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Section A: Introductory

Question 1

Calculate TorR• (M , M) where R = k[x],k is a field, and M = k
[
x, x−1

]
xk[x]

.

Proof. We have a short exact sequence

0 k[x] k[x, x−1]
k[x, x−1]

xk[x]
0·x (∗)

By Flat Resolution Theorem 6.33, we can compute the Tor modules using a flat resolution. We claim that k[x, x−1]

is a flat k[x]-module.

This is because k[x, x−1] = ⋃
n∈N

x−nk[x] is a filtered colimit of the modules x−nk[x]. For a short exact sequence of

k[x]-modules

0 A B C 0

Tensoring x−nk[x] gives

0 x−n A x−nB x−nC 0

which is still an exact sequence. So x−nk[x] is a flat k[x]-module. By Corollary 6.29, k[x, x−1] is flat. So (∗)

provides a flat resolution for M := k[x, x−1]

xk[x]
. Applying (−⊗k[x] M) to (∗):

0 k[x]⊗k[x] M k[x, x−1]⊗k[x] M M ⊗k[x] M 0

By Question 4 of Sheet 2, we have k[x, x−1]⊗k[x] M ∼= M [x−1]. Since x = 0 in M , for m ∈ M [x−1], m = x−1 ·x ·m = 0.

Hence M [x−1]. The (augmented) chain complex is given by

0 M 0 M ⊗k[x] M 0

Taking the homology of this chain. We obtain1

Tork[x]
n (M , M) ∼=

M n = 1

0 otherwise

Section B: Core

Question 2

Calculate the ring Ext•R (k,k) where R = k[x, y]

(x y)
, with k a field (viewed as

R

(x, y)
as an R-module).

Proof. First we find a free resolution for k. Let π : R → k be the quotient map. Then kerπ= 〈
x, y

〉
. Let α : R2 → R be the

homomorphism given by (r, s) 7→ xr + y s. Then imα = 〈
x, y

〉 = kerπ. We have kerα = 〈
y
〉⊕〈x〉. Let β : R2 → R2

be the homomorphism given by (r, s) 7→ (yr, xs). Then imβ = kerα, and kerβ = 〈x〉⊕ 〈
y
〉

. Let γ : R2 → R2 be the

homomorphism given by (r, s) 7→ (xr, y s). Then imγ= kerβ and kerγ= imβ. So we have a free resolution

· · · R2 R2 R2 R2 R k 0

(
y 0
0 x

) (
x 0
0 y

) (
y 0
0 x

)
(x y) π

(
x 0
0 y

)
Applying the functor HomR (−,k):

1This looks strange as we expect that Tork[x]
0 (M , M) ∼= M ⊗k[x] M . But it is also possible that we could show M ⊗k[x] M = 0 directly.

You can, and it's not very difficult.

 β+
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k k k2 k2 k2 · · ·id 0 0 0

Taking cohomology we obtain the Ext modules

Extn
R (k,k) ∼=

k n = 0

k2 n Ê 1

Next we shall prove that the Yoneda product on Ext•R (k,k) makes it a graded ring

Ext•R (k,k) ∼= k[x, y]〈
x y

〉 = R, |x| = |y | = 1

To prove this, we compute the Ext in another way. We use P• to denote the free resolution for k obtained above.

From the discussion in Section 9.1, Extn
R (k,k) is isomorphic to the quotient of the module of the chain maps

P• → P•[−n] by the submodule of null-homotopic chain maps.

We compute Ext1
R (k,k). A chain map f• : P• → P•[−1] is the commutative diagram:

· · · R2 R2 R2 R2 R 0

· · · R2 R2 R2 R 0

γ β α

α

f2 f1
βγ

β

f3f4

γ

β

To make this diagram commutative, we must have

f1 =
(
ϕ1 ψ1

)
, fn =

(
ϕn 0

0 ψn

)
, n Ê 2

where ϕn ,ψn ∈ R satisfy

yϕ2n−1 = xϕ2n , xψ2n−1 = yψ2n

Hence ϕ2n−1 ∈ 〈x〉, ϕ2n ∈ 〈
y
〉

, ψ2n−1 ∈
〈

y
〉

, and ψ2n ∈ 〈x〉. Since x y = 0, the equations above are equal to zero.

If f• is chain null-homotopic, then there exists h• : P• → P• such that fn = hn−1 ◦∂n +∂n ◦hn . If we write

h1 = c, hn =
(

fn 0

0 gn

)
, n Ê 2

Then fn = hn−1 ◦∂n +∂n ◦hn implies that

ϕ1 = (c + f2)x, ψ1 = (c + g2)y

and for n Ê 1,

ϕ2n−1 = ( f2n−1 + f2n)x, ψ2n−1 = (g2n−1 + g2n)y

ϕ2n = ( f2n + f2n+1)y, ψ2n = (g2n + g2n+1)x

We note that as long as ϕ2n−1 ∈ 〈x〉, ϕ2n ∈ 〈
y
〉

, ψ2n−1 ∈
〈

y
〉

, and ψ2n ∈ 〈x〉, the chain map h• can be solved by the

above equations successively. So every chain map f• : P• → P•[−1] is null-homotopic. This is absurd. I don’t know

where has gone wrong... It is indeed wrong, but is it necessarily absurd?

This is a reasonable guess, 
but it actually isn't the correct ring!

It isn't true that the components of f_i must lie in the ideals (x) and (y).

Try writing them as 2x2 matrices of R-elements.

See above.
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Question 3

Consider the functor F : Z-Mod → Z-Mod, A 7→ A [2∞] = {a ∈ A : ∃n ∈N s.t. 2n a = 0
}
. Prove F is left exact and

calculate the groups and maps in the LES of derived functors associated to the SES 0 →Z
α→Z

β→Z/2 → 0

Proof. Suppose that f : A → B is aZ-module homomorphism. Then the restriction f |F (A) : F (A) → F (B) is a well-defined

Z-module homomorphism, as

a ∈ F (A) =⇒ 2n a = 0 =⇒ 2n f (a) = 0 =⇒ f (a) ∈ F (B)

We write F ( f ) := f |F (A). It is not hard to verify that F is indeed a functor from Z-Mod to Z-Mod.

Consider the short exact sequence of Z-modules

0 A B C 0
f g

Applying the functor F :

0 F (A) F (B) F (C ) 0
F ( f ) F (g )

By definition, kerF ( f ) ⊆ ker f = 0. Hence F ( f ) is a monomorphism. Also,

kerF (g ) = ker g ∩F (B) = im f ∩F (B) ⊇ imF ( f )

For b ∈ im f ∩F (B), there exists n ∈N such that 2nb = 0 and a ∈ A such that f (a) = b. Therefore f (2n a) = 2nb = 0

and hence a ∈ A. Thus b ∈ imF ( f ). So we have kerF (g ) = imF ( f ). This indicates that F is left exact.

To compute the long exact sequence associated with the short exact sequence

0 Z Z Z/2Z 0·2

We need injective resolutions for Z and Z/2Z. They are given by

0 Z Q Q/Z 0

0 Z/2 Q/Z Q/Z 01/2 ·2

Apply the functor F . Since Z and Q are torsion-free, F (Z) = F (Q) = 0. F (Z/2) = Z/2. F (Q/Z) = Z[2−1]/Z ={ m

2n : n ∈Z+, 0 É m < 2n
}

.

0 0 0 Z[2−1]/Z 0

0 Z/2 Z[2−1]/Z Z[2−1]/Z 01/2 ·2

Taking the cohomology, we have

RnF (Z) =
Z[2−1]/Z n = 1

0 otherwise
, RnF (Z/2) =


Z/2 n = 0

Z[2−1]/Z

2Z[2−1]/Z
n = 1

0 n Ê 2

We put these modules into the long exact sequence of the derived functors:
this is also 0 (why?)

α-
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n = 0 0 0 Z/2

n = 1 Z[2−1]/Z Z[2−1]/Z
Z[2−1]/Z

2Z[2−1]/Z

n = 2 0 0 · · ·

1/2

·2
π

Section C: Optional

Question 4

k : field ,R := k[x]/x3, M := k[x]/x, N := k[x]/x2.

Write down explicitly (all objects and morphisms in) a SES of R-projective resolutions using the horseshoe lemma

on the following ModR -SES: 0 → M
α→ N

β→ M → 0

0

Correct, but...




