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Section A: Introductory

Question 1. de Sitter spacetime

Consider (4+1)-dimensional Minkowski spacetime, i.e. R5 with standard Cartesian coordinates {v, w, x, y, z}
and metric η = −dv2 + dw2 + dx2 + dy2 + dz2. For α > 0, let M ⊆ R5 denote the level set

−v2 + w2 + x2 + y2 + z2 = α2

Check that this is a timelike hypersurface. Can you sketch it (suppressing some dimensions)?

Section B: Core

Question 2. de Sitter spacetime

This is a continuation of problem 1 above, which considers a level set −v2 + w2 + x2+ y2 + z2 = α2 6=
0 as a hypersurface embedded in the five-dimensional Minkowski space with standard Cartesian coordinates
{v, w, x, y, z}.

Question 2.(a)

By restricting the Minkowski metric to the tangent spaces of M we obtain a Lorentzian metric g on M . In
fact, the Ricci curvature of the Lorentzian metric g on M satisfies Rab = 3

α2 gab. The Einstein equations with
cosmological constant Λ read Rab − 1

2Rgab + Λgab = 8πTab. Therefore, (M, g) is a solution to the Einstein
equations with cosmological constant Λ = 3

α2 and Tab = 0. It is called the de Sitter spacetime.

We now introduce coordinates on M by (t, χ, θ, ϕ)
ι7→ (v, w, x, y, z) with

v = α sinh(t/α)

w = α cosh(t/α) cosχ

x = α cosh(t/α) sinχ cos θ

y = α cosh(t/α) sinχ sin θ cosϕ

z = α cosh(t/α) sinχ sin θ sinϕ

What is the range of these coordinates? Do they cover all of M?

Proof. The range of the coordinates are t ∈ R, χ, θ ∈ (0, π), and ϕ ∈ (0, 2π). It covers a generic set of M and can
be extended continuously to all of M .

Question 2.(b)

Show that in these coordinates the metric g is given by

g = −dt2 + α2 cosh2(t/α)
(
dχ2 + sin2 χ

[
dθ2 + sin2 θdϕ2

])
Draw the hypersurfaces of constant t in your above sketch. What is their topology, how does their geometry
change with coordinate time t?
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Proof. As a hypersurface of the Minkowski space (R5, η), M has pullback metric g given by

gµν = η(∂µ, ∂ν) = ηab
∂xa

∂yµ
∂xb

∂yν

where (xa) = (v, w, x, y, z) and (yµ) = (t, χ, θ, ϕ). From the equations we know, we can compute the metric
by brute force. Alternatively, note that {Σt ⊆ M : t = const} is a family of spacelike hypersurfaces which
are (up to rescaling) isometric to S3. So ∂t is a timelike and hypersurface orthogonal. So

g = gtt dt2 + a(t)Ω

where Ω = dχ2 + sin2 χdθ2 + sin2 χ sin2 θ dϕ2 is the round metric on S3. We only need to compute

gtt = − cosh2(t/α) + sinh2(t/α)(cos2 χ+ sin2 χ cos2 θ + sin2 χ sin2 θ cos2 ϕ+ sin2 χ sin2 θ sin2 ϕ)

= − cosh2(t/α) + sinh2(t/α) = −1

a(t) = gχχ = α2 cosh2(t/α)(sin2 χ+ cos2 χ cos2 θ + cos2 χ sin2 θ cos2 ϕ+ cos2 χ sin2 θ sin2 ϕ)

= α2 cosh2(t/α)

Therefore the metric is given by

g = −dt2 + α2 cosh2(t/α)
(
dχ2 + sin2 χdθ2 + sin2 χ sin2 θ dϕ2

)
For constant t, the hypersurface Σt is a 3-sphere with radius |α cosh(t/α)|.

Question 2.(c)

We now construct the Penrose diagram. Choose a new time coordinate λ(t) obeying

dλ

dt
=

1

α cosh(t/α)

Write the metric in the coordinates (λ, χ, θ, ϕ) and show that the de Sitter spacetime is conformal to part
of the Einstein static universe. Which boundary surfaces would you call past/future null infinity? Draw the
Penrose diagram. Explain why an observer, even if they observe for an infinite time, cannot observe the entire
spacetime. How does this compare to the situation in Minkowski spacetime?

Proof. Integrating the equation:

λ =

∫
dt

α cosh(t/α)
+ λ0 = arctan sinh(t/α) + λ0 =⇒ t(λ) = α arsh tan(λ− λ0) =⇒ dt

dλ
=

α

| cos(λ− λ0)|

Then the metric is given by

g = −
(

dt

dλ

)2

dλ2 + a(t(λ))
(
dχ2 + sin2 χdθ2 + sin2 χ sin2 θ dϕ2

)
= α2 cosh2(t/α)

(
−dλ2 + dχ2 + sin2 χdθ2 + sin2 χ sin2 θ dϕ2

)
=

α2

cos2(λ− λ0)

(
−dλ2 + dχ2 + sin2 χdθ2 + sin2 χ sin2 θ dϕ2

)
Let g̃ = Ω2g, where Ω = α−1 cos(λ− λ0). Then the de Sitter spacetime is conformal to a spacetime with
metric

g̃ = −dλ2 + dχ2 + sin2 χdθ2 + sin2 χ sin2 θ dϕ2 = −dλ2 + Ω
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This is the metric of the static closed universe in the FLRW cosmological model.

Question 3. Conformal metric transformation

Let (M, g) be a Lorentzian manifold and let g̃ = Ω2g be a Lorentzian metric on M that is conformal to g, where
Ω is a smooth function with Ω(x) 6= 0 for all x ∈M .

Question 3.(a)

Show that the Christoffel symbols of g̃ are given by

Γ̃λµν = Γλµν + δλµ∂ν log Ω + δλν∂µ log Ω− gµνgλρ∂ρ log Ω

Proof. Koszul formula:

Γ̃λµν =
1

2
g̃λρ (∂µg̃ρν + ∂ν g̃ρµ − ∂ρg̃µν)

Since g̃µν = Ω2gµν , then g̃µν = Ω−2gµν , and

Γ̃λµν =
1

2
Ω−2gλρ

(
Ω2∂µgρν + 2Ωgρν∂µΩ + Ω2∂νgρµ + 2Ωgρµ∂νΩ− Ω2∂ρgµν − 2Ωgµν∂ρΩ

)
= Γλµν + Ω−1gλρ (gρν∂µΩ + gρµ∂νΩ− gµν∂ρΩ)

= Γλµν + δλµ∂ν log Ω + δλν∂µ log Ω− gµνgλρ∂ρ log Ω

The corresponding Levi-Civita connection is given by

g(∇̃XY,Z) = g(∇XY,Z) + g(Y, Z)X(log Ω) + g(X,Z)Y (log Ω)− g(X,Y )Z(log Ω)

Question 3.(b)

Let γ : R ⊇ I → M be a null geodesic with respect to g. Show that it is also a null geodesic with respect to
g̃ (but not necessarily affinely parametrised).

Proof. Suppose that γ is an affinely parametrised null geodesic in (M, g). Then we have ∇γ̇ γ̇ = 0 and g(γ̇, γ̇) = 0.
Let X = Y = γ̇ in the equation in 3.(a). We obtain that

g(∇̃γ̇ γ̇, Z) = 2g(γ̇, Z)γ̇(log Ω) = 2g(γ̇, Z)
d

ds
(log Ω(γ(s)))

This holds for all vector fields Z. Then we have

∇̃γ̇ γ̇ = 2γ̇
d

ds
(log Ω(γ(s)) (1)

Let α be a reparametrisation of γ such that α(s) = γ(f(s)). Then

∇̃α̇α̇ = ∇̃f ′γ̇(f ′γ̇) = f ′2∇̃γ̇ γ̇ + f ′γ̇(f ′)γ̇

We have

∇̃α̇α̇ = 0 ⇐⇒ ∇̃γ̇ γ̇ = −γ̇(log f ′(s))γ̇ = −γ̇ d

ds
(log f ′(s)) (2)

. Now we take f(s) such that f ′(s) = Ω(γ(s))−2. Then we note that (1) implies that (2) holds. So α is
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indeed a geodesic in (M, g̃). Finally, note that

g̃(α̇, α̇) = Ω2g(γ̇, γ̇)f ′2 = 0

So α is a null geodesic in (M, g̃).

Question 3.(c)

Give a counterexample to the above for timelike/spacelike geodesics, i.e. give an explicit example of a
Lorentzian manifold (M, g) together with a conformal metric g̃ and a timelike/spacelike geodesic γ : I → R
with respect to g, which, however, is not a timelike/spacelike geodesic with respect to g̃.

Proof. We use the (1 + 1)-dimensional Minkowski spacetime: M = R2 and g = η = −dt2 + dx2. From the lectures
we know that g is conformal to

g̃ = Ω2g = −dũdṽ

where ũ = arctan(t− x), ṽ = arctan(t+ x), and Ω2 = cos2 ũ · cos2 ṽ. Clearly γ(s) = (t(s), x(s)) := (2s, s)

is a timelike geodesic in (M, g). This corresponds to ũ(s) = arctan s and ṽ(s) = arctan(3s). Since g̃
is constant in the coordinates (ũ, ṽ), then geodesics in (M, g̃) are straight lines in (ũ, ṽ). But γ(s) =

(arctan s, arctan(3s)) is not a straight line. So γ is not (and cannot be reparametrised into) a geodesic in
(M, g̃).

Question 4. Surface gravity at Killing horizon

Question 4. Surface gravity at Killing horizon

Let (M, g) be a Lorentzian manifold and let Σ ⊆ M be a Killing horizon of a Killing vector field T . Show
that the surface gravity κ, given by ∇TT |Σ = κT |Σ, satisfies

κ2 = − 1

2

[
(∇aTb)

(
∇aT b

)]∣∣∣∣
Σ

.

[ Hint: Use that T is hypersurface-orthogonal on Σ. ]

Proof. Since T is hypersurface orthogonal on Σ, by Proposition 1.34, we have T[µ∇νTλ] = 0. We expand this and
use the Killing equation ∇µTν +∇νTµ = 0:

0 = T[µ∇νTλ]

= Tµ (∇νTλ −∇λTν)− Tν (∇µTλ −∇λTµ) + Tλ (∇µTν −∇νTµ)

= 2(Tµ∇νTλ + Tν∇λTµ + Tλ∇µTν)

Contracting the equation with ∇µT ν :

0 = (∇µT ν)(Tµ∇νTλ + Tν∇λTµ + Tλ∇µTν)

= Tµ(∇µT ν)(∇νTλ) + Tν(∇νTµ)(∇µTλ) + Tλ(∇µT ν)(∇µTν)

On Σ, ∇TT = κT implies in local coordinates that Tµ∇µT ν = κTµ. Hence

Tµ(∇µT ν)(∇νTλ) = κT ν∇νTλ = κ2Tλ, Tν(∇νTµ)(∇µTλ) = κTµ∇µTλ = κ2Tλ
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Substituting back to the equation:

2κ2Tλ + Tλ(∇µT ν)(∇µTν) = 0

Since T 6= 0 and λ is free, we have

κ2 = − 1

2
(∇µT ν)(∇µTν)

∣∣∣∣
Σ

(I am sorry that I did not have time to go through the rest of the questions.)

Question 5. Geometric optics in curved space

This problem guides you through the derivation of the laws of geometric optics in curved spacetime. Let (M, g) be
a Lorentzian manifold and F ∈ Ω2(M) a smooth two-form, the Faraday tensor. The source-free Maxwell equations
read

dF = 0 and ∇µFµν = 0. (1)

Since dF = 0, one can locally1 find a potential A ∈ Ω1(M) such that dA = F .

Question 5.(a)

Show that F satisfies ∇µFµν = 0 iff A satisfies

∇µ∇µAν −∇ν∇µAµ −RµνAµ = 0 (2)

Proof. Since F = dA, the components satisfy Fµν = ∇µAν −∇νAµ. Then

∇µFµν = ∇µ (∇µAν −∇νAµ)

= ∇µ∇µAν −∇µ∇νAµ
= ∇µ∇µAν −∇ν∇µAµ −RµνAµ

So LHS = 0 ⇐⇒ RHS = 0.

Question 5.(b)

Recall the gauge freedom Ãµ = Aµ + ∂µχ. Show that any solution Aµ can be put into the Lorentz gauge
∇µÃµ = 0 by solving an inhomogeneous wave equation for χ (note that �gχ := ∇µ∇µχ is the wave operator
in curved spacetime).

Proof. The correct guage freedom should be Ãµ = Aµ +∇µχ. Note that ∇µÃµ = ∇µAµ +∇µ∇µχ = 0 if and only
if χ satisfies that �gχ = −∇µAµ.

Remark. If we can solve �gχ = −∇µAµ, then (M, g) is called a globally hyperbolic spacetime.

1Or in fact in any simply connected domain — so for instance in all of the Schwarzschild spacetime.
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Question 5.(c)

We now construct approximate solutions of (2) in the Lorentz gauge, i.e. of

∇µ∇µAν −RµνAµ = 0 and ∇µAµ = 0 (3)

We make the geometric optics ansatz

Aapprox
ν =

1

λ
aν eiλφ, (4)

where aν ∈ Ω1(M), φ ∈ C∞(M), and λ > 0 is a large parameter. Compute ∇µ∇µAapprox
ν − RµνAapprox

µ and
∇µAapprox

µ , group the terms according to their power in λ, and show that the equations (3) are satisfied by
(4) up to order O(1/λ) iff aµ and φ satisfy

∇µφ · aµ = 0, ∇µφ · ∇µφ = 0, ∇µφ · ∇µaν +
1

2
�gφ · aν = 0. (5)

Also infer that if the large parameter λ is large compared to covariant derivatives of aν and the spacetime
curvature Rµν , then (4) with aν and φ satisfying (5) is a good approximate solution of (3).

Proof.

∇µAapprox
µ = iaµ eiλφ∇µφ+

1

λ
eiλφ∇µaµ

∇µ∇µAapprox
ν −RµνAapprox

µ = ∇µ
(

iaµ eiλφ∇µφ+
1

λ
eiλφ∇µaµ

)
− 1

λ
eiλφRµνa

µ

= −λaν eiλφ(∇µφ)(∇µφ) + ieiλφ (2(∇µaν)(∇µφ) + aν�gφ) +
1

λ
eiλφ (∇µ∇µaν −Rµνaµ)

We impose that
‖aµ‖
λ

= O(1) and
‖∇µaν‖

λ
� 1.

Question 5.(d)

The vector k := (dφ)] is called the wave vector. Can you justify this terminology? Consider an observer
following a timelike curve γ parametrised by proper time who carries with himself an orthonormal basis
{E0 = γ̇, E1, . . . , En} of the tangent space which forms his local reference frame. Show that they would
interpret the quantity − 1

2πλ · E0φ
∣∣
p

= − 1
2πλ · g (E0, k)

∣∣
p
as the frequency of the electromagnetic wave (4) at

a point p on his worldline.

Proof. The components of the electromagnetic tensor corresponding to the ansatz are given by

F approx
µν = i eiλφ((∇µφ)︸ ︷︷ ︸

kµ

aν − (∇νφ)︸ ︷︷ ︸
kν

aµ) +O
(
‖∇a‖
λ

)

The light fronts are surfaces of constant phase φ. k = (dφ)] is the wave vector.

We pick coordinates centred at p such that E0 = ∂t and Ei = ∂i. We expand φ as

φ(t,x) = φ(0) + t∂tφ(t,x) + xi∂iφ(t,x) + · · ·

Then
eiλφ(t,x) ≈ eiλφ(0) eiλ(t∂tϕ(0)+xi∂iφ(0))
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eiλt∂tϕ(0) = e−i·2πft is the frequency term. So

f = − 1

2π
λ∂tφ(0) = − λ

2π
gp(E0, k)

is the frequency of the wave.

Question 5.(e)

The equation ∇µφ · ∇µφ = 0 is known as the Eikonal equation. It can be always solved locally. Show that
it implies that the wave vector k is null and that it satisfies ∇kk = 0, i.e., it is propagated affinely along null
geodesics.

Proof. k is null precisely because (∇µφ)(∇µφ) = 0.

∇µ(kνk
ν) = 2(∇µkν)kν = 2(∇µ∇νφ)kν = 2(∇ν∇µφ)kν = 2(∇νkµ)kν = 2(∇kk)µ = 0

Hence ∇kk = 0.

Question 5.(f)

Let us now decompose the covector amplitude aν in (4) as aν = α · fν , with the amplitude α ∈ C∞(M)

and the polarisation covector fν ∈ Ω1(M). It follows from the first equation in (5) that fνkν = 0, i.e., the
polarisation vector is orthogonal to the wave vector, i.e., it must be tangent to the null hypersurfaces φ =

const. Show that to leading order in λ the electric and magnetic fields do not change by adding a multiple of
kν to fν .

Thus, only if f is spacelike do we have a non-vanishing electromagnetic field. Without loss of generality we
can thus normalise the polarisation covector by fνfν = 1. Show that the third equation in (5) implies the
propagation equation

∇kα+
1

2
∇µkµ · α = 0 (6)

for the amplitude along the integral curves of k and that the polarisation covector is parallel-propagated along
k, i.e.,

∇kf = 0

Note that (6) in particular implies that if α vanishes on some point on an integral curve of k (which are null
geodesics by ∇kk = 0), then it vanishes along the whole curve. This makes precise in which sense and under
what conditions ‘light propagates along null geodesics in general relativity’.

Proof. aν = αfν and aµ∇µφ = 0 implies that g(f ], k) = 0.

We make the gauge transformation fν 7→ fν + ξkν . Then the change in F approx
µν is given by

1

2
F approx
µν =

ξ

λ
eiλφ

(
kν∇µα+ α∇[µkν] + iλ(∇[µφ)kν]

)
=
ξα

2λ
eiλφ(∇µ∇ν −∇ν∇µ)φ︸ ︷︷ ︸

=0

+O
(
‖∇a‖
λ

)

Hence the leading order of F approx
µν is left invariant.
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Question 5.(g)

Consider now the Schwarzschild spacetime with an observer γA following a timelike curve of constant r =

rA > 2M, θ = θ0, ϕ = ϕ0 and another observer γB following a timelike curve of constant r = rB > rA, θ =

θ0, ϕ = ϕ0. Make precise, using the laws of geometric optics derived in this exercise, that a high-frequency
light signal of frequency fA as measured by observer A, sent from A to B, arrives red-shifted at observer B
with a frequency

fB =

√√√√1− 2M
rA

1− 2M
rB

fA

Proof. Use the Eddington-Finkelstein coordinates (u, r, θ, ϕ) such that g = −
(

1− 2M

r

)
du2 − 2dudr + r2Ω.

Then γ(r) = (u0, r, θ0 ϕ0) is a null geodesic. ∂t in Schwarzschild is equal to ∂u in Eddington-Finkelstein.
γ̇ = ∂r ∝ k is the wave vector.

E
(A)
0 =

(
1− 2M

rA

)−1/2

∂t, E
(B)
0 =

(
1− 2M

rB

)−1/2

∂t

−g(E
(A,B)
0 , ∂r) =

(
1− 2M

rA,B

)−1/2

λk|rA = 2πfA

√
1− 2M

rA
∂r

k is parallelly transported: ∇kk = ∇∂rk = 0.

fB = − 1

2π
grB (E

(B)
0 , λk) =

√
1− 2M/rA
1− 2M/rB

fA

Question 6. Kerr observers

Question 6. Kerr observers

Let M = R × (r+,∞) × S2 with the standard Boyer-Lindquist coordinates {t, r, θ, ϕ}, where r+ = M +√
M2 − a2,M > 0, and 0 < a < M. We define the Kerr metric g as

g = −
(

1− 2Mr

ρ2

)
dt2 − 2Mra sin2 θ

ρ2
(dt⊗ dϕ+ dϕ⊗ dt) +

ρ2

∆
dr2

+ ρ2dθ2 +

(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θdϕ2

where ρ2 = r2 +a2 cos2 θ and ∆ = r2−2Mr+a2. Consider a stationary observer A with velocity u (∂t + Ω∂ϕ)

at some value of r0 ∈ (r+,∞) and some value of θ0 ∈ (0, π), where u > 0 is chosen such that the velocity is
normalised. Show that Ω corresponds to the angular frequency of A as seen by an observer B with velocity
∂t at infinity who is at rest with respect to the asymptotic Lorentz frame.

Therefore, an observer with Ω = 0 appears static from infinity ’with respect to the fixed stars’.

[ Hint: The movement of A as seen by B depends on the null geodesics connecting A’s worldline with B’s. Use
the symmetries of the Kerr spacetime to answer this question without actually computing the null geodesics. ]
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Proof. γ̇A = u(∂t + Ω∂ϕ). γ̇B = ∂t. The worldline of A is γA(t) = (t, rA, θA, ϕ0 + Ωt). Fix tB. There is a null
geodsic backward in time intersecting γA at t = tA. Since ∂t is a Killing vector field, tA 7→ tA + 2π/Ω

corresponds to tB 7→ tB + 2π/Ω. So B observes A moving in the period of 2π/Ω. Hence Ω is the angular
frequency of A observed by B.

Section C: Optional

Question 7. Limits of Kerr metric

Show that the Kerr metric (6) from the last problem reduces to

(a) the Schwarzschild metric for a = 0;

(b) the Minkowski metric in spheroidal coordinates for M = 0, but a 6= 0. Here, the spheroidal coordinates
in Minkowski spacetime are given by

x =
√
r2 + a2 sin θ cosϕ

y =
√
r2 + a2 sin θ sinϕ

z = r cos θ


