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Question 1

Let U be an open subset of R% andletr: U — R3 be a smooth parametrisation of a surface S =r(U) < R3. Let Edu? + 2Fdudv +

Gdv?

be its first fundamental form. A parametrisation is said to be conformal if it preserves angles between intersecting

curves, and equiareal if it preserves areas.

Proof.

Show that the parametrisation is conformal if and only if E = G and F = 0, and is equiareal if and only if EG— F?> =1

What is the first fundamental form of the spherical coordinates local parametrisation of the unit sphere, given by
r(0,¢) = (cosOcosg, sinf cosg,singp)? Show that this parametrisation is neither conformal nor equiareal. (In this fa-
miliar parametrisation, 6 gives the longitude and ¢ the latitude.)

Mercator’s projection of the unit sphere minus the Date Line takes a point r(0, ¢) with latitude ¢ and longitude 6 to
(0,logtan(% + %)) in (—m, ) x R. Show that this parametrisation is conformal but not equiareal.

Lambert’s cylindrical projection takes a point r(6, ¢p) with latitude ¢ and longitude 0 to (6, sin ¢p) Show that this parametri-
sation is equiareal.

e First we shall formulate an exact definition of a conformal parametrisation:

Fixp € U. The map r: U — S induces the differential map drp : TpU — Ty(p) S given by 4" — (ro~y)’, where v : [-¢,e] — U

is a curve with v(0) = p. Let a and a be tangent vectors of T, U. We define the angle between a and b to be
b J
Z(a,b) := arccos( a ) \/é,S
lall bl

We say that r is conformal at pe U, if Z(a,b) = L(drp(a), drp(b)) for allu,ve TpU. We say that r is conformal in U if it is

conformal at every point of U.

n

have g(dr(a),dr(b)) = Aa-b. Then

dr(a) - dr(b) g(dr(a),dr(b)) Aa-b a-b /

ldr@I Idrb)] ~ \/g(dr(a), dr(@)+/g(dr(b),dr®) vAlalvAIbl lallb]

Hence r is conformal. L/

"==": Suppose that r is conformal. We have

dr(i):g:ru, dr(i):g:rv
ou/ Odu ov) Ov

Since r is conformal, we have

cosZ (ry,r,) = cos £ (0y,0,) =cosZ(e,,e,)=0
cosZ (ty +1y,1y) = cosZ (By +0y,0,) = cosZ (e, +ey,e,) =1/v2
cosZ (ry+ry,ry) =cosZ(0y+0y,0,) =cosZ (e, +ey,ey) = 1/V2

FromE=r,-r,, F=r,-r, and G=r,-r,, we have

B F+G 1 E+F 1 /

VEG VE+2F+GVG V2  VE+2F+GVE V2
The first equation implies that F = 0. Substituting into the second and the third ones we have
VE VG 1
/ VE+G VE+G V2
which implies that E = G.

Next we formulate an exact definition of equiareal parametrisation:

<=": Suppose that E= G = A(4,v) and F =0. Then g = /1(du2 + dvz) is an isothermal coordinates. In particular we



1
cos:a
C Hence the metric tensor is given by

Let K < U be a compact subset. The area of r(K) < S is given by

A & d:ff detgdud
[r(K)] fr(]() o K\/ etgdudv

where g is the metric tensor of S. We say thatr: U — S is equiareal, if A[K] = A[r(K)] for any compact subset K < U.

Now we observe that for any compact subset K < U,

k1= ) = [, agdud= [[ audo = ][ ootz 1) udv=o
[K] [r()]@ffK etgdudv Kuv(:) K( eg)uv

Since y/detg — 1 is smooth, the above equation holds for all K < U if and only if \/detg—1 = 0. Finally detg = ,

det (E F) = EG— F?. We deduce that r is equiareal if and only if EG — F> = 1. \/GKEQC a% L,U’lE’JLf .

F G

¢ From r(0, ¢) = (cosf cos ¢, sinf cos ¢, sin¢p), we have
rg = (—sinfcos ¢, cosf cos,0), ry = (—cosOsing, —sinfsing, cos ¢)

Then

E=rg-rg= sin20cosz(p+ c0s20cos2(p = cosz(p ‘
F=rg-ry=sin0cosfcosgsing —sinf cosd cos@sing =0 G@t °

G=ryp-1ry= cos2031n2¢+ sinZOSinz(p+ cosz(p =1
Hence the metric tensor is given by
g =Ed#%+2Fdfdg+ Gdy? = cos® pdb? + dg? \/eS

(This is not the standard spherical coordinates.)

We observe that g is not conformal because E # G, and g is not equiareal because EG — F? = cos? ¢ # 1. l ”C’L@C{J :

¢ The result proven in the beginning can be generalised as follows: Let f : S; — S» be a map between smooth surfaces.
Then f induces a pull-back metric f*(g2) on S given by

f(g2)(ab):= g (df(a),df (b))
foralla,be Tp(S1) andpe S.

[ is conformal if and only if there exists a continuous function A on S such that f*(g2) = Ag1. f is equiareal if and only
ifdet f*(g2) =detgi. | & ga. Krow S0 Lievonntn  Lem

oy
. We have

Letr(0,¢p) = (9,logtan %+ d
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g1, where f is the map from the sphere (minus a line) to (—m,7) x R induced by the

We find that f*(g2) =

cos? ¢ . ’
parametrisation (u, v). Hence the Mercator projection is conformal. (gmfli )'f':( )"L fu{)\ (a)

Letr(0,p) = (0,sinp). We have

( ( ) rg:(l,O); ry, = (0,cos ) \/ S
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Hence the metric tensor is given by

g3 =d6" + cos” pdy® Same ISSUL S &3@[@\

Let fbe the map from the sphere (minus the poles) to (-, 7) x (—1,1) induced by the parametrisation («, v). We find
that det g = det f* (g3) = cos® ¢. Hence the Lambert’s cylindrical projection is equiareal. O

@ Question 2

The tractrix is a curve in R? such that the distance along any tangent line from its point of contact with the curve to its point
of intersection with the x-axis is 1. If 8 is the angle the tangent line makes with the x -axis, show that the surface of revolution
(the tractoid) obtained by rotating the tractrix about the x -axis has first fundamental form cot? 0d6? + sin® 6dv? where v is the
angle of rotation of the surface of revolution. By making a suitable change of coordinates between (v,0) and (x, y), show that
the tractoid is locally isometric to the hyperbolic plane with first fundamental form (dx2 + dyz) 1y2.

Proof. First we consider the tractrix in the (x, w)-plane parametrised by 6. From the diagram below we find that

dw d60 tanf sinf

/ . dw dx dxdw cosf® cos?0
w =sing, — =tan#, — == =
dx J do

0.5

uc,r sed_

Then the tractoid is parametrised by i-f' )< ( j)

r@,v) = (x(0), wcosv, wsinv) = (x(8),sinf cosv,sin0 sinv)

JS ‘jQL S /lou-eﬂ

Hence

cos?6 l /f/

rg = ( -~ ,cochosv,cos@sinv), r, = (0,—sinfsinv,sinf cosv) UJr’ e
sin

The metric tensor is given by

10
= ( cos + cos? 6) d6? + sin? 6 dv? = cot? 6 d6? + sin® 6 dv?

sin”6
0
Change of variable: x=v, y=csc. Thendx=dvanddy = - C.OSZ . df. We have \/
sin
= sin0 ( 00 102 4 av) = L (x4 dy)
Ch sin%0 Bl y2 4

We deduce that the tractoid is locally isometric to the hyperbolic plane, because they have the same Riemannian metric. O

Gt
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Question 3

Show that the Gaussian curvature of a surface which is the graph of a smooth function z = f(x, y) is given by

Fettig— 12
K=" "7
(1+ f2+ 12

Calculate K when f(x, y) = xy and sketch the surface.

Proof. r(x,y) = (x,y, f(x,y)) gives a global parametrisation of the surface. The tangent vectors are given by
rx:(l;oyfx); l‘y=(0,1,fy)

The metric tensor is given by
g=ds’ =r;-rjdu’ du/ = fZdx* + 2, fydxdy + f; dy*

The normal vector is given by

Iy ATy (fx, fy,—1) _ (fx, fy,—1)

- ) _
N R T ] R vy

The second fundamental form is given by

oy 1
I=d*r-n=-r;-ndu' dw = ————(fixdx® + 2fxydxdy + f,y dy?) /

1+ [+ f2
By definition the Gaussian curvature is given by

Ko detIl fxxfyy—f;?y \/
detg (1+ff+ff)2

For f(x,y) = xy, we have fx =y, fy=x, fxx= fyy=0and fyy = 1. Then the Gaussian curvature is given by

1

T 0+ x2+ 22

Sketch of the surface z = xy:

20

Question 4

Letr(u, v) be a parametrized surface in R? with (u,v) € U, aconnected open set in RZ. Let S? denote the sphere of radius 1 with
centre the origin in R® and let n: U — S? be the mapping defined by assigning to each point of the surface the unit normal.
Suppose that the restriction of n to U is a bijection onto n(U) and that the Gaussian curvature K is nowhere zero in U. Show



®)

Question 5

that the area of n(U) equals the absolute value of f KdA.
U

Proof. The map N:r(U) — NG given by N(r(u, v)) = n(u, v) is called the Gauss map. The surface element on n(U) is dog = In;, A

n,|dudv. The surface element on r(U) is given by do = |r, Ar,|dudv. So the area of n(U) is giventfy

n,An
f/ Inu/\nyldudv:ff Mda
u r(U) Ity ATyl

So it suffices to prove that the Gaussian curvature is given by

bttt \alinl ™ | - murm

[ry ATyl

This result is a part of the proof of Theorema Egregium (Page 65 in Hitchin’s notes). Instead I shall prove it using the Wein-
garten map.

Let X = r(U). Gauss map induces the differential map dN : TpX — Tn(p) $?. Note that TNp) §? and TpX can be naturally
identified as subspaces of R®. The Weingarten map is then defined as W = —dN : TpX — TpX. The Weingarten map also
gives an alternative definition of the second fundamental form ITe T* X ® T* X:

Ii(a,b) := g(W(a),b)

Consider the matrix representation of W in the basis {r,,r,}. Since W (r;) = —n, and W(r,) = —n,, we have

el = e el v

ny ry ny ry
Hence W = IIg~!, where Il and g are the local matrix of the second and first fundamental forms. In particular we find that
det W = det(IT) (det g) ' =: K

So the Gaussian curvature K is the determinant of the Weingarten map W. We therefore deduce that

[ny Any|
Iny Any | =|det Wir, Ayl = lkl= —“=—2
[ry Ayl

which finishes the proof. \/Cl& LM- d"l Mmf_e \k(ucg . Me&(_ “6 a_rﬁwﬁ L\ﬁw O
o retoe Lhem wﬁn'rg Vio U cts | omeckd

Let S be the unit sphere in R? and y the circle obtained by intersecting S with the plane z = v'1— a?. Calculate the geodesic
curvature of y and the area of the smaller region of the sphere bounded by y, and use these results to illustrate the Gauss-
Bonnet theorem.

Proof. A diagram is drawn below:

2 ™




The curve y, parametrised by arc length, is given by

Y(s) = (acosi asm— 1—a2 \/
a

Then the tangent vector along y is /
/
t= y—m = (_ sin i’
Iyl @
and the derivative of tangent vector is given by
, ( 1 1
t=- —cos—,—sm
a a a
The normal vector is ,l/
RiON (acos > asin> V1= az)
“rol a’a

By definition, the geodesic curvature is given by

1 s 1 Vili—-a z
Kg::t'-(n/\t):—( cos —, = sin —, 0) ( \/l—azcos— -V1- a2s1n— a) =
a a a T a

a
The smaller region bounded by y has area:
arccosz 27
f f sinf@depdf =2n(1-z)
0=

To illustrate the local Gauss-Bonnet Theorem, we still need to compute the Gaussian curvature of the sphere. But if we note
that n = r on the unit sphere, then we immediately find that the first and the second fundamental form of the unit sphere
coincide. Hence the sphere has Gaussian curvature K = 1.

Finally,
fkgds+f Kda:Zna-E+27t(1—z):27r /
Y A .

which is consistent with the local form of the Gauss-Bonnet Theorem.



