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Section A: Introductory
Question 1. de Sitter spacetime

Consider (4 + 1)-dimensional Minkowski spacetime, i.e. R® with standard Cartesian coordinates {v,w, z,y, 2}
and metric = —dv? + dw? + dz? + dy? + dz%. For a > 0, let M C R® denote the level set

—v? +w? + 22+ 2+ 22 = o

Check that this is a timelike hypersurface. Can you sketch it (suppressing some dimensions)?

Section B: Core

Question 2. de Sitter spacetime

This is a continuation of problem 1 above, which considers a level set —v? + w? + 22+ 32 + 22 = o? #

0 as a hypersurface embedded in the five-dimensional Minkowski space with standard Cartesian coordinates
{U,wﬁ&yaz}*

Question 2.(a)

By restricting the Minkowski metric to the tangent spaces of M we obtain a Lorentzian metric g on M. In
fact, the Ricci curvature of the Lorentzian metric g on M satisfies Ry, = % gap- The Einstein equations with

cosmological constant A read Ry, — %Rgab + Agap = 87Typ. Therefore, (M, g) is a solution to the Einstein
equations with cosmological constant A = =2

=5 and Ty, = 0. It is called the de Sitter spacetime.
We now introduce coordinates on M by (¢, x, 0, ¢) > (v,w, z,y, z) with

v = asinh(t/a)

w = acosh(t/a) cos x
x = acosh(t/a)
(t/a)
(t/a)

t/a
z = accosh(t/a) sin x sin § sin ¢

sin y cos ¢

y = acosh sin x sin # cos ¢

What is the range of these coordinates? Do they cover all of M?

Proof. The range of the coordinates are t € R, x,0 € (0,7), and ¢ € (0,27). It covers a generic set of M and can
be extended continuously to all of M. O

Question 2.(b)
Show that in these coordinates the metric g is given by
g = —dt* 4+ o cosh?(t/a) (dx2 + sin? x [d92 + sin? Hdth])

Draw the hypersurfaces of constant ¢ in your above sketch. What is their topology, how does their geometry
change with coordinate time 7



Proof. As a hypersurface of the Minkowski space (R?,7), M has pullback metric g given by

0z® Oxb
Juv = U(au, al/) - nabaiy‘uaiyy

where (z%) = (v,w, x,y, z) and (y*) = (t, x, 0, ¢). From the equations we know, we can compute the metric
by brute force. Alternatively, note that {¥; C M: ¢t = const} is a family of spacelike hypersurfaces which
are (up to rescaling) isometric to S3. So 9; is a timelike and hypersurface orthogonal. So

g = gu dt® + a(t)Q
where = dy? + sin? y d6? + sin? y sin? 6 de? is the round metric on S3. We only need to compute

git = — cosh?(t/a) + sinh?(t/a)(cos? x + sin? x cos? 6 + sin? y sin? 6 cos? ¢ + sin? x sin? § sin? )
= — cosh?(t/a) 4 sinh?(t/a) = —1
a(t) = gy = a®cosh?(t/a)(sin? x + cos?® y cos? 6 + cos? x sin? 0 cos? ¢ + cos? x sin? @ sin? )
= o’ cosh?(t/a)

Therefore the metric is given by
g = —dt? + a? cosh?(t/a) (d)(2 + sin? y d#? + sin® y sin? 0 d(pz)

For constant ¢, the hypersurface 3; is a 3-sphere with radius |« cosh(t/a). O

Question 2.(c)

We now construct the Penrose diagram. Choose a new time coordinate A(¢) obeying

dA 1

dt — acosh(t/a)

Write the metric in the coordinates (A, x,#, ) and show that the de Sitter spacetime is conformal to part
of the Einstein static universe. Which boundary surfaces would you call past/future null infinity? Draw the
Penrose diagram. Explain why an observer, even if they observe for an infinite time, cannot observe the entire
spacetime. How does this compare to the situation in Minkowski spacetime?

Proof. Integrating the equation:

de det o
A= | ——— + )\g = arctan sinh(¢ A t(\) = htan(A — A —_———
/acosh(t/a) + Ao = arctansinh(t/a) + Ao = #(}) = avarsh tan( o) = d\  |cos(A = Ng)]

Then the metric is given by

e\ ?
g=— <d)\> dA? + a(t(N)) (dx? + sin® y d6* + sin® x sin® 6 dp?)
= a? cosh?(t/a) (—d)\2 + dx? + sin? x d6? + sin? y sin? @ dcp2)

Oé2

= oy (O A s d6? - sin x sin? 0 dg?)
Let g = QQQ, where Q = a1 cos(A — A\g). Then the de Sitter spacetime is conformal to a spacetime with
metric

G = —d\? + dx? +sin? x d6? + sin? ysin? 0 dp? = —d\? + Q



This is the metric of the static closed universe in the FLRW cosmological model. O

Question 3. Conformal metric transformation

Let (M, g) be a Lorentzian manifold and let g = Q%g be a Lorentzian metric on M that is conformal to g, where
2 is a smooth function with Q(z) # 0 for all x € M.

Question 3.(a)

Show that the Christoffel symbols of g are given by

fﬁy = F;)lu + 5;)81, log 2 + (5;\(% log 2 — gw,g)‘pap log

Proof. Koszul formula:

_ 1. N N N
Ffw = §9Ap (OuGpv + Ovgpu — OpGpuw)

Since ?j,uv = QQQWH then g = Q*2g/w7 and

~ 1
I, = 59 2g™ (220,900 + 2990, + Q20,9 + 299pu00Q — Q?0pgu — 209,,,0,9)

- F/);u + Qilg)\p (gpllauQ + gp,ual/Q - g,uyapQ>

=T}, +0,0,10gQ + 6,0, 10g 2 — gu.g "0, log O

The corresponding Levi-Civita connection is given by

g(%XY, 2)=g9(VxY,Z)+ g(Y,2) X (log Q) + g(X, Z2)Y (log Q) — g(X,Y)Z(log Q)

Question 3.(b)
Let v: R D I — M be a null geodesic with respect to g. Show that it is also a null geodesic with respect to

g (but not necessarily affinely parametrised).

Proof. Suppose that v is an affinely parametrised null geodesic in (M, g). Then we have V:4 = 0 and g(¥,%) = 0.
Let X =Y =4 in the equation in 3.(a). We obtain that

. : A 4 d
9(Vs¥, Z) = 29(7, Z)7(log Q) = 2¢9(, Z)&

(log 2(~(s)))

This holds for all vector fields Z. Then we have

Vi = 27+ (0g2(3(s)) (1)
Let a be a reparametrisation of v such that a(s) = v(f(s)). Then

Vac = Vyr3(£9) = 2V37 + £
We have

Vad=0 = Ty = 308 '(5))7 =~ (log f(5)) @

. Now we take f(s) such that f'(s) = Q(y(s))~2. Then we note that (1) implies that (2) holds. So «a is



indeed a geodesic in (M, g). Finally, note that

g(c,6) = QPg(3,9)f* =0

So « is a null geodesic in (M, g). O

Question 3.(c)

Give a counterexample to the above for timelike/spacelike geodesics, i.e. give an explicit example of a
Lorentzian manifold (M, g) together with a conformal metric g and a timelike/spacelike geodesic v : I — R
with respect to g, which, however, is not a timelike/spacelike geodesic with respect to g.

Proof. We use the (14 1)-dimensional Minkowski spacetime: M = R? and g = n = —dt? +dz?. From the lectures

we know that ¢ is conformal to
7=0%¢=—dudv

where 4 = arctan(t — x), ¥ = arctan(t + z), and Q2 = cos? % - cos?v. Clearly v(s) = (¢(s), (s)) := (2, 5)
is a timelike geodesic in (M, g). This corresponds to u(s) = arctans and v(s) = arctan(3s). Since g
is constant in the coordinates (u,v), then geodesics in (M,g) are straight lines in (w,v). But ~(s) =
(arctan s, arctan(3s)) is not a straight line. So  is not (and cannot be reparametrised into) a geodesic in

Question 4. Surface gravity at Killing horizon

Question 4. Surface gravity at Killing horizon

Let (M, g) be a Lorentzian manifold and let ¥ C M be a Killing horizon of a Killing vector field T'. Show
that the surface gravity , given by V7T'|y, = £T|y;, satisfies

K= —

(w0 (1)

| =

%

| Hint: Use that T is hypersurface-orthogonal on X. |

Proof. Since T is hypersurface orthogonal on X, by Proposition 1.34, we have 1,V, Ty = 0. We expand this and

use the Killing equation V, T, +V, T, = 0:

0 - T[uV,,T,\}
=T,(V,T\ = V)\T,) =T, (V, T\ = V\T,) + T (V. T, — V., 1,)
= Q(TMVVT)\ + T,/V)\TM + T)\VMT,,)

Contracting the equation with VAT":

0= (V“T”)(T“VZ,T,\ + T, VT, + T,\VNT,,)
= T,(VPT*)(V, 1) + T (V/T*) (VT + Ta(VATY)(V,.T5)

On X, V7T = T implies in local coordinates that TV, T = xT*. Hence

T (VFT")(V,Ty) = KTV, Ty = &°Th, T,(V'TH)(V,Ty) = kTHV Ty = £*T)



Substituting back to the equation:
26Ty + To(VHTY)(V,.T,) = 0

Since T' # 0 and A is free, we have

1
K2 = — ~(V'T")(V,T,) O
2 P

(I am sorry that I did not have time to go through the rest of the questions.)

Question 5. Geometric optics in curved space

This problem guides you through the derivation of the laws of geometric optics in curved spacetime. Let (M, g) be
a Lorentzian manifold and F € Q?(M) a smooth two-form, the Faraday tensor. The source-free Maxwell equations
read

dF =0 and VFF,, =0. (1)
Since dF = 0, one can locally! find a potential A € Q'(M) such that dA = F.
Question 5.(a)
Show that F satisfies V#F),,, = 0 iff A satisfies

VAV, A, — V,VFA, — Ry AP =0 (2)

Proof. Since I' = dA, the components satisfy F),, = V,A, — V,A,. Then

VHE,, =V (V, A, — V,A,)
= VIV, A, — VIV, A,
= VAV, A, — V,VFA, — R, A"

SoLHS = 0 <« RHS = 0. O

Question 5.(b)

Recall the gauge freedom gﬂ = A, + 0ux. Show that any solution A, can be put into the Lorentz gauge
V#A, = 0 by solving an inhomogeneous wave equation for x (note that Oyx := V#V ,x is the wave operator
in curved spacetime).

Proof. The correct guage freedom should be ;L, = A, +V,x. Note that V“g/,, = VFA, + VIV, x = 0 if and only
if x satisfies that Cyx = —V*A,,.

Remark. If we can solve Ogx = —V#A,,, then (M, g) is called a globally hyperbolic spacetime. Ol

1Or in fact in any simply connected domain — so for instance in all of the Schwarzschild spacetime.



Question 5.(c)
We now construct approximate solutions of (2) in the Lorentz gauge, i.e. of
VAV,A, —R,AY =0 and VFA,=0 (3)
We make the geometric optics ansatz
A@PProx _ la ei)@ (4)
14 )\ v 9

where a, € QY(M),¢ € C°(M), and A > 0 is a large parameter. Compute VAV, AJPP™ — REAPP™ and
VHAGPP™ group the terms according to their power in A, and show that the equations (3) are satisfied by
(4) up to order O(1/X) iff a,, and ¢ satisfy

1
Vip-a, =0, V'6-V,p=0, V'¢-Vua,+ 50,00, =0. (5)

Also infer that if the large parameter X is large compared to covariant derivatives of a, and the spacetime
curvature Ry, then (4) with a, and ¢ satisfying (5) is a good approximate solution of (3).

Proof.
VHATPPIOY = iaq, A VHe 4 ! e Vha,
" A "

. . C 1 1,
Vy,vquppmx - RgAzpprox — YH (1(1'“ e1)\¢ v,u¢ + X el)\@ v;tau) o X el)x(]b RW,CLN'

. . 1 .
= —Xa, e (VF9)(V o) + i€ (2(VFa, ) (V ,u¢) + a,0y0) + 5 e (VHV 4ay, — Ryat)

Vay
We impose that \a)\#\ = O(1) and H,;\a] < 1.

Question 5.(d)

The vector k := (d¢)f is called the wave vector. Can you justify this terminology? Consider an observer
following a timelike curve  parametrised by proper time who carries with himself an orthonormal basis
{Ey =%, E1,...,E,} of the tangent space which forms his local reference frame. Show that they would
interpret the quantity — %)\ . Eogb‘p =— ﬁ)\ g (Eo, k) ’p as the frequency of the electromagnetic wave (4) at
a point p on his worldline.

Proof. The components of the electromagnetic tensor corresponding to the ansatz are given by

approx BN PYG Va
F/(LEP = 1€ )\o(<vu¢) ay — (V,/(ﬁ) au) + O<|| \ >

Ky ky

The light fronts are surfaces of constant phase ¢. k = (d¢)? is the wave vector.

We pick coordinates centred at p such that Fy = 0; and E; = 0;. We expand ¢ as
o(t, ) = ¢(0) + tAr(t, ) + 206 (t, @) + -

Then
NG (1,E) o (iAD(0) eiA(t(‘J’W(O)—MFO@(O))



eMOp(0) — o—127ft ig the frequency term. So

i 1 A
f= —ﬂ)\aﬂb(o) = _ﬂgp(E()v k)

is the frequency of the wave.

Question 5.(e)

The equation V#¢ -V ,¢ = 0 is known as the Eikonal equation. It can be always solved locally. Show that
it implies that the wave vector k is null and that it satisfies Vik = 0, i.e., it is propagated affinely along null
geodesics.

Proof. k is null precisely because (V*¢)(V,¢) = 0.
Vu(kk") =2(V k)K" =2(V,V,0)k" =2(V,V,0)k” =2(V, ky)E =2(Vik), =0

Hence Vik = 0.

Question 5.(f)

Let us now decompose the covector amplitude a, in (4) as a, = « - f,, with the amplitude a € C*°(M)
and the polarisation covector f, € Q!(M). It follows from the first equation in (5) that f,k* =0, i.e., the
polarisation vector is orthogonal to the wave vector, i.e., it must be tangent to the null hypersurfaces ¢ =
const. Show that to leading order in A the electric and magnetic fields do not change by adding a multiple of
k, to fo.

Thus, only if f is spacelike do we have a non-vanishing electromagnetic field. Without loss of generality we
can thus normalise the polarisation covector by f,f” = 1. Show that the third equation in (5) implies the
propagation equation

1
Vio + iwku ca=0 (6)

for the amplitude along the integral curves of k and that the polarisation covector is parallel-propagated along
k, ie.,

Vif=0

Note that (6) in particular implies that if & vanishes on some point on an integral curve of k£ (which are null
geodesics by Vik = 0), then it vanishes along the whole curve. This makes precise in which sense and under
what conditions ‘light propagates along null geodesics in general relativity’.

Proof. a, = af, and a,V#¢ = 0 implies that g(f4 k) =0.

We make the gauge transformation f, — f, + &k,. Then the change in FjJ”"™ is given by

1. o _ -
§Fslll)plox — gev\@ (]cl,Vuoz +aVk, + i)‘(v[ﬂé)kv}) _ % el)\¢(vuvu _ VUVM)QbJrO(H)\a”)

=0

Hence the leading order of FiPP™* is left invariant.
/



Question 5.(g)

Consider now the Schwarzschild spacetime with an observer v4 following a timelike curve of constant r =
rqa > 2M,0 = 0y, p = o and another observer vp following a timelike curve of constant r = rp > r4,0 =
0o, ¢ = po. Make precise, using the laws of geometric optics derived in this exercise, that a high-frequency
light signal of frequency fa as measured by observer A, sent from A to B, arrives red-shifted at observer B
with a frequency

2M
Proof. Use the Eddington-Finkelstein coordinates (u,r,6,¢) such that g = — (1 — ) du? — 2dudr + r2Q.
r

Then ~(r) = (ug,r, 0 po) is a null geodesic. 9y in Schwarzschild is equal to 9, in Eddington-Finkelstein.
4 = 0,  k is the wave vector.

oM\ 2 oM\ /2
EY = (1 - > o, B = (1 - > )
A rB

AB oM\ ~1/?
—g(Eg )7‘9"><1‘,. >
T'A,B

/ 2M
/\k|T'A = 27TfAr 1— Ear

k is parallelly transported: Vik = Vy,.k = 0.

1

_ 1 (B) B 1—2M/ra 0
I = =579 (Ey " Ak) = \/ 1= M Jrg

Question 6. Kerr observers
Question 6. Kerr observers

Let M = R x (r;,00) x S? with the standard Boyer-Lindquist coordinates {t,r,0, ¢}, where 1, = M +
VM2 —a?, M >0, and 0 < a < M. We define the Kerr metric g as

2M 2Mrasin® @ 2
g=—(1-55) a2 - U (At @ dp + dyp @ dt) + Dedr?
p p A
2Mra? sin? 6

+ p?de* + <7"2 +a%+ 5 ) sin? fd¢?

p
where p? = r?4+a?cos®  and A = r? —2Mr+a®. Consider a stationary observer A with velocity u (9; + 9,,)
at some value of g € (r4,00) and some value of 6y € (0,7), where v > 0 is chosen such that the velocity is
normalised. Show that 2 corresponds to the angular frequency of A as seen by an observer B with velocity

0y at infinity who is at rest with respect to the asymptotic Lorentz frame.
Therefore, an observer with {2 = 0 appears static from infinity 'with respect to the fixed stars’.

| Hint: The movement of A as seen by B depends on the null geodesics connecting A’s worldline with B’s. Use
the symmetries of the Kerr spacetime to answer this question without actually computing the null geodesics. |



Proof. 44 = uw(0; + Q0,). ¥ = 0y. The worldline of A is va(t) = (t,ra,04, 0 + Qt). Fix tp. There is a null
geodsic backward in time intersecting y4 at t = t4. Since 0; is a Killing vector field, t4 +— t4 + 27/
corresponds to tp — tp + 2w /€. So B observes A moving in the period of 27/Q. Hence Q is the angular
frequency of A observed by B. O

Section C: Optional

Question 7. Limits of Kerr metric
Show that the Kerr metric (6) from the last problem reduces to
(a) the Schwarzschild metric for a = 0;

(b) the Minkowski metric in spheroidal coordinates for M = 0, but a # 0. Here, the spheroidal coordinates
in Minkowski spacetime are given by

x=1%2+a?sinfcosp
y=Vr2+a?sinfsiny

z=r7rcosf



