3

0, otherwise

For S4, we have

H k (S4;Z/p) =
�
Z/p, k = 0,4

0, otherwise

Let α be a generator of H 2(Y ;Z/p). Suppose that f : H•(Y ;Z/p) → H•(X ∨ S3;Z/p) is a graded ring iso-

morphism. Then f (α) is a generator of H 2(X ;Z/p). For degree reason f (α) � f (α) = 0. But since Y is a

compact, connected, orientable 4-dimensional manifold, by Poincaré duality, α�α �= 0 ∈ H 4(Y ;Z/p). This

is contradictory. Hence H•(Y ;Z/p) �∼= H•(X ∨S3;Z/p) as graded rings.

Question 9

Compute directly the cup product structure on H•(K ) and H•(K ;Z/2), where K is the Klein bottle.

(Do not use the intersection theory, only use CW-complexes and the definition of �.)

Proof. To compute the cup products it is easier to use Δ-complexes rather than CW-complexes. From Question 6 of

Sheet 1, the simplicial chain complex of K is given by

0 ZU ⊕ZL Za ⊕Zb ⊕Zc Zv 0

�
1 1
1 −1
−1 1

�

0

Taking the dual we obtain the simplicial cochain complex
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0 Zv∨ Za∨⊕Zb∨⊕Zc∨ ZU∨⊕ZL∨ 00

�
1 1 −1
1 −1 1

�

Taking the cohomology, we have

H n
Δ(K ) Generators

n = 0 Z v∨

n = 1 Z �a∨ := (b∨+c∨)

n = 2 Z/2 U∨

We note that H•(K ) has an obviously unique cup product structure, where v∨ is the identity, �a∨ � �a∨ = 0 (by

graded commutativity), U∨�U∨ = 0, �a∨�U∨ = 0 (by the degree). In summary, we have

H•(K ) ∼= Z[x, y]�
x2, y2, x y,2y

�

For Z/2-coefficients, we have the cochain complex1

0 Z2v∨ Z2a∨⊕Z2b∨⊕Z2c∨ Z2U∨⊕Z2L∨ 00

�
1 1 1
1 1 1

�

Taking the cohomology, we have

H n
Δ(K ;Z/2) Generators

n = 0 Z/2 v∨

n = 1 (Z/2)2 A := a∨−b∨, B := b∨−c∨

n = 2 Z/2 U∨

To determine the cup product structure on H•(K ;Z/2) it suffices to compute A � A, B �B , and A �B . From the

diagram:

We have

(A �B)(U ) = A(U |[e0,e1])B(U |[e1,e2]) = (a∨−b∨)(a)(b∨−c∨)(b) = 1

(A �B)(L) = A(L|[e0,e1])B(L|[e1,e2]) = (a∨−b∨)(b)(b∨−c∨)(−a) = 0

(A � A)(U ) = A(U |[e0,e1])A(U |[e1,e2]) = (a∨−b∨)(a)(a∨−b∨)(b) = 1

(A � A)(L) = A(L|[e0,e1])A(L|[e1,e2]) = (a∨−b∨)(b)(a∨−b∨)(−a) = 1

(B �B)(U ) = B(U |[e0,e1])B(U |[e1,e2]) = (b∨−c∨)(a)(b∨−c∨)(b) = 0

(B �B)(L) = B(L|[e0,e1])B(L|[e1,e2]) = (b∨−c∨)(b)(b∨−c∨)(−a) = 0

Hence in the cohomology H 2(K ;Z/2) we have

A �B =U∨, A � A =U∨+L∨ = 0, B �B = 0

In summary, we have

H•(K ;Z/2) ∼= (Z/2)[x, y, z]�
x2, y2, x y − z, z2

� ∼= (Z/2)[x, y]�
x2, y2

�

1For typographical reason we use Z2 to denote Z/2.
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Question 10

Let I = [0,1]. Build orientation-preserving homeomorphisms of pairs

(Dn ,Sn−1) ∼= (I n ,∂I n) ∼= (I�× I k ,∂I�× I k ∪ I�×∂I k ) ∼= (D�×Dk ,∂D�×Dk ∪D�×∂Dk )

where �+k = n.

Proof. The canonical isomorphismσ : Rn →R�×Rk restricts to an homeomorphismσ� : I n → I�× I k , which is obviously

orientation-preserving. σ maps the boundary ∂I n to ∂(I�× I k ) = ∂I�× I k ∪ I�×∂I k .

On the other hand, for each m � 1, we have a orientation-preserving homeomorphism ϕm :Dm → I m given by

ϕm(x) =





0, x = 0
�x�2

�x�1
x, x �= 0

with ϕm(∂Dm) = ∂I m . Since the norms �−�1 and �−�2 are equivalent, ϕm is a homeomorphism. Now, (ϕ−1
�

,ϕ−1
k )◦

σ�◦ϕn is an orientation-preserving homeomorphism from the pair (Dn ,Sn−1) to (D�×Dk ,∂D�×Dk∪D�×∂Dk ).


