Peize Liu St. Peter's College University of Oxford

.

Problem Sheet 3

C3.1: Algebraic Topology

Convention: All spaces are topological spaces. Maps of spaces are always continuous.

Question 1

Construct a degree d map $S^n \to S^n$ for any $n \ge 1$.

Proof. • Construct a degree d map $f: S^1 \to S^1$.

Let $f: S^1 \to S^1$ given by $f(z) = z^d$. For each $z \in S^1$, the local map $f|_z$ is an orientation-preserving homeomorphism. So $\deg_z f = 1$. Since f is d to one, we deduce that $\deg f = d$.

• For $g: S^n \to S^n$, construct a suspension map $\Sigma g: S^{n+1} \to S^{n+1}$ and prove that $\deg g = \deg \Sigma g$.

The suspension ΣS^n is the quotient CS^n/S^n , where CS^n is the cone of S^n . We note that $\Sigma S^n \cong S^{n+1}$ and $CS^n \cong \mathbb{D}^n$. Note that (CS^n, S^n) is a good pair. We have a long exact sequence

$$\cdots \longrightarrow H_{n+1}(S^n) \longrightarrow H_{n+1}(\mathbb{D}^n) \longrightarrow H_{n+1}(S^{n+1}) \xrightarrow{\delta_n} H_n(S^n) \longrightarrow H_n(\mathbb{D}^n) \longrightarrow \cdots$$

Since $H_{n+1}(\mathbb{D}^n) = 0$ and $H_n(\mathbb{D}^n) = 0$, δ_n is in fact an isomorphism.

The map $S^n \times [0,1] \mapsto g(S^n) \times [0,1]$ descends to a suspension of map $\Sigma g: S^{n+1} \to S^{n+1}$. We have a commutative diagram by working type of LES

$$H_{n+1}(S^{n+1}) \xrightarrow{\delta_n} H_n(S^n)$$

$$(\Sigma g)_* \downarrow \qquad \qquad \downarrow g_*$$

$$H_{n+1}(S^{n+1}) \xrightarrow{\delta_n} H_n(S^n)$$

Hence $\deg g = \deg(\Sigma g)$.

• Combining the results above, deduce that $\Sigma^{n-1}f:S^n\to S^n$ is a map of degree d. Inductively we have $\deg(\Sigma^{n-1}f)=\deg f=d$.

Question 2

Given finitely generated Abelian groups $A_1,...,A_n$, construct a space with

$$H_{\bullet}(X) \cong \begin{cases} \mathbb{Z} & \bullet = 0 \\ A_k & \bullet = k \in \{1, ..., n\} \\ 0 & \text{otherwise} \end{cases}$$

Hint. CW-complex.

Proof. • For $m \ge 2$ and $n \ge 1$, construct a CW-complex X with $\widetilde{H}_n(X) \cong \mathbb{Z}/m$ and $\widetilde{H}_k(X) = 0$ for $k \ne n$.

Let $X := S^n \cup_{\varphi} \mathbb{D}^{n+1}$, where the attaching map $\varphi : S^n \to S^n$ has degree m. The cellular chain complex is given by

$$0 \longrightarrow H_{n+1}(X, S^n) \longrightarrow \widetilde{H}(S^n) \longrightarrow 0$$

$$\downarrow^{\simeq} \qquad \qquad \downarrow^{\simeq} \qquad \qquad \downarrow^{\simeq} \qquad \qquad \downarrow^{\simeq}$$

$$\mathbb{Z} \longrightarrow \mathbb{Z}$$

Taking the homology. We have $H_{n+1}^{\mathrm{CW}}(X) = 0$ and $H_n^{\mathrm{CW}}(X) \cong \mathbb{Z}/\deg \varphi = \mathbb{Z}/m$. All other homology groups are zero obviously.

The space $X = M(\mathbb{Z}/m, n)$ is called the **Moore space**.

• For a finitely generated Abelian group A, construct a CW-complex with $\widetilde{H}_n(X) \cong A$ and $\widetilde{H}_k(X) = 0$ for $k \neq n$. By the structure theorem for \mathbb{Z} -modules, we can write

$$A \cong \mathbb{Z}^a \oplus \mathbb{Z}/d_1 \oplus \cdots \oplus \mathbb{Z}/d_h$$

Then we take the space of wedge sums:

$$X_n := \bigvee_{i=1}^a S^n \vee \bigvee_{i=1}^b M(\mathbb{Z}/d_i, n)$$

Therefore

$$\widetilde{H}_k(X_n) = \bigoplus_{i=1}^a \widetilde{H}_k(S^n) \oplus \bigoplus_{i=1}^b \widetilde{H}_k(M(\mathbb{Z}/d_i, n)) = \begin{cases} \mathbb{Z}^a \oplus \mathbb{Z}/d_1 \oplus \cdots \oplus \mathbb{Z}/d_b, & k = n \\ 0, & k \neq n \end{cases}$$

• Back to the question.

For the group A_i , we have

$$A_i \cong \mathbb{Z}^{a_i} \oplus \mathbb{Z}/d_{i,1} \oplus \cdots \oplus \mathbb{Z}/d_{i,b_i}$$

We take the space

$$X := \bigvee_{i=1}^{n} X_i = \bigvee_{i=1}^{n} \left(\bigvee_{j=1}^{a_i} S^i \vee \bigvee_{j=1}^{b_i} M(\mathbb{Z}/d_{i,j}, i) \right)$$

Then

$$\widetilde{H}_k(X) = \bigoplus_{i=1}^n \widetilde{H}_k(X_i) = \bigoplus_{i=1}^n A_i \delta_{ik} = \begin{cases} A_k, & k \in \{1, ..., n\} \\ 0, & \text{otherwise} \end{cases}$$

The homology group

$$H_k(X) = \begin{cases} \mathbb{Z}, & k = 0 \\ A_k, & k \in \{1, ..., n\} \\ 0, & \text{otherwise} \end{cases}$$

Question 3

Let $f, g: S^n \to S^n$ satisfy $f(x) \neq g(x)$ for all $x \in S^n$. Prove that $f \simeq -\operatorname{id} \circ g$.

(Hint. Consider
$$\frac{\varphi_t}{\|\varphi_t\|}$$
 where $\varphi_t = tf - (1-t)g$.)

Deduce that

- if $f: S^n \to S^n$ has no fixed point then $f \simeq -id$.
- if G is a group acting continuously and freely on S^{2n} then G = 1 or $\mathbb{Z}/2$. (Hint. Degree.)

Proof. Let $H(x,t) = \frac{tf(x) - (1-t)g(x)}{\|tf(x) - (1-t)g(x)\|}$. This is well-defined if $\|tf(x) - (1-t)g(x)\| \neq 0$ for all $t \in [0,1]$ and $x \in S^n$. If $\|tf(x) - (1-t)g(x)\| = 0$, then tf(x) = (1-t)g(x). Taking the norm we have t = (1-t) and f(x) = g(x). This contradicts the assumption. Hence $H: S^n \times [0,1] \to S^n$ is well-defined.

We have H(x,0) = f(x) and H(x,1) = -g(x). H defines a homotopy from \dot{f} to -g. $f \simeq -\operatorname{id} \circ g$.

- Take g = id. f has no fixed points implies that $f(x) \neq g(x)$ for all $x \in S^n$. Hence $f \simeq -id$.
- The action of G on S^{2n} defines a group homomorphism $G \to \operatorname{Homeo}(S^{2n})$. Each homeomorphism on S^{2n} has degree ± 1 . So we have a group homomorphism $\deg : G \to \mathbb{Z}/2$. Since the action is free, each $g \in G \setminus \{e\}$ has no fixed point. Hence $g \simeq -\operatorname{id}$ and $\deg g = \deg(-\operatorname{id}) = (-1)^{2n+1} = -1$. In particular, $\ker \deg = \{e\}$. By first isomorphism theorem, G is isomorphic to a subgroup of $\mathbb{Z}/2$. Hence $G = \{e\}$ or $\mathbb{Z}/2$.

Question 4

a) In the CW complex for $\mathbb{C}P^n$ from the course notes, show that the attaching maps commute with the obvious inclusions $S^{k-1} \subseteq S^k$ via $\mathbb{R}^k \equiv \mathbb{R}^k \times 0 \subseteq \mathbb{R}^{k+1}$, and $\mathbb{C}P^k \subseteq \mathbb{C}P^{k+1}$ via $\mathbb{C}^{k+1} \equiv \mathbb{C}^{k+1} \times 0 \subseteq \mathbb{C}^{k+2}$.

(You have to decide in which dimensions to consider these inclusions, and also recall $\mathbb{R}^2 \cong \mathbb{C}$, $(x, y) \mapsto x + iy$.)

b) Explain why $\mathbb{R}P^n \cong \mathbb{D}^n/(\pm id \ action \ on \ \partial \mathbb{D}^n)$.

Under this identification, show that the *i*-th hyperplane $x_i = 0$ intersects $\mathbb{R}P^n$ in a copy of $\mathbb{R}P^{n-1}$, Show that the corresponding inclusion $\operatorname{ind}_i : \mathbb{R}P^{n-1} \to \mathbb{R}P^n$ induces isomorphisms $H_{\bullet}(\mathbb{R}P^{n-1}; \mathbb{Z}/2) \to H_{\bullet}(\mathbb{R}P^n; \mathbb{Z}/2) \cong \mathbb{Z}/2$ for $\bullet \neq n$.

(Hint. "Homotope it".)

State and prove an analogous result for $\mathbb{C}P^n$ (using \mathbb{Z}).

c) Use the cultural remark on page 57 of the notes for this exercise. Compute the cup product to deduce

$$H^{\bullet}(\mathbb{C}P^{n}) \cong \mathbb{Z}[x]/x^{n+1} \qquad |x| = 2$$

$$H^{\bullet}(\mathbb{R}P^{n}; \mathbb{Z}/2) \cong (\mathbb{Z}/2)[y]/y^{n+1} \qquad |y| = 1$$

You may assume as known that $\mathbb{C}P^n$ and $\mathbb{R}P^n$ are compact connected smooth manifolds, and that $\mathbb{C}P^n$ is orientable.

Proof. a) We need to verify that the following diagram commutes:

The upper and lower trapezia in the diagram commute by definition. The left triangle commutes because both the attaching map φ_n and the projectivisation \mathbb{P} are given by modulo S^1 action. Similarly the right triangle commutes. Hence the whole diagram commutes.

b) We have an isomorphism $\mathbb{D}^n/\langle x \sim -x \colon x \in \partial \mathbb{D}^n \rangle \cong S^n/\langle x \sim -x \colon x \in S^n \rangle =: \mathbb{R}P^n$ as follows. In $\mathbb{R}P^n$, the upper and lower hemisphere of S^n are identified. So we take the upper hemisphere $X \cong \mathbb{D}^n$. The equator ∂X is identified via the antipodal map. So we have the isomorphism as claimed above.

Let $P = \{x_i = 0\}$ be a hyperplane in \mathbb{R}^n . Under this identification, $\mathbb{R}P^n$ is $\mathbb{D}^n \subseteq \mathbb{R}^n$ with $x \sim -x$ on S^{n-1} . Note that $\mathbb{D}^n \cap P = \mathbb{D}^{n-1} \subseteq P$ and $S^{n-1} \cap P = S^{n-2} \subseteq P$. Hence $\mathbb{R}P^n \cap P = \mathbb{R}P^{n-1}$.

We note that $(\mathbb{R}P^n, \mathbb{R}P^{n-1})$ is a good pair, and $\mathbb{R}P^n/\mathbb{R}P^{n-1} \simeq S^n$. We have the long exact sequence

$$\cdots \longrightarrow \widetilde{H}_{k}(\mathbb{R}P^{n-1};\mathbb{Z}/2) \longrightarrow \widetilde{H}_{k}(\mathbb{R}P^{n};\mathbb{Z}/2) \longrightarrow \widetilde{H}_{k}(S^{n};\mathbb{Z}/2)$$

$$\circ \delta_{k} \longrightarrow \delta_{k}$$

$$\circ f \text{ that }$$

$$\circ \widetilde{H}_{k-1}(\mathbb{R}P^{n-1};\mathbb{Z}/2) \longrightarrow \widetilde{H}_{k-1}(S^{n};\mathbb{Z}/2) \longrightarrow \cdots$$
instead

We note that

$$\widetilde{H}_k(S^n; \mathbb{Z}/2) = \begin{cases} \mathbb{Z}/2, & k = n \\ 0, & \text{otherwise} \end{cases}$$

k ¢ n +1

Hence for $k \neq n$, the above exact sequence breaks into an isomorphism $\widetilde{H}_k(\mathbb{R}P^{n-1};\mathbb{Z}/2) \cong \widetilde{H}_k(S^n;\mathbb{Z}/2)$. For $k \neq n$, every non-zero homology group involved is isomorphic to $\mathbb{Z}/2$, and there is exactly a unique way to make this sequence exact:

If worked at the land of C* (RD, 142) then one can say IRP" -> RP" is actually a cell map and get the right isomorphisms.

 $0 \longrightarrow \mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2 \xrightarrow{\mathrm{id}} \mathbb{Z}/2$ $\mathbb{Z}/2 \xrightarrow{\mathrm{id}} \mathbb{Z}/2 \longrightarrow 0 \longrightarrow \cdots$ $\mathbb{Z}/2 \xrightarrow{\mathrm{id}} \mathbb{Z}/2 \longrightarrow 0 \longrightarrow \cdots$

Hence $H_{n-1}(\mathbb{R}P^{n-1};\mathbb{Z}/2)\cong H_n(\mathbb{R}P^n;\mathbb{Z}/2)$. Not what you were supposed to show

For cohomology, we can prove that the inclusion induces isomorphisms $H^k(\mathbb{R}P^n;\mathbb{Z}/2) \to H^k(\mathbb{R}P^{k-1};\mathbb{Z}/2)$ for $k \neq n$.

For $\mathbb{C}P^n$, we have a similar result: the inclusion $\mathbb{C}P^{n-1} \hookrightarrow \mathbb{C}P^n$ induces isomorphisms $H_k(\mathbb{C}P^{n-1}) \to H_k(\mathbb{C}P^n)$ and $H^k(\mathbb{C}P^n) \to H^k(\mathbb{C}P^{n-1})$ for $k \neq 2n$.

c) For $\mathbb{C}P^n$, let α be a generator for $H^2(\mathbb{C}P^n) \cong \mathbb{Z}$. We use induction on n to prove that $H^{2i}(\mathbb{C}P^n)$ is generated by α^i for all $i \leq n$. Suppose that the result holds for $\mathbb{C}P^{n-1}$. By (b), we have the isomorphisms of cohomology groups $H^{2i}(\mathbb{C}P^{n-1}) \cong H^{2i}(\mathbb{C}P^n)$ for i < n. So $H^{2i}(\mathbb{C}P^n)$ is generated by α^i for all i < n. For i = n, since $\mathbb{C}P^n$ is compact, connected, and orientable, by Poincaré duality, there exists $\beta \in H^{2n-2}(\mathbb{C}P^n)$ such that $\alpha \smile \beta$ generates $H^{2n}(\mathbb{C}P^n)$. By induction hypothesis $\beta = m\alpha^{n-1}$. Hence $\alpha \smile \beta = m\alpha^n$. We must have $m = \pm 1$. Thus α^n generates $H^{2n}(\mathbb{C}P^n)$. This completes the induction. In particular, we have $H^{\bullet}(\mathbb{C}P^n) \cong \mathbb{Z}[x]/\langle x^{n+1} \rangle$ with |x| = 2.

For $\mathbb{R}P^2$, we note that it is compact, connected, and $\mathbb{Z}/2$ -orientable. We can apply the same method to obtain that $H^{\bullet}(\mathbb{R}P^n) \cong (\mathbb{Z}/2)[y]/\langle y^{n+1}\rangle$ with |y|=1.

Question 5

Let $\mathbb{C}P^{\infty} = \bigcup_{n \ge 0} \mathbb{C}P^n$, $S^{\infty} = \bigcup_{n \ge 0} S^n$, and $\mathbb{R}P^{\infty} = \bigcup_{n \ge 0} \mathbb{R}P^n$, using the natural inclusions from 4.(a).

- a) Describe a CW-complex structure on these spaces and compute H_{\bullet} .
- b) Compute $H_{\bullet}(\mathbb{R}P^{\infty}; \mathbb{Z}/2)$.
- c) Describe the ring structure on their cohomologies (for $\mathbb{R}P^{\infty}$ work over $\mathbb{Z}/2$).

Proof. a) $\mathbb{C}P^{\infty}$, S^{∞} and $\mathbb{R}P^{\infty}$ are infinite CW-complexes.

• For $X = \mathbb{C}P^{\infty}$, we have

$$X^0 = \mathrm{pt}, \quad X^{2n+1} = X^{2n} = \mathbb{C}P^n, \quad X^{2n} = X^{n-1} \cup_{\varphi_n} \mathbb{D}^{2n}, \text{ where } \varphi_n \colon S^{2n-1} \to \mathbb{C}P^{n-1} \cong S^{2n-1}/S^1$$

• For $X = S^{\infty}$, we have

$$X^0 = 2 \text{ pts}, \quad X^n = (X^{n-1} \cup_{\varphi_n} \mathbb{D}^n) \cup_{\varphi_n} \mathbb{D}^n, \text{ where } \varphi_n = \text{id}: S^{n-1} \to S^{n-1}$$

• For $X = \mathbb{R}P^{\infty}$, we have

$$X^0 = \operatorname{pt}, \quad X^n = X^{n-1} \cup_{\varphi_n} \mathbb{D}^n, \text{ where } \varphi_n : S^{n-1} \to \mathbb{R}P^{n-1} \cong S^{n-1}/(\mathbb{Z}/2)$$

b) For each $n \in \mathbb{N}$, $\mathbb{R}P^{\infty}$ has exactly one n-cell. The cellular chain complex is given by

$$\cdots \longrightarrow \mathbb{Z}/2 \xrightarrow{\partial_4} \mathbb{Z}/2 \xrightarrow{\partial_3} \mathbb{Z}/2 \xrightarrow{\partial_2} \mathbb{Z}/2 \xrightarrow{\partial_1} \mathbb{Z}/2$$

For $n \in \mathbb{Z}_+$, $\partial_n : H_n(\mathbb{R}P^n, \mathbb{R}P^{n-1}) \to H_{n-1}(\mathbb{R}P^{n-1}, \mathbb{R}P^{n-2})$ is determined by the degree of the map

$$\partial \mathbb{D}^n = S^{n-1} \xrightarrow{\varphi_n} \mathbb{R} P^{n-1} \xrightarrow{q_n} \mathbb{R} P^{n-1} / \mathbb{R} P^{n-2} \cong S^{n-1}$$

which is degid + deg(-id) = $1 + (-1)^n$. Hence $\partial_n = 2$ for odd n and $\partial_n = 0$ for even n. Since we are using $\mathbb{Z}/2$ -modules, $\partial_n = 0$ for all $n \in \mathbb{Z}_+$. The cellular chain complex is given by

$$\cdots \longrightarrow \mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2$$

Hence the homology $\mathbb{Z}/2$ -modules are given by

$$H_n(\mathbb{R}P^{\infty}; \mathbb{Z}/2) = \mathbb{Z}/2, \quad n \in \mathbb{N}$$

c) Note that the infinite-dimensional spaces are filtered colimits in Top: $\mathbb{C}P^{\infty} = \underline{\lim}_{n} \mathbb{C}P^{n}$, $S^{\infty} = \underline{\lim}_{n} S^{n}$, and $\mathbb{R}P^{\infty} = \underline{\lim}_{n} \mathbb{R}P^{n}$. The weak topology on the CW complexes implies that the the cochain complex $C^{\bullet}(\mathbb{C}P^{\infty})$ is the filtered limit $\lim_{n} C^{\bullet}(\mathbb{C}P^{n})$ and similar for other spaces. We would like to invoke a general result:

Lemma 1. (Application 3.5.9 in Weibel)

Suppose that $\{X_k\}_{k\in\mathbb{N}}$ is an ascending chain of CW-complexes with $X=\varinjlim_k X_k=\bigcup_{k\in\mathbb{N}} X_k$. There is a short exact sequence

$$0 \longrightarrow \varprojlim_{k}^{1} H^{n-1}(X_{k}; R) \longrightarrow H^{n}(X; R) \longrightarrow \varprojlim_{k} H^{n}(X_{k}; R) \longrightarrow 0$$

where lim¹ is the first right derived functor of lim.

In particular, $\varprojlim_k^1 H^{n-1}(X_k;R) = 0$ and therefore $H^n(X;R) \cong \varprojlim_k H^n(X_k;R)$, provided that the following more elements tower satisfies the **Mittag-Leffler condition**:

proofs can also

where $H^{n-1}(X_k;R) = 0$ and therefore $H^n(X;R) \cong \varprojlim_k H^n(X_k;R)$, provided that the following the following $H^{n-1}(X_k;R) = 0$ and therefore $H^n(X_k;R) = 0$ and the $H^n(X_k;R) = 0$ and $H^n(X_k;R)$

proofs can also $\cdots \longrightarrow H^{n-1}(X_{k+1}) \longrightarrow H^{n-1}(X_k) \longrightarrow H^{n-1}(X_{k-1}) \longrightarrow \cdots \text{ which the condition trivially, because } H^{n-1}(X^k) \text{ is independent of } n \text{ for } n > k.$

From Question 4 and from the lectures we have

$$H^k(\mathbb{C}P^n) \cong \mathbb{Z}, \qquad H^k(\mathbb{R}P^n; \mathbb{Z}/2) \cong \mathbb{Z}/2, \qquad H^k(S^n) \cong \begin{cases} \mathbb{Z}, & k = 0, n \\ 0, & \text{otherwise} \end{cases}$$

Therefore we have

$$H^n(\mathbb{C}P^\infty) = \mathbb{Z}, \qquad H^n(\mathbb{R}P^\infty; \mathbb{Z}/2) = \mathbb{Z}/2, \qquad H^n(S^\infty) = 0 \quad (n > 0)$$

The cohomology rings are given by

$$H^{\bullet}(\mathbb{C}P^{\infty}) \cong \mathbb{Z}[x], \qquad H^{\bullet}(\mathbb{R}P^{\infty}; \mathbb{Z}/2) \cong (\mathbb{Z}/2)[x], \qquad H^{\bullet}(S^{\infty}) \cong \mathbb{Z}$$

$$|x| \approx 2$$

$$|x| = 1$$

$$(x) = 1$$

Question 6

Let $Y = X \cup_{\varphi} \mathbb{D}^m$ with the attaching map $\varphi : \partial \mathbb{D}^m \to X$. Prove that

$$H_{\bullet}(Y) \cong \begin{cases} H_{\bullet}(X) & \bullet \neq m-1, m \\ H_{m-1}(X) / \operatorname{im} \varphi_{\bullet} & \bullet = m-1 \\ H_{m}(X) \oplus \ker \varphi_{\bullet} & \bullet = m \end{cases}$$

(Hint. Consider $(Y, Y \setminus D)$ where $D \subseteq \mathbb{D}^m$ is a closed disc in the interior of \mathbb{D}^m .)

Proof. We note that (Y, X) is a good pair, because $Y \setminus D$ deformation retracts onto X. We have the long exact sequence:

$$\cdots \longrightarrow \widetilde{H}_{k}(X) \longrightarrow \widetilde{H}_{k}(Y) \longrightarrow H_{k}(Y,X)$$

$$\widetilde{H}_{k-1}(X) \stackrel{\delta_{k}}{\longleftrightarrow} \widetilde{H}_{k-1}(Y) \longrightarrow H_{k-1}(Y,X) \longrightarrow \cdots$$

We have

$$\widetilde{H}_k(Y,X) \cong \widetilde{H}_k(Y/X) \cong \widetilde{H}_k(S^m) = \begin{cases} \mathbb{Z}, & k=m \\ 0, & k \neq m \end{cases}$$

For $k \notin \{m, m-1\}$, we have the exact sequence

$$0 \longrightarrow \widetilde{H}_k(X) \longrightarrow \widetilde{H}_k(Y) \longrightarrow 0$$

which implies that $\widetilde{H}_k(X) \cong \widetilde{H}_k(Y)$. For $k \in \{m, m+1\}$, we have the exact sequence

$$0 \longrightarrow \widetilde{H}_{m}(X) \xrightarrow{i_{m}} \widetilde{H}_{m}(Y) \xrightarrow{q_{m}} \widetilde{H}_{m}(Y/X)$$

$$\widetilde{H}_{m-1}(X) \xrightarrow{i_{m}} \widetilde{H}_{m-1}(Y) \longrightarrow 0$$

The connecting map $\delta_m : \widetilde{H}_m(Y/X) \cong \mathbb{Z} \to \widetilde{H}_{m-1}(X)$ is exactly the push-out $\varphi_{m-1} : \widetilde{H}_{m-1}(\partial \mathbb{D}^m) \cong \mathbb{Z} \to \widetilde{H}_{m-1}(X)$ of the attaching map $\varphi : \mathbb{D}^n \to X$. To prove this, we consider the map of the paired spaces: $(\mathbb{D}^m, \partial \mathbb{D}^m) \xrightarrow{\varphi} (Y, X)$ φ induces a map between the corresponding long exact sequences

$$\cdots \longrightarrow \widetilde{H}_{m}(\mathbb{D}^{m}) \longrightarrow H_{m}(\mathbb{D}^{m}, \partial \mathbb{D}^{m}) \xrightarrow{\delta'_{m}} \widetilde{H}_{m-1}(\partial \mathbb{D}^{m}) \longrightarrow \widetilde{H}_{m-1}(\mathbb{D}^{m}) \longrightarrow \cdots$$

$$\downarrow 0 \qquad \qquad \downarrow \varphi'_{m} \qquad \qquad \downarrow \varphi_{m-1} \qquad \downarrow 0$$

$$\cdots \longrightarrow \widetilde{H}_{m}(Y) \longrightarrow H_{m}(Y, X) \xrightarrow{\delta_{m}} \widetilde{H}_{m-1}(X) \longrightarrow \widetilde{H}_{m-1}(Y) \longrightarrow \cdots$$

Since $\widetilde{H}_m(\mathbb{D}^m)=0$ and $\widetilde{H}_{m-1}(\mathbb{D}^m)=0$, $\delta_m':H_m(\mathbb{D}^m,\partial\mathbb{D}^m)\to H_{m-1}(\partial\mathbb{D}^m)$ is an isomorphism. By excision theorem, $\varphi_m':H_m(\mathbb{D}^m,\partial\mathbb{D}^m)\to H_m(Y,X)$ is also an isomorphism. Hence $\varphi_{m-1}=\delta_m$ if we identify $H_m(Y,X)\cong\mathbb{Z}$ and $\widetilde{H}_{m-1}(\partial\mathbb{D}^m)\cong\mathbb{Z}$ by the corresponding isomorphisms.

Therefore
$$\widetilde{H}_{m-1}(Y) \cong \frac{\widetilde{H}_{m-1}(X)}{\ker i_{m-1}} = \frac{\widetilde{H}_{m-1}(X)}{\operatorname{im} \delta_m} = \frac{\widetilde{H}_{m-1}(X)}{\operatorname{im} \varphi_{m-1}}.$$

For $\widetilde{H}_m(Y)$, we break the long exact sequence into short exact sequences. We have

$$0 \longrightarrow \widetilde{H}_m(X) \xrightarrow{i_m} \widetilde{H}_m(Y) \xrightarrow{q_m} \ker \delta_n \longrightarrow 0$$

Note that $\ker \delta_n \cong \ker \varphi_{m-1}$ is a submodule of the free \mathbb{Z} -module \mathbb{Z} . Since \mathbb{Z} is a principal ideal domain, $\ker \varphi_{m-1}$ is also a free \mathbb{Z} -module, and hence is projective. This implies that the short exact sequence above splits. We have $\widetilde{H}_m(Y) \cong \widetilde{H}_m(X) \oplus \ker \varphi_{m-1}$. In conclusion:

$$H_k(Y) = \begin{cases} H_m(X) \oplus \ker \varphi_{m-1}, & k = m \\ H_{m-1}(X) / \operatorname{im} \varphi_{m-1}, & k = m-1 \\ H_k(X), & \text{otherwise} \end{cases}$$

Question 7

a) Prove that if each $x_i \in X_i$ has a contractible neighbourhood, then

$$H^{\bullet}\left(\bigvee_{i}X_{i}\right)\cong\prod_{i}H^{\bullet}(X_{i}), \quad \bullet\geqslant 1$$

is an isomorphism of rings.

b) Show that $S^1 \vee S^1 \vee S^2$ and T^2 have the same homology, but different cohomology rings.

Proof. a) We have to assume that the index set is finite.

First we prove that

$$\widetilde{H}^n\left(\bigvee_{i=1}^n X_i\right) \cong \bigoplus_{i=1}^n \widetilde{H}^n(X_i)$$

as \mathbb{Z} -modules. The proof is essentially the same as that of Question 4 of Sheet 2. We use the Mayer-Vietoris sequence for cohomology.

Let Y_1 , Y_2 be contractible neighbourhoods of x_1 , x_2 in X_1 , X_2 respectively. With abuse of notation we may set $A := X_1 \vee Y_2$ and $B := X_2 \vee Y_1$, so that $A \cup B = X_1 \vee X_2$ and $A \cap B = Y_1 \vee Y_2$. The Mayor-Vietoris sequence is given by

If you use excision theorem

$$\cdots \rightarrow H^{n-1}(Y_1 \vee Y_2) \rightarrow H^n(X_1 \vee X_2) \rightarrow H^n(X_1 \vee Y_2) \oplus H^n(X_2 \vee Y_1) \rightarrow H^n(Y_1 \vee Y_2) \rightarrow \cdots$$

Since $Y_1 \vee Y_2$ is contractible, $\widetilde{H}^n(Y_1 \vee Y_2) = 0$ for all $n \in \mathbb{N}$. We have

 $H^{n}(X_{1}\vee X_{2})\cong H^{n}(X_{1}\vee Y_{2})\oplus H^{n}(X_{2}\vee Y_{1})\cong H^{n}(X_{1})\oplus H^{n}(X_{2})$ work with infinite wedge sum. Next only $H^{\infty}(V\times V_{1})\cong H^{n}(X_{1})\oplus H^{n}(X_{2})$ Inductively we have

$$\widetilde{H}^n\left(\bigvee_{i=1}^n X_i\right) \cong \bigoplus_{i=1}^n \widetilde{H}^n(X_i)$$

Next we consider the cup product on these two groups. For each i, the inclusion of spaces $\iota_i: X_i \hookrightarrow \bigvee_{i=1}^n X_i$ induces the ring homomorphism $\iota_i^*: \widetilde{H}^{\bullet}(\bigvee_{i=1}^n X_i) \to \widetilde{H}^{\bullet}(X_i)$ by the naturality of the cup product \mathcal{T} herefore we have a ring homomorphism

$$\prod_{i=1}^{n} \iota_{i}^{*} : \widetilde{H}^{\bullet} \left(\bigvee_{i=1}^{n} X_{i} \right) \to \prod_{i=1}^{n} \widetilde{H}^{\bullet} (X_{i})$$

It is an ring isomorphism because it is bijective as a group homomorphism. \smile

b) In Question 4.(c) of Sheet 2 we have proven that $S^1 \vee S^1 \vee S^2$ and T^2 has the same homology groups. By (a), we have the ring isomorphism

$$\widetilde{H}^{\bullet}(S^1 \vee S^1 \vee S^2) \cong \widetilde{H}^{\bullet}(S^1) \times \widetilde{H}^{\bullet}(S^1) \times \widetilde{H}^{\bullet}(S^2)$$

Suppose that $f: \widetilde{H}^{\bullet}(S^1) \times \widetilde{H}^{\bullet}(S^1) \times \widetilde{H}^{\bullet}(S^2) \to \widetilde{H}^{\bullet}(T^2)$ is a graded ring isomorphism.

Let a,b be the generators of the two $\widetilde{H}^1(S^1) \cong \mathbb{Z}$ respectively. Then $a \smile b = b \smile a$. On the other hand, $f(a), f(b) \in \widetilde{H}^1(T^2)$. Therefore $f(a) \smile f(b) = (-1)^{1\cdot 1} f(b) \smile f(a) = -f(b) \smile f(a)$. Hence we must have $f(a) \smile f(b) = 0$. But in the lectures we have known that $f(a) \smile f(b)$ is a generator of $\widetilde{H}^2(T^2)$. This is a contradiction. Hence the cohomology graded rings of $S^1 \vee S^1 \vee S^2$ and T^2 are not isomorphic.

Question 8

- a) Let X be the **Moore space** $M(\mathbb{Z}/m,n) = S^n \cup_{\varphi} \mathbb{D}^{n+1}$, where the attaching map $\varphi : \partial \mathbb{D}^{n+1} = S^n \to S^n$ has degree m. Compute $H^{\mathrm{CW}}_{\bullet}(X)$ and $H^{\mathrm{CW}}_{\mathrm{CW}}(X)$.
- b) Let $Y = \mathbb{C}P^2 \cup_{\varphi} \mathbb{D}^3$, where the attaching map $\varphi : \partial \mathbb{D}^3 = S^2 \to S^2 \cong \mathbb{C}P^1 \subseteq \mathbb{C}P^2$ has degree p. Compute $H^{\bullet}_{\mathrm{CW}}(Y)$.
- c) For $X = M(\mathbb{Z}/p, 2)$, show that $H^{\bullet}(Y) \cong H^{\bullet}(X \vee S^4)$ as rings but $H^{\bullet}(Y; \mathbb{Z}/p) \ncong H^{\bullet}(X \vee S^4; \mathbb{Z}/p)$.

Proof. a) In Question 2, we have shown that the cellular chain complex is given by

and the homology groups are given by

$$H_k^{\text{CW}}(M(\mathbb{Z}/m, n)) = \begin{cases} \mathbb{Z}, & k = 0 \\ \mathbb{Z}/m, & k = n \\ 0, & \text{otherwise} \end{cases}$$

The cellular cochain complex is obtained by dualising the cellular chain complex:

$$0 \longrightarrow C^n_{\mathrm{CW}}(X) \longrightarrow C^{n+1}_{\mathrm{CW}}(X) \longrightarrow 0$$

$$\downarrow^{\simeq} \qquad \qquad \downarrow^{\simeq}$$

$$\mathbb{Z} \xrightarrow{\deg \varphi} \mathbb{Z}$$

Therefore the cohomology groups are given by

$$H_{\mathrm{CW}}^k(M(\mathbb{Z}/m,n)) = egin{cases} \mathbb{Z}, & k=0 \\ \mathbb{Z}/m, & k=n+1 \\ 0, & \mathrm{otherwise} \end{cases}$$

b) We note that *Y* is a CW-complex with

$$Y^0=Y^1=\mathrm{pt}, \qquad Y^2=\mathbb{C}P^1, \qquad Y^3=\mathbb{C}P^1\cup_{\varphi}\mathbb{D}^3, \qquad Y=Y^4=Y^3\cup_{\psi}\mathbb{D}^4$$

We shall calculate the cellcular chain complex. It is obvious that

$$H_1(Y_1, Y_0) = 0$$
, $H_2(Y^2, Y^1) = \widetilde{H}_2(\mathbb{C}P^1) \cong \mathbb{Z}$, $H_3(Y^3, Y^2) \cong H_3(S^3) \cong \mathbb{Z}$, $H_4(Y, Y^3) \cong H_4(S^4) \cong \mathbb{Z}$

Using the result of Question 6, we can patch the

which gives the cellular chain complex

$$H_4(Y,Y^3) \xrightarrow{\deg \psi} H_3(Y^3,\mathbb{C}P^1) \xrightarrow{\deg \phi} \widetilde{H}_2(\mathbb{C}P^1) \longrightarrow 0 \longrightarrow \mathbb{Z}$$

We know that $\deg \varphi = p$. Note that $\psi : \partial \mathbb{D}^4 = S^3 \to \mathbb{C}P^1 = S^2 \subseteq S^3$ is not surjective onto S^3 . So $\deg \psi = 0$. So we have:

$$\mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{\cdot p} \mathbb{Z} \longrightarrow 0 \longrightarrow \mathbb{Z} \qquad \checkmark$$

Taking the dual, we obtain the cellular cochain complex:

$$\mathbb{Z} \longrightarrow 0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot p} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \checkmark$$

Taking the cohomology:

$$H_{\text{CW}}^{k}(Y) = \begin{cases} \mathbb{Z}, & k = 0, 4\\ \mathbb{Z}/p, & k = 3\\ 0, & \text{otherwise} \end{cases}$$

c) We consider the cup product structure on $H^{\bullet}(Y)$. Let α be a generator for $H^{4}(Y)$ and β be a generator for

 $H^3(Y)$. Then $\alpha \smile \alpha = 0$, $\beta \smile \beta = 0$, and $\alpha \smile \beta = 0$ for degree reason. Therefore the cohomology ring is given by

$$H^{\bullet}(Y) \cong \frac{\mathbb{Z}[x,y]}{\langle x^2, y^2, xy, py \rangle}$$
 just say to via ring symptomism

On the other hand, for
$$H^{\bullet}(X \vee S^4)$$
, we have the ring isomorphism
$$H^{\bullet}(X \vee S^4) \cong H^{\bullet}(X) \times H^{\bullet}(S^4) \cong \frac{\mathbb{Z}[x]}{\langle x^2 \rangle} \times \frac{\mathbb{Z}[x]}{\langle y^2, py \rangle} \qquad \text{for both}$$

Finally, we note that there exists a ring isomorphism

$$f \colon \frac{\mathbb{Z}[x,y]}{\langle x^2, y^2, xy, py \rangle} \to \frac{\mathbb{Z}[x]}{\langle x^2 \rangle} \times \frac{\mathbb{Z}[x]}{\langle y^2, py \rangle}, \qquad 1 \mapsto (1,1), \quad x \mapsto (x,0), \quad y \mapsto (0,y)$$

Hence $H^{\bullet}(Y) \cong H^{\bullet}(X \vee S^3)$ as cohomology rings.

Next we consider the cohomologies in \mathbb{Z}/p -coefficients.

For *Y*, we have the cochain complex

$$\mathbb{Z}/p \longrightarrow 0 \longrightarrow \mathbb{Z}/p \xrightarrow{\cdot p} \mathbb{Z}/p \xrightarrow{0} \mathbb{Z}/p$$

Taking the cohomology:

$$H^{k}(Y; \mathbb{Z}/p) = \begin{cases} \mathbb{Z}/p, & k = 0, 2, 3, 4 \\ 0, & \text{otherwise} \end{cases}$$

For *X*, we have the cochain complex

$$\mathbb{Z}/p \longrightarrow 0 \longrightarrow \mathbb{Z}/p \stackrel{\cdot p}{\longrightarrow} \mathbb{Z}/p \longrightarrow 0$$

Taking the cohomology:

$$H^{k}(X; \mathbb{Z}/p) = \begin{cases} \mathbb{Z}/p, & k = 0, 2, 3\\ 0, & \text{otherwise} \end{cases}$$

For S^4 , we have

good but justify
$$H^k(S^4; \mathbb{Z}/p) = \begin{cases} \mathbb{Z}/p, & k = 0,4\\ 0, & \text{otherwise} \end{cases}$$

Let α be a generator of $H^2(Y; \mathbb{Z}/p)$. Suppose that $f: H^{\bullet}(Y; \mathbb{Z}/p) \to H^{\bullet}(X \vee S^{\{\!\!\!\ p \\!\!\!\}}; \mathbb{Z}/p)$ is a graded ring isomorphism. Then $f(\alpha)$ is a generator of $H^2(X; \mathbb{Z}/p)$. For degree reason $f(\alpha) \smile f(\alpha) = 0$. But since Y is a compact, connected, orientable 4-dimensional manifold, by Poincaré duality, $\alpha \smile \alpha \neq 0 \in H^4(Y; \mathbb{Z}/p)$. This is contradictory. Hence $H^{\bullet}(Y; \mathbb{Z}/p) \ncong H^{\bullet}(X \vee S^3; \mathbb{Z}/p)$ as graded rings.

Question 9

Compute directly the cup product structure on $H^{\bullet}(K)$ and $H^{\bullet}(K;\mathbb{Z}/2)$, where K is the Klein bottle.

(Do not use the intersection theory, only use CW-complexes and the definition of —.)

Proof. To compute the cup products it is easier to use Δ -complexes rather than CW-complexes. From Question 6 of

Sheet 1, the simplicial chain complex of
$$K$$
 is given by not just easier, it's not limitive how $0 \longrightarrow \mathbb{Z}U \oplus \mathbb{Z}L \xrightarrow{\begin{pmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 1 \end{pmatrix}} \mathbb{Z}a \oplus \mathbb{Z}b \oplus \mathbb{Z}c \xrightarrow{0} \mathbb{Z}v \longrightarrow 0$

Taking the dual we obtain the simplicial cochain complex

$$0 \longrightarrow \mathbb{Z}v^{\vee} \longrightarrow 0 \longrightarrow \mathbb{Z}a^{\vee} \oplus \mathbb{Z}b^{\vee} \oplus \mathbb{Z}c^{\vee} \xrightarrow{\begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}} \mathbb{Z}U^{\vee} \oplus \mathbb{Z}L^{\vee} \longrightarrow 0$$

Taking the cohomology, we have

$$H_{\Delta}^{n}(K)$$
 Generators
 $n = 0$ \mathbb{Z} v^{\vee}
 $n = 1$ \mathbb{Z} $\widetilde{a}^{\vee} := (b^{\vee} + c^{\vee})$
 $n = 2$ $\mathbb{Z}/2$ U^{\vee}

We note that $H^{\bullet}(K)$ has an obviously unique cup product structure, where v^{\vee} is the identity, $\widetilde{a}^{\vee} \smile \widetilde{a}^{\vee} = 0$ (by graded commutativity), $U^{\vee} \smile U^{\vee} = 0$, $\widetilde{a}^{\vee} \smile U^{\vee} = 0$ (by the degree). In summary, we have

$$H^{\bullet}(K) \cong \frac{\mathbb{Z}[x,y]}{\langle x^{2},y^{2},xy,2y\rangle} \qquad \text{ for } Say \text{ frivial }$$
 For $\mathbb{Z}/2$ -coefficients, we have the cochain complex 1 $Specify$ Say Say

$$0 \longrightarrow \mathbb{Z}_2 v^{\vee} \longrightarrow \mathbb{Z}_2 a^{\vee} \oplus \mathbb{Z}_2 b^{\vee} \oplus \mathbb{Z}_2 c^{\vee} \xrightarrow{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}} \mathbb{Z}_2 U^{\vee} \oplus \mathbb{Z}_2 L^{\vee} \longrightarrow 0$$

Taking the cohomology, we have

$$H_{\Delta}^{n}(K; \mathbb{Z}/2)$$
 Generators
$$\begin{array}{ccc}
n = 0 & \mathbb{Z}/2 & v^{\vee} \\
n = 1 & (\mathbb{Z}/2)^{2} & A := a^{\vee} - b^{\vee}, B := b^{\vee} - c^{\vee} \\
n = 2 & \mathbb{Z}/2 & U^{\vee}
\end{array}$$

To determine the cup product structure on $H^{\bullet}(K; \mathbb{Z}/2)$ it suffices to compute $A \smile A$, $B \smile B$, and $A \smile B$. From the diagram:

We have

$$(A \smile B)(U) = A(U|_{[e_0,e_1]})B(U|_{[e_1,e_2]}) = (a^{\vee} - b^{\vee})(a)(b^{\vee} - c^{\vee})(b) = 1$$

$$(A \smile B)(L) = A(L|_{[e_0,e_1]})B(L|_{[e_1,e_2]}) = (a^{\vee} - b^{\vee})(b)(b^{\vee} - c^{\vee})(-a) = 0$$

$$(A \smile A)(U) = A(U|_{[e_0,e_1]})A(U|_{[e_1,e_2]}) = (a^{\vee} - b^{\vee})(a)(a^{\vee} - b^{\vee})(b) = 1$$

$$(A \smile A)(L) = A(\underline{L}|_{[e_0,e_1]})A(L|_{[e_1,e_2]}) = (a^{\vee} - b^{\vee})(b)(a^{\vee} - b^{\vee})(-a) = 0$$

$$(B \smile B)(U) = B(U|_{[e_0,e_1]})B(U|_{[e_1,e_2]}) = (b^{\vee} - c^{\vee})(a)(b^{\vee} - c^{\vee})(b) = 0$$

$$(B \smile B)(L) = B(\underline{L}|_{[e_0,e_1]})B(L|_{[e_1,e_2]}) = (b^{\vee} - c^{\vee})(b)(b^{\vee} - c^{\vee})(-a) = 0$$

Hence in the cohomology $H^2(K; \mathbb{Z}/2)$ we have

$$A \smile B = U^{\vee}, \qquad A \smile A = U^{\vee} + L^{\vee} = 0, \qquad B \smile B = 0$$

In summary, we have

$$H^{\bullet}(K; \mathbb{Z}/2) \cong \frac{(\mathbb{Z}/2)[x, y, z]}{\langle x^2, y^2, xy - z, z^2 \rangle} \cong \frac{(\mathbb{Z}/2)[x, y]}{\langle x^2, y^2 \rangle}$$

 $H^{\bullet}(K; \mathbb{Z}/2) \cong \frac{(\mathbb{Z}/2)[x, y, z]}{\langle x^2, y^2, xy - z, z^2 \rangle} \cong \frac{(\mathbb{Z}/2)[x, y]}{\langle x^2, y^2 \rangle} \text{ specify grading } \square$ $\overline{e} \, \mathbb{Z}/2.$

¹For typographical reason we use
$$\mathbb{Z}_2$$
 to denote $\mathbb{Z}/2$.

Question 10

Let I = [0, 1]. Build orientation-preserving homeomorphisms of pairs

$$(\mathbb{D}^n, S^{n-1}) \cong (I^n, \partial I^n) \cong (I^\ell \times I^k, \partial I^\ell \times I^k \cup I^\ell \times \partial I^k) \cong (\mathbb{D}^\ell \times \mathbb{D}^k, \partial \mathbb{D}^\ell \times \mathbb{D}^k \cup \mathbb{D}^\ell \times \partial \mathbb{D}^k)$$

where $\ell + k = n$.

Proof. The canonical isomorphism $\sigma: \mathbb{R}^n \to \mathbb{R}^\ell \times \mathbb{R}^k$ restricts to an homeomorphism $\sigma': I^n \to I^\ell \times I^k$, which is obviously orientation-preserving. σ maps the boundary ∂I^n to $\partial (I^\ell \times I^k) = \partial I^\ell \times I^k \cup I^\ell \times \partial I^k$.

On the other hand, for each $m \ge 1$, we have a orientation-preserving homeomorphism $\varphi_m : \mathbb{D}^m \to I^m$ given by

$$\varphi_m(x) = \begin{cases} 0, & x = 0 \\ \frac{\|x\|_2}{\|x\|_1} x, & x \neq 0 \end{cases}$$

with $\varphi_m(\partial \mathbb{D}^m) = \partial I^m$. Since the norms $\|-\|_1$ and $\|-\|_2$ are equivalent, φ_m is a homeomorphism. Now, $(\varphi_\ell^{-1}, \varphi_k^{-1}) \circ \sigma' \circ \varphi_n$ is an orientation-preserving homeomorphism from the pair (\mathbb{D}^n, S^{n-1}) to $(\mathbb{D}^\ell \times \mathbb{D}^k, \partial \mathbb{D}^\ell \times \mathbb{D}^k) \circ \mathbb{D}^\ell \times \partial \mathbb{D}^k$. \square

