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Chapter 1

Rings

1.1 Rings and Ring Homomorphisms

1.1.1 Rings and Fields

Definition 1.1.1. Rings

A ring (R,+, ·) is an Abelian group (R,+) with multiplication · satisfying the following axioms:

1. Associativity: ∀ r, s, t ∈ R : r · (s · t ) = (r · s) · t

2. Distributivity: ∀ r, s, t ∈ R : (r + s) · t = r · t + s · t , r · (s + t ) = r · s + r · t

R is said to be a ring with identity, if ∃ 1R ∈ R ∀ r ∈ R : r ·1R = 1R · r = r .

R is said to be a commutative ring, if ∀ r, s ∈ R : r · s = s · r

We will often use CRI in the notes, which stands for commutative ring with identity.

Remark. In a ring with identity, we often require that 0 6= 1 to avoid the collapse of the whole ring. It is immediate that if 0R = 1R

then R = {0R } is the zero ring.

Proposition 1.1.2. Properties of Rings

Suppose that R is a ring with identity, then:

1. The multiplicative identity 1 is unique;

2. ∀ r ∈ R : r ·0 = 0 · r = 0;

3. ∀ r ∈ R : r ·−1 =−1 · r =−r .

Proof. Trivial.

Remark. As in the case of groups, for n ∈N and a in the ring R, we can define na and an by:

na := a + ...+a︸ ︷︷ ︸
n times

an := a · ... ·a︸ ︷︷ ︸
n times

In general, a−n could be undefined.

Definition 1.1.3. Zero-Divisors, Integral Domains

Suppose that R is a ring. For a ∈ R \ {0}, a is said to be a left (resp. right) zero-divisor, if ∃ b ∈ R : ab = 0 (resp. ba = 0). a is said
to be a zero-divisor if it is both a left and a right zero-divisor.

A commutative ring R is said to be an integral domain, if R has no zero-divisors.

Proposition 1.1.4. Cancellation Law

Suppose that R is an integral domain. Then

∀ a,b ∈ R, ∀ c ∈ R \ {0} : ac = bc =⇒ a = b

Proof. Trivial.

1
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Definition 1.1.5. Units, Fields

Suppose that R is a ring with identity. For a ∈ R \ {0}, a is said to be a left (resp. right) unit, if ∃ b ∈ R : ab = 1 (resp. ba = 1). a is
said to be a unit if it is both a left and a right unit.

If a is a unit, then there exists a unique a−1 ∈ R such that aa−1 = a−1a = 1. a−1 is called the inverse of a. A CRI R is said to be a
field, if every non-zero element of R is a unit.

Definition / Proposition 1.1.6. R×

If R is a ring with identity, then the units of R form a group under multiplication, denoted by R×.

Proposition 1.1.7. Zero-Divisors and Units as Mappings.

Suppose that R is a ring.

1. a ∈ R \{0} is a left (resp. right) zero-divisor if and only if left (resp. right) multiplication by a is not an injective map R → R;

2. a ∈ R \ {0} is a left (resp. right) unit if and only if left (resp. right) multiplication by a is an surjective map R → R;

Proof. Trivial.

Corollary 1.1.8. Zero-Divisor 6= Unit

a ∈ R cannot be both a left (resp. right) zero-divisor and a right (resp. left) unit.

Corollary 1.1.9. Field =⇒ Integral Domain

Every field is an integral domain.

Proposition 1.1.10. Finite Integral Domain =⇒ Field

Every finite integral domain is a field.

Proof. Use Proposition 1.1.7 and the fact that injective maps R → R are surjective for the finite set R.

Example 1.1.11. Examples of Rings

1. The set of integers Z forms an integral domain under addition and multiplication;

2. The rational numbersQ, real numbers R, and complex numbers C form fields under addition and multiplication;

3. The n ×n matrices Mn×n(R) forms a non-commutative ring under matrix addition and multiplication;

4. If G is an Abelian group, then the endomorphism group End(G) forms a ring with indentity under map addition and
composition;

5. The even integers 2Z forms a ring without identity under addition and multiplication.

6. The group Z/nZ forms a finite ring under addition and multiplication up to congruence. Moreover, it is a field if and
only if n is a prime number.
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Definition 1.1.12. Ring Homomorphisms

Suppose that R and S are rings. f : R → S is said to be a ring homomorphism, if:

∀ r, s ∈ R : f (r + s) = f (r )+ f (s)

∀ r, s ∈ R : f (r · s) = f (r ) · f (s)

Suppose that R and S are rings with identity. The ring homomorphism f : R → S is said to a unital ring homomorphism, if

f (1R ) = 1S

Bijective (unital) ring homomorphisms are called (unital) ring isomorphisms.

Definition 1.1.13. Kernel and Image

Suppose that f : R → S is a ring homomorphism. We define the kernel of f to be ker f := f −1({0S }) and the image of f to be
im f := f (R).

Definition 1.1.14. Subrings

Suppose that R is a ring. S ⊆ R is said to be a subring of R, if the inclusion map ι : S ,→ R is a ring homomorphism.

Definition 1.1.15. The Categories Rng and Ring

Clearly the class of all rings forms a category, which is denoted by Rng. The morphisms in Rng are ring homomorphisms.
Similarly, the class of all rings with indentity forms the category Ring, whose morphisms are unital ring homomorphisms.

Remark. In the category Ring, the monomorphisms are precisely the injective ring homomorphisms. Unlike Set and Grp, however,
not all epimorphisms are surjective ring homomorphisms. For example, the inclusion ι : Z ,→ Q is an epimorphism but is not
surjective.

Remark. Z is the initial object in Ring. In order words, for any ring R with identity, there exists a unique unital ring homomorphism
f :Z→ R, which is given by

∀ n ∈Z : f (n) = n ·1R

The zero ring {0} is the final object in Ring.

1.1.2 Characteristics

Definition 1.1.16. Characteristics

Suppose that R is a ring with identity. The least positive integer n such that n1R = 0R is called the characteristic of R, denoted
by charR = n. If no such n exists, then we say that charR = 0.

Remark. If n1R = 0R , then na = 0R for all a ∈ R.

Proposition 1.1.17. Characteristic of an Integral Domain

Suppose that R is an integral domain. Then charR is either 0 or a prime number p.

Proof. If charR = mn, for some m,n ∈Z+, then
mn1R = m1R ·n1R = 0

By definition of characteristic, m1R , n1R 6= 0, which implies that R has zero-divisors.
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Definition 1.1.18. Field Homomorphisms, Subfields

Suppose that F,K are fields. A unital ring homomorphism f : F → K is automatically a field homomorphism. It is immediate
that all field homomorphisms are injective.

If E ⊆ F , then E is said to be a subfield of F , if the inclusion map ι : S ,→ R is a field homomorphism. F is called an extension
field of E .

Proposition 1.1.19. Characteristics and Subfields

Suppose that F is a field.

1. if charF = 0, then F has a subfield isomorphic toQ;

2. if charF = p, then F has a subfield isomorphic to Z/pZ.

Moreover, the subfield in 1 and 2 are minimal with respect to inclusion. Such subfield is called the prime subfield of F .

Proof. Suppose that E is a subfield of F . Clearly, n1F ∈ E for any n ∈Z. If charF = p, then

{0F ,1F ,1F +1F , · · · , (p −1)1F } =Z/pZ⊆ E

If charF = 0, then m1F 6= (n1F )−1 for m,n ∈Z\ {0}. It follows that

{(m1F )(n1F )−1 ∈ F : m ∈Z,n ∈Z\ {0}} =Q⊆ E

The minimality then follows trivially.

Remark. For p prime, the finite field Z/pZ is also denoted by Fp .

Corollary 1.1.20. Cardinality of Finite Fields

Suppose that F is a finite field. Then cardF = pn for some prime number p and n ∈N.

Proof. If F is a finite field, it must have a non-zero characteristic p. By Proposition 1.1.19, F contains Fp as a subfield. In particular,
F is a (finite-dimensional) vector space over Fp . Suppose that dimFp F = n. Then F ∼= (Fp )n as vector spaces and we have
cardF = pn .

Proposition 1.1.21. Embedding into a Ring with Identity

Every ring R can be embedding into a ring S which has an identity. S can be chosen such that charS = charR or charS = 0.

Proof. Suppose that we want charS = 0. Let S be the additive Abelian group R ⊕Zwith multiplication defined by

∀ r1,r2 ∈ R ∀ n1,n2 ∈Z : (r1,n1) · (r2,n2) := (r1r2 +n2r1 +n1r2,n1n2)

One can verify that the multiplication defined above satisfies associativity and distributivity so that S is indeed a ring. S has
characteristic 0 because Z has characteristic 0. Observe that (0,1) ∈ S is the identity and r 7→ (r,0) is a ring monomorphism
(i.e. embedding) from R to S.

If we want charS = charR, then set S = R ⊕Z/nZwhere n = charR and everything is the same as above.

1.1.3 Product Rings

Definition 1.1.22. Product of Rings: Set-Theoretic Definition

Suppose that R,S are rings. Then we define a ring structure on the Cartesian product of sets R ×S by

∀ r1,r2 ∈ R ∀ s1, s2 ∈ S : (r1, s1)+ (r2, s2) := (r1 + r2, s1 + s2)

∀ r1,r2 ∈ R ∀ s1, s2 ∈ S : (r1, s1) · (r2, s2) := (r1 · r2, s1 · s2)

R ×S is called the (external) direct product of ring R and S. Inductively, we can define the direct product of any finite number
of rings.
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Remark. Commonly, R ×·· ·×R︸ ︷︷ ︸
n times

is denoted by Rn .

Proposition 1.1.23. Product of Rings: Universal Property

Suppose the {Ri }i∈I is a family of rings. The product ring is the ring
∏
i∈I

Ri with the canonical projections π j :
∏
i∈I

Ri � R j

satisfying the following universal property:

For any ring S and ring homomorphisms f j : S → R j , there exists a unique ring homomorphism σ : S → ∏
i∈I

Ri such that f j =
π j ◦σ.

S
∏
i∈I

Ri

R j

∃! σ

f j
π j

Moreover, any ring satisfying the universal property is uniquely determined up to ring isomorphism.

Remark. Readers should check that the set-theoretical definition of the product ring satisfies the universal property.

Remark. It is tempting to think about the coproduct of rings. That is, the product of rings with all arrows reversed:

R j S

∐
i∈I

Ri

f j

π j ∃! σ

In the category of Abelian groups Ab, the coproduct is the direct sum of groups. One may think if we can define the "direct sum"
of commutative rings as coproduct, which coincides with product for a finite indexing set I . Unfortunately the answer is no. The
correct structure in the case of CRI is the tensor product of rings asZ-modules:

R qS = R ⊗Z S

We shall discuss the tensor product in detail in Section 5.3.

1.2 Ideals

We want to construct a structure analogous to quotient sets in Set or quotient groups in Grp. In particular we need special sub-
structure of rings that plays the role of normal subgroups for groups. The things we are looking for are ideals.

1.2.1 Ideals

Motivation. Consider a ring R with identity and an equivalence relation ∼ on R which is compatible with addition and multiplica-
tion. That is,

r1 ∼ r ′
1 ∧ r2 ∼ r ′

2 =⇒ r1r2 ∼ r ′
1r ′

2, r1 + r2 ∼ r ′
1 + r ′

2

Consider an additive subgroup I ⊆ R that determines the equivalence relation. We have

r ∼ r ′ ⇐⇒ r − r ′ ∼ 0 ⇐⇒ r − r ′ ∈ I

and
r1r2 ∼ r ′

1r ′
2 ⇐⇒ r1r2 − r ′

1r ′
2 ∈ I ⇐⇒ r1(r2 − r ′

2)+ (r1 − r ′
1)r ′

2 ∈ I

suggesting that I should be closed under left and right multiplication by any ring element r ∈ R:

r I ⊆ I , I r ⊆ I =⇒ r I = I r = I

It motivates us to define the ideals of a ring:
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Definition 1.2.1. Ideals

Suppose that R is a ring with identity and I ⊆ R is a (not necessarily unital) subring of R. I is said to be a left (resp. right) ideal
of R, if r I = I (resp. I r = I ) for any r ∈ R.

I is said to be a (two-sided) ideal of R, if it is both a left and a right ideal. We denote it by I ER.

If the ideal I = {0} or R, we say that I is a trivial ideal. If I 6= R, we say that I is a proper ideal of R.

Remark. By definition, if I ER, then 1 ∈ I ⇐⇒ I = R.

Proposition 1.2.2. Ideals in a Field

Suppose that F is a field. Then the only ideals in F are {0} and F itself.

Proof. Suppose that I E F . If a ∈ I and a 6= 0, then 1 = aa−1 ∈ I and hence I = F .

Proposition 1.2.3. Intersection of Ideals

Suppose that {I j } j∈J is a family of ideals in R. Then
⋂
j∈J

I j is an ideal of R.

Proof. Trivial.

Definition / Proposition 1.2.4. Ideal generated by a subset

Suppose that A is a subset of R. The following statements are equivalent:

1. I is the intersection of all ideals of R which contains A;

2. I =
{

n∑
i=1

ri ai si : ai ∈ A, ri , si ∈ R, n ∈N
}

The ideal I satisfying any of the above conditions is called the ideal generated by A. We denote it by I = 〈A〉. If A is a finite set,
then we say that I is finitely generated; if A = {a} is a singleton, then we say that I is a principal ideal, and denote it by I = 〈a〉.

Proof. Clearly if J is an ideal such that A ⊆ J , then J must contain all elements of the form
n∑

i=1
ri ai si . On the other hand, the set of

elements of the form
n∑

i=1
ri ai si is an ideal of R (which is true only if R has an identity!)

Definition 1.2.5. Principal Ideal Domains, Noetherian Rings

The CRI R is called a principal ideal domain (abbreviated PID), if all ideals of R are principal. The CRI R is called a Noetherian
ring, if all ideals of R are finitely generated.

Remark. In Section 6.1 we shall give some equivalent formulations of Noetherian rings.

1.2.2 Quotient Rings and Isomorphism Theorems
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Definition 1.2.6. Quotient Rings: Set-Theoretic Definition

The equivalence relation defined by r ∼ r ′ ⇐⇒ r − r ′ ∈ I induces the quotient set R/I . The equivalence class of r ∈ R in R/I is
denoted by r + I or r . We define the ring structure on R/I by

∀ r1,r2 ∈ R : (r1 + I )+ (r2 + I ) := (r1 + r2)+ I

∀ r1,r2 ∈ R : (r1 + I ) · (r2 + I ) := (r1r2)+ I

It is immediate from the discussion at the beginning of this section that these operations are well-defined.

The canonical projectionπ : R�R/I is the ring epimorphism such thatπ(r ) = r+I for all r ∈ R. We have kerπ= I . In paricular,
we have the following short exact sequence:

0 I R R/I 0ι π

Remark. A sequence

· · · A B C · · ·f g

is said to be exact at B , if im f = ker g . In particular, a short sequence

0 A B C 0
f g

is said to be exact, if f is injective, g is surjective, and im f = ker g . We shall discuss the exact sequences of modules in Section 4.3.

Proposition 1.2.7. Quotient Rings: Universal Property

Suppose that R is a ring and I is an ideal of R. The quotient ring is the ring R/I with the canonical projection π : R � R/I
satisfying the following universal perperty:

For any ring S and ring homomorphism f : R → S such that I ⊆ ker f , there exists a unique ring homomorphism f̃ : R/I → S
such that f = f̃ ◦π.

R S

R/I

f

π
∃! f̃

Moreover, any ring satisfying the universal property is uniquely determined up to ring isomorphism.

Remark. Given the set-theoretical definition of the quotient ring, the only choice of f̃ is f̃ (r + I ) = f (r ). Readers can check that it
satisfies the universal property.

Lemma 1.2.8

Suppose that f : R → S is a ring homomorphism. Then

1. ker f is an ideal of R;

2. im f is a subring of S.

Proof. Trivial.

Theorem 1.2.9. Canonical Decomposition / First Isomorphism Theorem

Suppose that f : R → S is a ring homomorphism. Then the following diagram commutes:

R R/ker f im f S

f

π f̃ ι

In particular, f̃ is an isomorphism between R/ker f and im f .
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Proof. Clearly f is a ring epimorphism from R to im f ⊆ S. By universal property of the quotient ring, f induces f̃ : R/ker f → im f .
f̃ is surjective because f : R → im f is. f̃ is injective because

f −1({0}) = ker f =⇒ f̃ −1({0}) = {0}+ker f = {0} ⊆ R/ker f

Hence f̃ is an isomorphism. R/ker f ∼= im f .

Theorem 1.2.10. Second Isomorphism Theorem

Suppose that I is an ideal of R and S is a subring of R. Then I ∩S is an ideal of S and I +S is a subring of R. In particular, we
have the ring isomorphism:

S

I ∩S
∼= I +S

I

Proof. Consider the composite ring homomorphism: S S + I (S + I )/Iι π

It is not hard to see that π◦ ι is a ring epimorphism with kernel ker(π◦ ι) = I ∩S. The result follows by applying First Isomor-
phism Theorem 1.2.9 to π◦ ι.

Theorem 1.2.11. Third Isomorphism Theorem

Suppose that I E J ER. Then J/I ER/I . In particular we have the ring isomorphism:

R/I

J/I
∼= R/J

Proof. Consider the canonical projection π j : R � R/J . We have I ⊆ J = kerπ j . By universal property 1.2.7 of quotient rings,
π j induces the ring epimorphism π̃ j : R/I � R/J whose kernel is J/I . The result follows by applying First Isomorphism
Theorem 1.2.9 to π̃ j .

1.2.3 Operations on Ideals

Definition 1.2.12. Ideal Operations

Suppose that I , J ER. We define the sum of I and J to be:

I + J = {i + j : i ∈ I , j ∈ J }

We define the product of I and J to be:

I J =
{

n∑
k=1

ik jk : ik ∈ I , jk ∈ J , n ∈N
}

It is not hard to prove that I + J and I J are ideals of R. The union of I and J , however, is not an ideal in general.

Remark. The sum and product are associative and distributive:

I + (J +K ) = (I + J )+K I (JK ) = (I J )K

(I + J )K = I K + JK I (J +K ) = I J + I K

The case involving intersection is more complicated. Readers can try to prove the following property:

I ∩ (J +K ) ⊇ I ∩ J + I ∩K with equality holds if J ⊆ I or K ⊆ I



1.2. IDEALS 9

Proposition 1.2.13. Ideal Contraction

Suppose that f : R → S is a ring homomorphism. For J E S, f −1(J ) is an ideal of R. In particular, f induces the injective map
from the set of ideals of S to the set of ideals of R:

{ideals of S} {ideals of R}

J f −1(J )

Furthermore, f −1 preserves the inclusion relation:

J1 ⊆ J2 =⇒ f −1(J1) ⊆ f −1(J2)

Proof. Trivial.

Corollary 1.2.14. Ideal Contraction for Quotient Rings

Suppose that I is an ideal of R. π : R� R/I is the canonical projection. Then π induces a bijective correspondence between
the ideals of R/I and the ideals of R that contains I :

{ideals of R/I } {ideals of R containing I }

J/I J ⊇ I

K /I K

Definition 1.2.15. Ideal Extensions and Contractions

Suppose that f : R → S is a ring homomorphism. For I ER, we define the extension of I to be the ideal in S generated by f (I ):

I e := 〈
f (I )

〉
E S

For J E S, we define the contraction of J to be the preimage of J under f :

J c := f −1(J )ER

Notice that both extension and contraction preserve the order of ideals with repsect to inclusion.

Remark. Suppose that R is a subring of S. Then we usually talk about the ideal extension and contraction with respect to the
inclusion map ι : R ,→ S. In this case, we have I e = 〈I 〉E S and J c = R ∩ J ER.

Proposition 1.2.16. Ideal Operations on Extensions and Contractions

1) (I1 + I2)e = I e
1 + I e

2 2) (I1 + I2)c ⊇ I c
1 + I c

2

3) (I1I2)e = I e
1 I e

2 4) (I1I2)c ⊇ I c
1 I c

2

5) (I1 ∩ I2)e ⊆ I e
1 ∩ I e

2 6) (I1 ∩ I2)c = I c
1 ∩ I c

2

Proof. Everything follows directly from definition.

Definition / Proposition 1.2.17. Coprime Ideals

Suppose that I , J ER. We say that I and J are coprime, if I + J = R. If R is a CRI, then I ∩ J = I J .

Proof. It is clear that I J ⊆ I ∩ J . If R is a CRI and I + J = R, then there exists a ∈ I ,b ∈ J such that a +b = 1. For r ∈ I ∩ J , r = (a +b)r =
ar +br ∈ I J . Hence we have I ∩ J ⊆ I J .

Theorem 1.2.18. Chinese Remainder Theorem

Suppose that I and J are coprime ideals of R. Then we have the ring isomorphism:

R

I ∩ J
∼= R

I
× R

J
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Proof. Consider the ring homomorphism f : R/(I ∩ J ) → R/I ×R/J , r + I ∩ J 7→ (r + I ,r + J ).
Readers can check that f is well-defined and bijective (the coprime condition is used in proving surjectivity).

Definition 1.2.19. Ideal Quotient

Suppose that I , J ER. We define the ideal quotient (I : J ) to be

(I : J ) := {r ∈ R : r J ⊆ I }

(I : J ) is an ideal of R.

1.3 Prime, Maximal and Radical Ideals

Throughout this section, we shall only consider commutative rings with identity.

1.3.1 Prime and Maximal Ideals

Definition 1.3.1. Prime Ideals, Prime Spectrum

Suppose that R is a CRI and P is a proper ideal of R. P is said to a prime ideal of R, if

∀ r, s ∈ R : r s ∈ P =⇒ r ∈ P ∨ s ∈ P

The set of prime ideals in R is called the prime spectrum of R and is denoted by SpecR.

Remark. Equivalent, P ER is prime if for all I1, I2ER, I1I2 ⊆ P implies that either I1 ⊆ P or I2 ⊆ P .

Definition 1.3.2. Maximal Ideals, Maximal Spectrum

Suppose that R is a CRI and M is a proper ideal of R. M is said to a maximal ideal of R, if no proper ideal of R contains M
strictly.

The set of maximal ideals in R is called the maximal spectrum of R and is denoted by MaxSpecR.

Proposition 1.3.3. Prime & Maximal Ideals v. Quotient Rings

Suppose that R is a CRI and I is a proper ideal of R.

1. I is prime if and only if R/I is an integral domain;

2. I is maximal if and only if R/I is a field.

Proof.

R/I is not an integral domain ⇐⇒∃ a,b ∈ (R/I ) \ {0} : ab = 0

⇐⇒∃ a,b ∈ R \ I : ab ∈ I

⇐⇒ I is not prime.

I is maximal ⇐⇒∀ u ∈ R \ I : I +〈u〉 = R

⇐⇒∀ u ∈ R \ I ∃ r ∈ R ∃ a ∈ I : a + r u = 1

⇐⇒∀ u ∈ R \ I ∃ r ∈ R : r u = 1

⇐⇒∀ u ∈ (R/I ) \ {0} : u is a unit

⇐⇒ R/I is a field.

Corollary 1.3.4. Maximal Ideal =⇒ Prime Ideal

Every maximal ideal is prime.
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Proposition 1.3.5. PID: Non-Zero Prime Ideal ⇐⇒ Maximal Ideal

Suppose that R is a principal ideal domain and I is a non-trivial ideal of R. Then I is prime if and only if I is maximal.

Proof. It suffices to prove that every non-trivial prime ideal is maximal. Suppose 〈r 〉 is a non-trivial prime ideal and a ∉ 〈r 〉. Then
〈a,r 〉 = 〈s〉 for some s ∈ R. In particular, r ∈ 〈s〉 =⇒ r = us for some u ∈ R. Hence us ∈ 〈r 〉. Since 〈r 〉 is prime, either u ∈ 〈r 〉 or
s ∈ 〈r 〉. If s ∈ 〈r 〉, then 〈r 〉 = 〈s〉 = 〈a,r 〉, contradicting that a ∉ 〈r 〉. Therefore we must have u ∈ 〈r 〉 and u = br for some b ∈ R.
Then r = us = bsr =⇒ bs = 1 =⇒ s is a unit. Hence 〈a,r 〉 = R =⇒〈r 〉 is maximal.

Remark. As we will see in Section 6.6, Proposition 1.3.5 implies that PID have Krull dimension 1.

Theorem 1.3.6. Krull’s Theorem

Every non-trivial CRI has a maximal ideal.

Proof. This is a standard application of Zorn’s Lemma.

Let R be a CRI. Consider the set of all proper ideals (S ,⊆) with a partial order given by set inclusion. S is non-empty as
{0} ∈ S . Suppose that {I j : j ∈ J } ⊆ S is a chain of ideals. That is, for i , j ∈ J , either Ii ⊆ I j or I j ⊆ Ii (or both). Then⋃

{I j : j ∈ J } is an ideal and is the upper bound of the chain. Since every chain of ideals has an upper bound, S has a
maximal element, which is a maximal ideal of R by definition.

Corollary 1.3.7

Every proper ideal of R is contained in some maximal ideal of R.

Proof. Suppose that I is a proper ideal R. In particular R/I 6= {0}. Applying Krull’s Theorem 1.3.6 to R/I , we know that R/I has a
maximal ideal J/I . Then J is a maximal ideal of R containing I .

Corollary 1.3.8

Every non-unit of R is contained in some maximal ideal of R.

Proof. Suppose that a ∈ R is not a unit. Hence 〈a〉 is a proper ideal of R. Then apply Corollary 1.3.7.

Proposition 1.3.9. Minimal Prime Ideals

Suppose that R is a CRI. Then SpecR has a minimal prime ideal with respect to set inclusion.

Proof. This is again an application of Zorn’s Lemma. Try to mimic the proof of Krull’s Theorem 1.3.6.

Proposition 1.3.10. Prime Avoidance

1. Suppose that P1, ...,Pn are prime ideals of R. I is an ideal of R such that I ⊆
n⋃

i=1
Pi . Then I ⊆ Pi for some i ∈ {1, ...,n}.

2. Suppose that I1, ..., In are ideals of R. P is a prime ideal of R such that P ⊇
n⋂

i=1
Ii . Then P ⊆ Ii for some i ∈ {1, ...,n}.

Proof. 1. We use induction on n to prove that if I 6⊆ Pi for all i then I 6⊆
n⋃

i=1
Pi .

The base case n = 1 is trivial. Suppose that the result holds for n −1. Now assume that I 6⊆ Pi for i ∈ {1, ...,n}. For each

i ∈ {1, ...,n}, we choose ri ∈ I such that ri ∉ P j for all j 6= i . If there is some i such that ri ∉ Pi , then ri ∉
n⋃

k=1
Pk and the

result is true. Otherwise we may assume that ri ∈ Pi for each i . Consider

s =
n∑

i=1
r1 · · ·ri−1ri+1 · · ·rn ∈ I
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We observe that the i -th term in s is not in Pi as Pi is prime, and the remaining terms are divisible by ri , which implies

that s − r1 · · ·ri−1ri+1 · · ·rn ∉ Pi . Hence s ∉ Pi and s ∉
n⋃

k=1
Pk .

2. Suppose that P 6⊆ Ii for all i . Then for each i there exists ri ∈ Ii \ P . We have r1 · · ·rn ∈
n∏

i=1
Ii ⊆

n⋂
i=1

Ii . But r1 · · ·rn ∉ P as P

is prime. Hence P 6⊇
n⋂

i=1
Ii .

Proposition 1.3.11. Contraction of Prime Ideals

Suppose that f : R → S is a ring homomorphism. For a prime ideal J E S, f −1(J ) is an prime ideal of R. In particular, f induces
the map Spec( f ) : SpecS → SpecR:

SpecS SpecR

J f −1(J )

Moreover, if f is surjective, then Spec( f ) is injective.

Proof. Trivial.

Remark. Prime ideals are preserved by ideal contractions. This is not true for maximal ideals in general.

Remark. In the following subsection we shall equip SpecR with the Zariski topology. Therefore Spec is a contravariant functor
from Ring to Top.

1.3.2 Zariski Topology
Proposition 1.3.12

Suppose that R is a CRI and A ⊆ R. We define V (A) be the the set of all prime ideals in R that contains A. Then we have:

1. A1 ⊆ A2 =⇒ V (A1) ⊇ V (A2);

2. V (A) = V (〈A〉);

3. V ({0}) =∅, V ({1}) = SpecR;

4. V (A1)∪V (A2) = V (〈A1〉〈A2〉) = V (〈A1〉∩〈A2〉);

5. V

(⋃
i∈I

Ai

)
= ⋂

i∈I
V (Ai ).

Proof. 1∼3. Trivial.

4. We write I1 = 〈A1〉 , I2 = 〈A2〉 for simplicity. By (2) we know V (A1) = V (I1),V (A2) = V (I2).

V (I1)∪V (I2) = V (I1I2):

By (1) we know that V (I1)∪V (I2) ⊆ V (I1I2) as I1, I2 ⊇ I1I2. For the other direction, suppose that P ∈ SpecR such that
P ∉ V (I1)∪V (I2). That is, I1 6⊆ P and I2 6⊆ P . Since P is prime, we have I1I2 6⊆ P =⇒ P ∉ V (I1I2). Hence V (I1)∪V (I2) ⊇
V (I1I2).

V (I1 ∩ I2) = V (I1I2):

By (1) we know that V (I1 ∩ I2) ⊆ V (I1I2) since I1I2 ⊆ I1 ∩ I2. For the other direction, suppose that P ⊆ V (I1I2). Then
I1I2 ⊆ P . Since P is prime we have either I1 ⊆ P or I2 ⊆ P . In particular I1∩ I2 ⊆ P . We conclude that V (I1∩ I2) ⊇ V (I1I2).

5. For P ∈ SpecR:

P ∈ V

(⋃
i∈I

Ai

)
⇐⇒ ⋃

i∈I
Ai ⊆ P ⇐⇒ ∀ i ∈ I : Ai ⊆ P ⇐⇒ ∀ i ∈ I : P ∈ V (Ai ) ⇐⇒ P ∈ ⋂

i∈I
V (Ai )
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Definition 1.3.13. Zariski Topology on the Prime Spectrum

Suppose that R is a CRI and A ⊆ R. From the above proposition we know that sets V (A) satisfies the topological axioms for
closed sets. This defines a topology on the prime spectrum SpecR, which is called the Zariski topology.

Remark. Unfortunately, the Zariski topology could be quite nasty: every non-trivial open set in SpecR is dense in SpecR. The space
is not Hausdorff. In fact it is not even T1 since the singleton closed subsets of SpecR are exactly the maximal ideals.

Lemma 1.3.14. Zariski Topology: T0-Axiom

Suppose that R is a CRI and SpecR is the prime spectrum with the Zariski topology. Then SpecR satisfies the T0 separation
axiom.a

aA topological space X is said to satisfy the T0-axiom, if for any distinct points x, y ∈ X , there is either a neighborhood Nx of x not containing y , or a
neighborhood Ny of y not containing x.

Proof. First we shall prove that the closure of a point P in SpecR is {P } = V (P ):

{P } =⋂
{V (I ) : P ∈ V (I )} = V

(⋃
{I : P ∈ V (I )}

)= V
(⋃

{I : I ⊆ P }
)= V (P )

The second equality follows from Proposition 1.3.13 (5).

Second, suppose that P1,P2 ∈ SpecR such that every neighborhood of P1 contains P2 and vise versa. Then P1 ∈ {P2} = V (P2)
and P2 ∈ {P1} = V (P1). Therefore P2 ⊆ P1 and P1 ⊆ P2. P1 and P2 are the same ideal.

Proposition 1.3.15. Compactness of Zariski Topology

The prime spectrum SpecR with Zariski topology is compact.

Proof. Let {Ai }i∈I be a family of ideals of R such that
⋂
i∈I

V (Ai ) = ∅. As
⋂
i∈I

V (Ai ) = V

(∑
i∈I

Ai

)
, we have

∑
i∈I

Ai = R. In particular

1 ∈ ∑
i∈I

Ai . We write

1 =
n∑

k=1
rik ∈

n∑
k=1

Aik

Then
∑
i∈I

Ai =
n∑

k=1
Aik and therefore

n⋂
k=1

V (Aik ) =∅. SpecR is compact under the Zariski topology.

1.3.3 Radical Ideals

Definition 1.3.16. Radicals

Suppose that R is a CRI and I is an ideal of R. Then we define the radical of I to be

p
I := {r ∈ R : ∃ n ∈Z+ (r n ∈ I )}

I ER is called a radical ideal, if I =p
I .

Proposition 1.3.17. Radicals and Ideal Operations

1. The radical
p

I of ideal I is an ideal;

2. I1 ⊆ I2 =⇒p
I1 ⊆

p
I2;

3.
√p

I =p
I ;

4.
p

I1I2 =
p

I1 ∩ I2 =
p

I1 ∩
p

I2;

5.
p

I1 + I2 =
√p

I1 +
p

I2;

6.
p

P = P for P ∈ SpecR.
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Proof. I only want to give a hint to the proof of (1): if r, s ∈ p
I , then there are m,n ∈ Z+ such that r m , sn ∈ I . Then by binomial

theorem

(r − s)mn =
mn∑
i=0

(−1)i
(
mn

i

)
si r mn−i ∈ I

Hence r − s ∈p
I .

Definition / Proposition 1.3.18. Nilpotent Elements, Nilradical

Suppose that R is CRI. r ∈ R is said to be nilpotent, if there exists n ∈Z+ such that r n = 0.

Suppose that I ⊆ R. The following statements are equivalent:

1. I is the set of all nilpotent elements of R;

2. I =p
{0}

3. I =⋂
SpecR.

The subset I satisfying one of the above statement is called the nilradical of R and is denoted by N (R). In particular N (R) is a
radical ideal.

If N (R) = {0}, then R is called a reduced ring.

Proof. (2) is just a rephrase of (1) using the language of radical.

Suppose that r ∈ R is nilpotent. For each P ∈ SpecR, r n = 0 ∈ P =⇒ r ∈ P . Hence r ∈⋂
SpecR.

Suppose that r ∈ R is not nilpotent. Let S := {I E R : r ∉ p
I }. S is non-empty as {0} ∈ S . By Zorn’s Lemma, S has a

maximal element P . For any a,b ∉ P , we have P ( P +〈a〉 and P ( P +〈b〉. By maximality of P , r ∈p
P +〈a〉 and r ∈

√
P +〈b〉.

By Proposition 1.3.17 (4), r ∈p
P +〈a〉∩

√
P +〈b〉 =

√
(P +〈a〉)(P +〈b〉) =

√
P +〈ab〉. Hence P ( P +〈ab〉 and ab ∉ P . Hence

P is a prime ideal. Since r ∉p
P = P , we have r ∉⋂

SpecR.

Corollary 1.3.19.
p

I /I = N (R/I )

Suppose that R is a CRI and I is an ideal of R. Then
p

I /I = N (R/I ).

Corollary 1.3.20.
p

I =⋂
{P ∈ SpecR : I ⊆ P }

Suppose that R is a CRI and I is an ideal of R. Then
p

I =⋂
{P ∈ SpecR : I ⊆ P }.

Corollary 1.3.21. V (I ) = V (
p

I )

Suppose that R is a CRI and I is an ideal of R. Then V (I ) = V (
p

I ).

Definition 1.3.22. Jacobson Radical

Suppose that R is CRI. We define the Jacobson radical of R to be the intersection of all maximal ideals of R:

J (R) :=⋂
MaxSpecR

For I /R, we define the Jacobson radical of I to be the intersection of all maximal ideals of R that contain I .

Remark. It is immediate from the definition that N (R) ⊆ J (R). In Section 6.7.3, we shall study the Jacobson rings, whose nilradical
N (R) and Jacobson radical J (R) coincide.

Proposition 1.3.23. Jacobson Radical and Units

Suppose that R is CRI and r ∈ R. Then r ∈ J (R) if and only if 1− r s is a unit of R for all s ∈ R.

Proof. "=⇒": Suppose that r ∈ J (R) and 1− r s ∈ R is not a unit. Then 1− r s is contained in a maximal ideal M by Corollary 1.3.8. As
r ∈ J (R) ⊆ M , we have 1 ∈ M which is a contraction.
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"⇐=": Suppose that r ∉ J (R). Then there exists a maximal ideal M such that M +〈r 〉 = R. Then a+ r s = 1 for some a ∈ M and
s ∈ R. Hence 1− r s = a ∈ M is not a unit.
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1.4 Rings of Polynomials and Formal Power Series

The polynomials have been the central objects of algebra. We shall present some equivalent definitions of the polynomial ring over
a ring in this section.

Throughout this section, we shall only consider commutative rings with identity.

1.4.1 Polynomial Rings

Definition 1.4.1. Generating Subrings, Polynomials

Suppose that R is a CRI and R ⊆ S is a ring extension. For u ∈ S, we consider the set

R[u] := {
a0 +a1u +·· ·+anun : a0, ..., an ∈ R, n ∈N}

R[u] is called the subring generated by u on R. The elements of R[u] are called polynomials of u on R.

Remark. The polynomial f (u) = a0 + a1u + ·· ·+ anun ∈ R[u] such that f (u) = 0 is called an algebraic relation of u on R. We can
define the ring of polynomial on R to be the extended ring R[x] on an element x (called an indeterminate) with the trivial algebraic
relation.

We shall present a set-theoretic formal definition of the ring of (single-variable) polynomials.

Definition 1.4.2. Polynomial Rings, Set-Theoretic Definition

Suppose that R is a CRI. We define the polynomial ring R[x] to be the set of finite sequences of R:

R[x] := {(a0, a1, · · · ) : a0, a1, · · · ∈ R, ∃N ∈N ∀n > N (an = 0)}

with addition:
∀ {an}, {bn} ∈ R[x] : {an}+ {bn} = {cn}, where cn = an +bn

and multiplication:

∀ {an}, {bn} ∈ R[x] : {an} · {bn} = {cn}, where cn =
n∑

i=0
ai bn−i

Remark. From the definition of R[x] we immediately obtain an embedding r 7→ (r,0,0, · · · ) from R to R[x]. Hence we can identify
R as a subring of R[x] and denote (1,0,0, · · · ) by 1. It is common to denote (0,1,0, · · · ) by x. It follows from induction that xn =
(0, · · · ,0,1,0, · · · ), where 1 is in the (n +1)-st coordinates. Therefore we have:

(a0, a1, · · · , an ,0,0 · · · ) = a0 +a1x +·· ·+an xn ∈ R[x]

which is the usual way of writing a polynomial.

If we relax the condition of finite sequences, we will obtain the ring of formal power series:

Definition 1.4.3. Rings of Formal Power Series

Suppose that R is a CRI. We define the ring of formal power series R[[x]] to be the set of finite sequences of R:

R[[x]] := {(a0, a1, · · · ) : a0, a1, · · · ∈ R}

with addition:
∀ {an}, {bn} ∈ R[[x]] : {an}+ {bn} = {cn}, where cn = an +bn

and multiplication:

∀ {an}, {bn} ∈ R[[x]] : {an} · {bn} = {cn}, where cn =
n∑

i=0
ai bn−i

Remark. There is a natural embedding R[x] ,→ R[[x]]. As a subring of R[[x]], R[x] is generated by R and x.

From the discussion at the beginning of this section, we can formulate the universal property of polynomial rings as follows:
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Proposition 1.4.4. Polynomial Rings, Universal Property

Suppose that R is a CRI. The polynomial ring is the ring R[x] with the embedding ι : R ,→ R[x] satisfying the following universal
property:

For any CRI S, u ∈ S, and unital ring homomorphism f : R → S, there exists a unique ring homomorphism f̃ : R[x] → S such
that f̃ ◦ ι= f and f̃ (x) = u.

R (S,u)

(R[x], x)

f

ι
∃! f̃

Moreover, any ring satisfying the universal property is uniquely determined up to ring isomorphism.

The homomorphism f̃ is called the evalution homomorphism and is sometimes denoted by evu .

Remark. In proving that the set-theoretic definition implies the universal property the only interesting part is the uniqueness. We
consider a category C1 whose objects are 3-tuples ( f ,S,u) where f , S and u are defined as above. A morphism in C

( f ,S,u) (g ,T, w)
ϕ

is a unital ring homomorphism ϕ : S → T such that ϕ◦ f = g and ϕ(u) = w . It is not hard to show that ϕ is an isomorphism between
objects ( f ,S,u) and (g ,T, w) if and only if ϕ : S → T is a ring isomorphism. Finally, one shall prove that (ι,R[x], x) is an initial object
of C so that R[x] is unique up to ring isomorphism.

Proposition 1.4.5

Suppose that R and S are CRI and R ⊆ S. For u ∈ S, there exists an ideal I ER[x] such that R[u] ∼= R[x]/I and that I ∩R = {0}.

Proof. Apply First Isomorphism Theorem 1.2.9 to the evalution homomorphism. We have kerevu = I and imevu = R[u]. I ∩R = {0}
because it is the kernel of the embedding ι.

Proposition 1.4.6

Suppose that R is a CRI and I is an ideal of R. Then I [x] := I +〈x〉 is an ideal of R[x]. We have R[x]/I [x] ∼= (R/I )[x]. In particular,
if I ER is prime, then I [x]ER[x] is also prime.

Proof. Consider the composite ring homomorphism: R R/I (R/I )[x]π ι

By universal property of R[x], ι◦π induces a ring homomorphism ϕ : R[x] → (R/I )[x] such that ϕ(r ) = r = r + I and ϕ(x) = x.
It is not hard to verify that ϕ is surjective and kerϕ= I [x]. By First Isomorphism Theorem 1.2.9, R[x]/I [x] ∼= (R/I )[x].

If I E R is prime, then by Proposition 1.3.3 R/I is an integral domain. By Proposition 1.4.9, (R/I )[x] ∼= R[x]/I [x] is also an
integral domain. By Proposition 1.3.3, I [x]ER[x] is prime.

Remark. The universal property of single-variable polynomial rings can be easily generalised to polynomial rings with arbitrarily
many indeterminates.

Definition 1.4.7. Polynomial Rings with arbitrarily many Indeterminates

Suppose that R is a CRI and X is a set. The polynomial ring of X on R is the ring R[X ] with the ring monomorphism ιR : R ,→
R[X ] and injective map ιX : X ,→ R[X ] satisfying the following universal property:

For any CRI S, map f : X → S, and unital ring homomorphism g : R → S, there exists a unique ring homomorphismϕ : R[X ] → S
such that ϕ◦ ιX = f and ϕ◦ ιR = g .

X R[X ] R

S

ιX

f
∃! ϕ

ιR

g

1This is an example of what is called comma category.
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Remark. Notice that ιX and f are maps between sets, whereas ιR and g are ring homomorphisms.

Remark. If X is a finite set (e.g. |X | = n), it is common to denote R[X ] by R[x1, ..., xn]. The traditional way to define R[x1, .., xn] is as
follows. First we define R[x1]. Next, R[x1, x2] is defined by R[x1][x2], the (single-variable) polynomial ring on R[x1]. Inductively we
can define R[x1, .., xn]. The polynomial ring on countably many indeterminates

R[x1, x2, ...] = ⋃
n∈N

R[x1, ..., xn]

If we wish to define the polynomial ring with uncountably many indeterminates, however, using universal property might be the
best way.

Remark. The results in Proposition 1.4.5 and 1.4.6 can be easily generalised to polynomial rings of several indeterminates by in-
duction.

1.4.2 Zero-Divisors and Units in Polynomial Rings
Lemma 1.4.8. Zero-Divisors in R[x]

f ∈ R[x] is a zero-divisor if and only if there exists a ∈ R \ {0} such that a f = 0.

Proof. "⇐=": Trivial.

"=⇒": Suppose that g ∈ R[x]\{0} is the polynomial of minimal degree such that f g = 0. Let f (x) =
n∑

i=0
ai xi and g (x) =

m∑
i=0

bi xi .

Assume that there is a smallest integer k such that ak g 6= 0. Then f (x)g (x) =
(

k∑
i=0

ai xi

)(
m∑

i=0
bi xi

)
= 0. In particular ak bm = 0.

We have deg(ak g ) < deg g and f · ak g = 0, contradicting the minimality of the degree of g . Hence a0g = ·· · = an g = 0 =⇒
a0bm = ·· · = anbm = 0 =⇒ bm f = 0. By minimality of deg g , we must have deg g = 0 and the result follows.

Proposition 1.4.9. R Integral Domain ⇐⇒ R[x] Integral Domain

R is an integral domain if and only if R[x] is an integral domain.

Proof. "⇐=": It follows from that R is a subring of R[x].

"=⇒": Suppose that R is an integral domain and f ∈ R[x] is a zero-divisor. By Lemma 1.4.8 there exists a ∈ R \ {0} such that
a f = 0. If b is the leading coefficient of f , then ab = 0 and hence b = 0. It follows that f = 0, which is a contradiction. Hence
R[x] has no zero-divisors.

Lemma 1.4.10. Nilpotents and Units

Suppose that R is a CRI. If r ∈ R is nilpotent, then 1+ r is a unit.

Proof. If r is nilpotent, then so is s =−r . Suppose that n ∈N is the least integer such that sn = 0. Then

1 = 1− sn = (1− s)(1+ s +·· ·+ sn−1)

Hence 1+ r = 1− s is a unit.

Proposition 1.4.11. Units in R[x]

For f (x) = a0 +a1x +·· ·+an xn ∈ R[x], f ∈ R[x] is a unit if and only if a0 ∈ R is a unit and a1, ..., an ∈ R are nilpotent.

Proof. "⇐=" Suppose a0 is a unit and a1, ..., an are nilpotent. Then a1x, ..., an xn are all nilpotent elements in R[x]. Then f is the sum
of a unit a0 and a nilpotent polynomial. By Lemma 1.4.10 f is a unit in R[x].

"=⇒" Suppose g (x) = b0+b1x+·· ·+bm xm is the inverse of f . For simplicity, we put ai = b j = 0 for i ∉ {0, ..,n} and j ∉ {0, ...,m}.
We have:

1 = (a0 +·· ·+an xn)(b0 +·· ·+bm xm) = a0b0 + (a0b1 +a1b0)x +·· ·+
n+m∑
i=0

ai bn+m−i xn+m

Comparing the coefficients we obtain:

a0b0 = 1; a0b1 +a1b0 = 0; · · ·
n+m∑
i=0

ai bn+m−i = 0
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The first equality implies that a0 is a unit.

We shall prove by induction on r that ar+1
n bm−r = 0. For r = 0, anbm is the coefficient of xn+m and is equal to 0. Suppose the

relation holds for all r < r0. Then for r = r0, the coefficient of xn+m−r is given by anbm−r + an−1bm−r+1 + ·· ·+ an−r bm . We
have:

ar+1
n bm−r =−ar

n(an−1bm−r+1 +·· ·+an−r bm) =−(an−1 ·ar
nbm−r+1 +·· ·+an−r ar−1

n ·anbm) = 0

If an is not nilpotent, then ar+1
n 6= 0 for all r ∈N. Then b0 = ·· · = bm = 0 and g = 0, contradicting that g is the inverse of a unit

in R[x]. Hence an is nilpotent. In particular am+1
n = 0. Hence −an xn ∈ R[x] is also nilpotent. By Lemma 1.4.10,

f (x)−an xn = a0 +a1x +·· ·+an−1xn−1

is a unit. Following the same argument we can deduce that an−1 is nilpotent. Recursively, a1, ..., an are all nilpotent elements.

Proposition 1.4.12. Units in R[[x]]

For f (x) ∈
∞∑

n=0
an xn ∈ R[[x]], f ∈ R[[x]] is a unit if and only if a0 ∈ R is a unit.

Proof. "=⇒" Take g =
∞∑

n=0
bn xn such that f g = 1. Then we have a0b0 = 1. Hence a0 is a unit.

"⇐=" We wish to construct g =
∞∑

n=0
bn xn such that f g = 1. By comparing the coefficients, we must have:

a0b0 = 1; a0b1 +a1b0 = 0; · · ·
n∑

i=0
ai bn−i = 0 (∀n ∈Z+)

The first equality suggests that b0 = a−1
0 6= 0 because a0 is a unit. Therefore we can solve each bn successively by multiplying

b0 in every equations. Explicitly, suppose that we have solved b0, ...,bn . Then bn+1 is given by:

bn+1 =−b0

(
n∑

i=0
ai+1bn−i

)

Hence there exists g ∈ R[[x]] such that f g = 1. f is a unit in R[[x]].

Corollary 1.4.13. Jacobson Radical of R[[x]]

For f (x) ∈
∞∑

n=0
an xn ∈ R[[x]], f ∈ J (R[[x]]) if and only if a0 ∈ J (R).

Proof. It follows immediately from Proposition 1.4.12 and 1.3.23:

a0 ∈ J (R) ⇐⇒∀b0 ∈ R : 1−a0b0 is a unit

⇐⇒∀g =
∞∑

n=0
bn xn ∈ R[[x]] : 1− f g is a unit

⇐⇒ f ∈ J (R[[x]])

Corollary 1.4.14. F [[x]] as a Local Ring

Suppose that F is a field. Then F [[x]] has the unique maximal ideal 〈x〉.

Proof. Suppose that I is a proper ideal of F [[x]]. For f ∈ I , f is not a unit. Since F is field, the constant coefficient a0 of f is zero by
Proposition 1.4.12. Hence f ∈ 〈x〉 and I ⊆ 〈x〉. Therefore 〈x〉 is the unique maximal ideal.

Remark. If a ring R has a unique maximal ideal M , then the Jacobson radical J (R) = M . We say that R is a local ring. The field R/M
is called the residue field of R.
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1.5 Rings and Fields of Fractions

Throughout this section, we shall only consider commutative rings with identity.

1.5.1 Field of Fractions

Definition 1.5.1. Fields of Fractions, Set-Theoretic Definition

Suppose that R is an integral domain. We define an equivalence relation on R ×R× by

(r1, s1) ∼ (r2, s2) ⇐⇒ r1s2 = r2s1

The equivalence class of (r, s) in (R ×R×)/ ∼ is denoted by r /s. We define a ring structure on F (R) := (R ×R×)/ ∼ by

r1

s1
+ r2

s2
:= r1s2 + r2s1

s1s2

r1

s1
· r2

s2
:= r1r2

s1s2

It is not hard to verify (though requires many details) that:

1. The operations are well-defined;

2. F (R) forms a field with 0F (R) = 0R /1R and 1F (R) = 1R /1R ;

3. r 7→ r /1R is an embedding of R into F (R).

Proposition 1.5.2. Fields of Fractions, Universal Property

Suppose that R is an integral domain. The field of fractions of R is the field F (R) with the ring monomorphism ι : R ,→ F (R)
satisfying the following universal property:

For any field K and ring monomorphism f : R ,→ K , there exists a unique field monomorphism f̃ : F (R) ,→ K such that f = f̃ ◦ ι.

R K

F (R)

f

ι
∃! f̃

F is unique up to field isomorphism.

In other words, F (R) is the smallest field that contains R.

Remark. Consider the category CR whose objects are pairs ( f ,K ) where f and K are defined as above. A morphism in CR

( f ,K ) (g ,L)
ϕ

is a field homomorphism ϕ : K → L such that g =ϕ◦ f . Then (ι,F (R)) is an initial object in CR .

Example 1.5.3. Examples of Fields of Fractions

1. The field of fractions of Z isQ;

2. If F is a field, then the field of fractions of F [x] is F (x), which is the set of all rational functions on F .

3. The field of fractions of Z[x] isQ(x).

1.5.2 Rings of Fractions

Next we shall generalise the construction above to a broader class of objects, rings of fractions.

Definition 1.5.4. Multiplicative Subsets

Suppose that R is a CRI and S ⊆ R. S is called a multiplicative subset of R, if 1 ∈ S and a,b ∈ S =⇒ ab ∈ S.
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Proposition 1.5.5. Multiplicative Subsets and Prime Ideals

Suppose that I is a proper ideal of R. I is a prime ideal if and only if R \ I is a multiplicative subset.

Proof. Trivial by definition.

Definition 1.5.6. Rings of Fractions, Set-Theoretic Definition

Suppose that R is a CRI and S ⊆ R is a multiplicative subset. We define an equivalence relation on R ×S by

(r1, s1) ∼ (r2, s2) ⇐⇒ ∃ s ∈ S : s(r1s2 − r2s1) = 0

The equivalence class of (r, s) in (R ×S)/ ∼ is denoted by r /s. We define a ring structure on S−1R := (R ×S)/ ∼ by

r1

s1
+ r2

s2
:= r1s2 + r2s1

s1s2

r1

s1
· r2

s2
:= r1r2

s1s2

By essentially the same argument we can verify that:

1. The operations are well-defined;

2. S−1R forms a CRI with 0S−1R = 0R /1R and 1S−1R = 1R /1R ;

3. ϕS : R → S−1R given by ϕS (r ) = r /1R is a ring homomorphism but is not injective in general.

Remark. Notice that if 0 ∈ S, then S−1R is the trivial ring because R ×S has only one equivalence class.

Remark. If R is an integral domain and 0 ∉ S, then S−1R is also an integral domain, and ϕS : r 7→ r /1R is injective. In particular, if
S = R×, then the ring of fractions S−1R coincides with the field of fractions F (R).

Proposition 1.5.7. Properties ofϕS

Suppose that R is a CRI and S−1R is a ring of fractions of R. ϕS : R → S−1R is given by ϕS (r ) = r /1R . Then:

1. ϕS (s) is a unit in S−1R for s ∈ S;

2. kerϕS = {r ∈ R : ∃ s ∈ S (r s = 0)};

3. Every element of S−1R is of the form ϕS (r )ϕS (s)−1 for some r ∈ R and s ∈ S.

Proof. 1. ϕS (s) = s/1R has an inverse 1R /s in S−1R;

2. Trivial by definition;

3. r /s = r /1R · (s/1R )−1 =ϕS (r )ϕS (s)−1.

Remark. These properties of ϕS : R → S−1R motivates us to consider the universal property of rings of fractions.

Proposition 1.5.8. Rings of Fractions, Universal Property

Suppose that R is a CRI and S ⊆ R is a multiplicative subset. The ring of fractions of R with respect to S is the ring S−1R with a
ring homomorphism ϕS : R → S−1R satisfying the following universal property:

For any CRI T and ring homomorphism f : R → T such that f (s) is a unit in T for all s ∈ S, there exists a unique ring homomor-
phism f̃ : S−1R → T such that f = f̃ ◦ϕS .

R T

S−1R

f

ϕS
∃! f̃

S−1R is unique up to ring isomorphism.

Remark. Suppose that S−1R is given by the set-theoretic definition. The only choice of f̃ is given by f̃ (r /s) = f (r ) f (s)−1. The details
are left to readers. We should be already familiar in the techinques of proving the uniqueness. Consider a category CR,S , whose
objects are ( f ,T ), where f and T are defined as above. A morphism in CR,S
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( f ,T ) (g ,U )
ψ

is a ring homomorphism ψ : T →U such that g =ψ◦ f . Then (ϕS ,S−1R) is an initial object in CR,S .

Proposition 1.5.9. Ring of Fractions as a Quotient of Polynomial Ring

Suppose that R is a CRI and S ⊆ R is a multiplicative subset. We consider a copy of S as indeterminates: XS := {xs : s ∈ S}. Then
we have a ring isomorphism:

S−1R ∼= R[XS ]

〈{sxs −1R : s ∈ S}〉

Proof. Let P = 〈{sxs −1R : s ∈ S}〉. It suffices to check that R[XS ]/P satisfies the universal property of S−1R. For a CRI T and a
ring homomorphism f : R → T such that f (s) is a unit in T for any s ∈ S. We consider the following diagram, which is a
combination of the diagrams in 1.2.7, 1.4.7, and 1.5.8:

R[XS ]

S R[XS ]/P R

T

π

ϕ

ιRιS

g

ψ

σ

f

In the diagram, ιR is the embedding of R into R[XS ]; ιS : S ,→ R[XS ] is given by ιS (s) = xs ; π : R[XS ]�R[XS ]/P is the canonical
projection; σ :=π◦ ιR .

Since f (s) is a unit in T for each s ∈ S, there exists as ∈ S such that as f (s) = 1. g : S → T is given by g (s) = as .

By universal property of R[XS ], there exists a unique ring homomorphismϕ : R[XS ] → T such that the diagram commutes. In
particular, ϕ(xs ) =ϕ◦ ιS (s) = g (s) = as and ϕ(s) = f (s). We have ϕ(sxs −1) = as f (s)−1 = 0 for any s ∈ S. Hence sxs −1 ∈ kerϕ
for any s ∈ S. Then P ⊆ kerϕ. By universal property of R[XS ]/P , there exists a unique ring homomorphism ψ : R[XS ]/P → T
such that the diagram commutes. As f =ψ◦σ, we have shown that R[XS ]/P satisfies the universal property of S−1R.

1.5.3 Ideal Extensions and Localisations

Definition / Proposition 1.5.10. Ideal Extension ofϕS

Suppose that R is a CRI and S−1R is a ring of fractions of R. ϕS : R → S−1R is given by ϕS (r ) = r /1R . S−1I = {a/s ∈ S−1R : a ∈
I , s ∈ S} is an ideal in S−1R. It is the extension of I under the homomorphism ϕS .

Remark. It is not true general that r /s ∈ S−1I implies that r ∈ I . It could be the case that r /s = r ′/s′, where r ′ ∈ I and r ∉ I .

Proposition 1.5.11. Properties of Ideal Extension ofϕS

1. Every ideal in S−1R is an extended ideal;

2. S−1I1 +S−1I2 = S−1(I1 + I2);

3. (S−1I1)(S−1I2) = S−1I1I2;

4. S−1I1 ∩S−1I2 = S−1(I1 ∩ I2);

5.
p

S−1I = S−1
p

I .

Proof. 1. Suppose that J E S−1R. For r /s ∈ J , r /1 = r /s · s/1 ∈ J . Hence r = ϕ−1
S (r /1) ∈ J c and r /s = 1/s ·ϕS (r ) ∈ J ce . Therefore

J ce = J and J is an extended ideal.

2&3. These are general properties of any ideal extensions (see Proposition 1.2.16).

4. It suffices to prove that S−1I1 ∩S−1I2 ⊆ S−1(I1 ∩ I2). Suppose that r1 ∈ I1, r2 ∈ I2, and s1, s2 ∈ S such that r1/s1 = r2/s2.
Then there exists s ∈ S such that s(r1s2−r2s1) = 0. Then sr1s2 = sr2s1 ∈ I1∩ I2. We have r1/s1 = sr1s2/ss1s2 ∈ S−1(I1∩ I2).

5. It suffices to prove that
p

S−1I ⊆ S−1
p

I . For r /s ∈
p

S−1I , there exists n ∈ N, r1 ∈ I and s1 ∈ S such that r n/sn = r1/s1.
Then s0(r n s1 − snr1) = 0 for some s0 ∈ S. Then r n s0s1 = r1s0sn ∈ I . Hence r s0s1 ∈

p
I and r /s = r s0s1/ss0s1 ∈ S−1

p
I .
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Lemma 1.5.12

Suppose that S ⊆ R is a multiplicative subset and I ER. Then S−1I = S−1R if and only if S ∩ I 6=∅.

Proof. ∃ s ∈ S ∩ I ⇐⇒ 1S−1R = s/s ∈ S−1I ⇐⇒ S−1R = S−1I

Proposition 1.5.13. Prime Ideals of S−1R

Suppose that P is a prime ideal of R such that P ∩S =∅. Then S−1P is a prime ideal of S−1R. In particular, the operation S−1

induces a bijection from {P ∈ SpecR : P ∩S =∅} to SpecS−1R.

Proof. Suppose that P ∈ SpecR such that P∩S =∅. Then by Lemma 1.5.12 S−1P is a proper ideal of S−1R. Suppose that r1/s1 ·r2/s2 ∈
S−1P . Then r1r2/s1s2 = a/s for some a ∈ P and s ∈ S. There exists s0 ∈ S such that ss0r1r2 = s0s1s2a ∈ P . Since ss0 ∈ S and
S ∩P =∅, we have r1r2 ∈ P . Since P is prime, either r1 ∈ P or r2 ∈ P . Hence either r1/s1 ∈ S−1P or r2/s2 ∈ S−1P . Hence S−1P
is a prime ideal.

On the other hand, suppose that S−1P ∈ Spec(S−1R). By Proposition 1.5.11, it is an extension of some ideal. As the operation
S−1 is injective, there is a unique prime ideal P ER such that P extends to S−1P .

Remark. Recall that R \ P is a multiplicative subset for P ∈ SpecR. This motivates us to define a ring of fractions that has a unique
maximal ideal.

Definition 1.5.14. Localisation on a Prime Ideal

Suppose that R is a CRI and P ER is a prime ideal. As R \ P is a muliplcative subset, the ring of fraction (R \ P )−1R is called the
localisation of R on P and is denoted by RP .

Remark. By Proposition 1.5.13, we observe that P extends to the unique maximal ideal in RP . That is, RP is a local ring (see the
remark after Corollary 1.4.14). We have a bijective correspondence between {Q ∈ SpecR : Q ⊆ P } and SpecRP .

Example 1.5.15. Localisation ofZ

Suppose that p ∈ Z is a prime integer. Then the localisation of Z on
〈

p
〉

, Z〈p〉, is the set of rational numbers m/n such that
gcd(n, p) = 1. The Jacobson radical J (Z〈p〉) = pZ〈p〉.

Definition 1.5.16. Localisation on an Element

Suppose that R is a CRI. For f ∈ R \ {0}, consider the multiplicatively closed set S := { f n : n ∈N}. the ring of fraction (S)−1R is
called the localisation of R at f and is denoted by R f .

Remark. We shall see that the construction of rings of fractions extend naturally to modules. We will discuss the localisation of
modules and local properties in Section 6.2.
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Factorisation in Integral Domains

The inclusion relation of the classes of rings can be summarized as below:

Fields ED PID UFD Factorisation Domains Integral Domains CRI

2.1 Unique Factorisation Domains

2.1.1 Divisibility and Factorisation

Definition 2.1.1. Divisibility

Suppose that R is a CRI and a,b ∈ R \ {0}.

We say that a divides b, or a | b, if there exists x ∈ R such that ax = b, or equivalently, 〈b〉 ⊆ 〈a〉.
We say that a and b are associates, or a ∼ b, if a | b and b | a, or equivalently, 〈a〉 = 〈b〉.

Lemma 2.1.2

Suppose that R is an integral domain and a,b ∈ R \ {0}, then a ∼ b if and only if there exists a unit u ∈ R such that au = b.

Proof. The backward direction is trivial. The forward direction follows from the cancellation law of integral domains.

Definition 2.1.3. Prime Elements, Irreducible Elements

Suppose that R is a CRI and a ∈ R \ {0} is a non-unit.

a is called a prime element, if ∀ x, y ∈ R : a | x y =⇒ a | x ∨ a | y ;

a is called an irreducible element, if ∀ x, y ∈ R : a = x y =⇒ x ∈ R× ∨ y ∈ R×.

Remark. As the name suggests, a ∈ R is a prime element if and only if 〈a〉 is a non-zero prime ideal of R.

Remark. For the irreducible elements, we have the following observation:

a ∈ R is irreducible ⇐⇒ a = x y =⇒ a ∼ x ∨ a ∼ y

⇐⇒ 〈a〉 ⊆ 〈b〉 =⇒ 〈a〉 = 〈b〉 ∨ 〈b〉 = R

⇐⇒ 〈a〉 is maximal among proper principal ideals

Remark. In Z prime elements and irreducible elements coincide. This is not true for general integral domains. Being a prime
element turns out to be a stronger condition.

Proposition 2.1.4. Integral Domain: Prime =⇒ Irreducible

Suppose that R is an integral domain. If a ∈ R is a prime element, then it is irreducible.

Proof. For x, y ∈ R such that a = x y , since a is prime, we have a = x y =⇒ a | x y =⇒ a | x ∨ a | y . But also a = x y =⇒ x | a ∧ y | a.
Hence we have a ∼ x or a ∼ y . Since R is an integral domain, by Lemma 2.1.2 x ∈ R× or y ∈ R×. Hence a is irreducible.

2.1.2 Factorisation in UFD and PID

24
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Definition 2.1.5. Factorisation Domains, Unique Factorisation Domains

Suppose that R is an integral domain. R is called a factorisation domain, if for any non-zero non-unit a ∈ R, there exists
irreducibles q1, ..., qn ∈ R such that a = q1 · · ·qn .

We say that the factorisation of a ∈ R is unique, if for any two factorisations of a:

a = q1 · · ·qn = p1 · · ·pm

we must have n = m and qi ∼ pi after some permutation of the irreducibles.

A factorisation domain R is called a unique factorisation domain (abbreviated UFD), if every non-zero non-unit of R has a
unique factorisation into irreducibles.

Remark. Suppose that R is a UFD and a,b ∈ R are non-zero non-unit. Then a ∼ b if and only if a and b have the same factorisation
(up to permutation of irreducibles).

The set of irreducible factors (counting multiplicities) of ab is the union of the set of the irreducible factors (counting multiplicities)
of a and b.

Working in UFD has the advantage of reducing ring-theoretic statements to set-theoretic statements about the irreducible factors.

Proposition 2.1.6. Ascending Chain Condition for Principal Ideals (ACCP) =⇒ Factorisation Domain

Suppose that R is an integral domain. R is a factorisation domain if and only if it satisfies the ascending chain condition for
principal ideals, that is, for any ascending chain of principal ideals in R:

〈r1〉 ⊆ 〈r2〉 ⊆ 〈r3〉 ⊆ · · ·

there exists n ∈N such that 〈rn〉 = 〈rn+1〉 = · · · (the chain "stablises").

Proof. Suppose that R is not a factorisation domain. There exists r ∈ R which cannot be factorized into finitely many irreducibles.
In particular, r is not irreducible. Then there exists r1, s1 ∈ R such that r = r1s1 and 〈r 〉 ( 〈r1〉, 〈r 〉 ( 〈s1〉. Without loss of
generality we may assume that r1 cannot be factorized into irreducibles. Inductively we can construct an strictly ascending
chain of principal ideals:

〈r 〉( 〈r1〉( 〈r2〉( · · ·

Hence R does not satisfy ACCP.

Remark. We shall see that the ascending chain condition (on all ideals) is equivalent to the condition that all ideals are finitely
generated, which is the definition of a Noetherian ring. The ACC and DCC will be further discussed in Section 6.1.

Lemma 2.1.7. UFD: Prime ⇐⇒ Irreducible

Suppose that R is a unique factorisation domain. a ∈ R is a prime element if and only if it is irreducible.

Proof. The forward direction is proven in Proposition 2.1.4. For the backward direction, suppose that a is an irreducible and a | bc.
Since R is a UFD, the irreducible factor of a, which is a itself, is the subset of the union of the irreducible factors of b and c
(counting multiplicities). Then we must have a | b or a | c. Hence a is a prime element.

Theorem 2.1.8. UFD ⇐⇒ ACCP + (Prime = Irreducible)

Suppose that R is an integral domain. Then R is a unique factorisation domain if and only if it satisfies the following conditions:

1. R satisfies the ascending chain condition for principal ideals;

2. every irreducible element in R is prime.

Proof. "=⇒": Suppose that R is a unique factorisation domain. The second statement is proven in Lemma 2.1.7. For an ascending
chain of principal ideals:

〈r 〉 ⊆ 〈r1〉 ⊆ 〈r2〉 ⊆ · · ·
Suppose that r has the unique factorisation r = qα1

1 · · ·qαn
n . Then 〈r 〉 ⊆ 〈r1〉 =⇒ r1 | r , which implies that r1 ∼ qβ1

1 · · ·qβn
n where

0 Éβi Éαi for i ∈ {1, ...,n}. As all αi are finite, the chain will eventually stablise.
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"⇐=": If R has ACCP, then by Proposition 2.1.6 R is a factorisation domain. So it suffices to prove the uniqueness of factori-
sation. For r ∈ R, suppose that it has two factorisations into irreducibles:

r = q1 · · ·qn = p1 · · ·pm

We have p1 · · ·pm ∈ 〈
q1

〉
. By hypothesis

〈
q1

〉
is prime. Then we must have pi ∈

〈
q1

〉
for some i ∈ I . After possible permuta-

tions we may assume that p1 ∈
〈

q1
〉

. Since p1 is irreducible, we must have
〈

p1
〉= 〈

q1
〉

or p1 ∼ q1. Then q2 · · ·qn ∼ p2 · · ·pm .
We can repeat this process. If n 6= m then after some steps we will have 1 ∼ a where a is a product of irreducibles, which is
impossible. Hence n = m and qi ∼ pi for all i ∈ {1, ...,n} after possible permutations. We conclude that R is a UFD.

Definition 2.1.9. Greatest Common Divisors, Least Common Multiples

Suppose that R is an integral domain and a,b ∈ R.

l ∈ R is called a least common multiple (abbreviated lcm) of a and b, if 〈l〉 = 〈x〉∩〈
y
〉

. Equivalently, l ∈ R is a lcm of a and b, if
a | l , b | l , and any m ∈ R with a | m and b | m has l | m.

g ∈ R is called a greatest common divisor (abbreviated gcd) of a and b, if
〈

g
〉=⋂

{〈d〉 : 〈a,b〉 ⊆ 〈d〉}. Equivalently, g ∈ R is a gcd
of a and b, if g | a, g | b, and any d ∈ R with d | a and d | b has d | g .

Remark. In general, neither exixtence nor uniqueness of the gcd and lcm is assured. We may write g ∈ gcd(a,b) when g is a gcd of
a and b. This notation is not standard.

Proposition 2.1.10. UFD =⇒ Existence & Uniqueness of GCD

Suppose that R is a unique factorisation domain. For any a,b ∈ R \ {0}, gcd(a,b) is unique (up to associates).

Proof. Suppose that q1, ..., qn ∈ R are irreducibles such that a ∼ qα1
1 · · ·qαn

n and b ∼ qβ1
1 · · ·qβn

n where qi 6∼ q j for i 6= j and αi ,βi Ê 0.

One may verify that g = qmin(α1,β1)
1 · · ·qmin(αn ,βn )

n is the unique gcd of a and b.

Theorem 2.1.11. PID =⇒ UFD

Suppose that R is a principal ideal domain. Then R is a unique factorisation domain.

Proof. We shall make use of Theorem 2.1.8. To prove that R satisfies ACCP, consider an ascending chain of princiapl ideals:

〈r1〉 ⊆ 〈r2〉 ⊆ 〈r3〉 ⊆ · · ·

Then
∞⋃

n=1
〈rn〉 is an ideal and an upper bound of this chain. Since R is a PID, 〈r0〉 =

∞⋃
n=1

〈rn〉 for some r0 ∈ R. Then there exists

N ∈N such that r0 ∈ 〈rN 〉. But also rN ∈ 〈r0〉. As a result we have 〈r0〉 = 〈rN 〉 = 〈rN+1〉 = · · · . The chain stablises.

Suppose that r ∈ R is irreducible. Then 〈r 〉 is maximal among proper principal ideals in R. But R is a PID, so 〈r 〉 is a maximal
ideal. In particular, 〈r 〉 is a non-zero prime ideal and hence r is a prime element.

Corollary 2.1.12. Irreducibles in PID

Suppose that R is a PID. For r ∈ R, the following statements are equivalent:

1. r is a prime element;

2. r is an irreducible element;

3. 〈r 〉 is a non-zero prime ideal;

4. 〈r 〉 is a non-zero maximal ideal.

Example 2.1.13.Z is a UFD

Z is a UFD. This is known as the fundamental theorem of arithmetics.
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Example 2.1.14. A UFD that is not a PID

Z[x] is not a principal ideal domain, because the ideal 〈2, x〉EZ[x] is not principal. But Z[x] is a unique factorisation domain.
We shall prove this fact in Theorem 2.3.19.

Example 2.1.15. An integral domain that is not a UFD

Z[
p−5] := {a +b

p−5 : a,b ∈Z} is an integral domain as a subring of C. It is not a UFD because

6 = 2 ·3 = (1+p−5)(1−p−5) ∈Z[
p−5],

where 2, 3, 1+p−5 and 1−p−5 are all irreducibles but no two of them are associates.

2.2 Euclidean Domains

We know from elementary algebra that we can perform Euclidean algorithm in Z and R[x]. We shall generalise this to a broader
class of rings, namely the Euclidean domains.

Definition 2.2.1. Euclidean Valuation, Euclidean Domains

Suppose that R is an integral domain. A Euclidean valuation is a map v : R \{0} →N satisfying that, for all a ∈ R,b ∈ R \{0} there
exists q,r ∈ R such that a = qb + r with either r = 0 or v(r ) < v(b).

An integral domain is called a Euclidean Domain (abbreviated ED) if it admits a Euclidean valuation.

Example 2.2.2. Euclidean Domains

1. Z is a Euclidean domain with valuation v(n) = |n|.
2. R[x] is a Euclidean domain with valuation v( f ) = deg f .

3. The Gaussian integers Z[i] := {a +bi : a,b ∈Z} is a Euclidean domain with valuation v(a,b) = a2 +b2.

Theorem 2.2.3. ED =⇒ PID

Suppose that R is a Euclidean domain. Then R is a principal ideal domain.

Proof. Let I be a non-zero ideal of R. We choose a ∈ I such that v(a) = min{v(x) : x ∈ I \ {0}}. For b ∈ I , there exists q,r ∈ I such
that b = qa + r with either r = 0 or v(r ) < v(a). As a,b ∈ I , r = b −qa ∈ I . We must have r = 0 by minimality of v(a). Hence
b = qa ∈ 〈a〉. We have I = 〈a〉. R is a principal ideal domain.

Theorem 2.2.4. Euclidean Algorithm

Suppose that R is a Euclidean domain. Let a1, a2 ∈ R\{0} such that v(a1) Ê v(a2). The Euclidean algorithm uniquely determines
the sequences qi and ai of integers:

a1 = q1a2 +a3 v(a3) < v(a2)

a2 = q1a3 +a4 v(a4) < v(a3)

a3 = q1a4 +a5 v(a5) < v(a4)

· · ·

The algorithm terminates at ak = 0 for some k. Then ak−1 = gcd(a1, a2).

Proof. The termination of the algorithm is clear as {v(ai )} is a strictly decreasing sequence which is bounded below. Tp prove that
ak−1 = gcd(a1, a2), first we can use reverse induction to prove that ak−1 divides ai for all i . Second, suppose that m ∈ R such
that m | a1 and m | a2. Then clearly m | a3 = a1 −q1a2. Inductively m | ai for all i and m | ak−1.
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Corollary 2.2.5. Bézout’s Lemma

Suppose that R is a Euclidean domain. For a,b ∈ R \ {0} with a greatest common divisor g , there exists u, v ∈ R such that
au +bv = g .

Proof. We use reverse induction. Without loss of generality we assume that v(a) Ê v(b). We set a1 = a and a2 = b. By Euclidean
algorithm we can obtain a sequence a1, a2, ..., ak where ak = 0 and ak−1 = g and the corresponding sequence q1, ..., qk−1. We
shall prove that for i ∈ {1, ..,k} there exists ui , vi ∈ R such that ai ui +ai+1vi = g .

Base case: We set uk−2 = 0 and vk−2 = 1 so that ak−2uk−2 +ak−1vk−2 = ak−1 − g .

Induction case: Suppose the result holds for all i > n. Then for i = n:

g = an+1un+1 +an+2vn+1 = an+1un+1 + (an −qn+1an+1)vn+1 = an vn+1 +an+1(un+1 −qn+1vn+1)

We complete the induction by setting un = vn+1 and vn = un+1 −qn+1vn+1.

Remark. Although we prove Bézout’s Lemma in Euclidean domains, it holds in any PID (unsurprisingly the proof is even simplier).

Definition 2.2.6. Dedekind-Hasse Valuation

Suppose that R is an integral domain. A Dedekind-Hasse valuation is a map v : R \{0} →N satisfying that, for all a,b ∈ R, either
b | a or there exists r ∈ 〈a,b〉 such that v(r ) < v(b).

Remark. The latter condition of Dedekind-Hasse valuation requires that ∃q, s ∈ R : as = bq + r, v(r ) < v(b). Therefore we see that
a Dedekind-Hasse valuation is a generalisation of a Euclidean valuation.

Theorem 2.2.7. PID ⇐⇒ Dedekind-Hasse Domain

Suppose that R is an integral domain. R is a principal ideal domain if and only if it admits a Dedekind-Hasse valuation.

Proof. "=⇒": For a non-zero non-unit r ∈ R, let v(r ) be the number of irreducible factors (counting multiplicities). For a unit r ∈ R,
we define v(r ) = 0. v : R \ {0} → N is well-defined as R is a UFD. We shall verify that v is a Dedeking-Hasse valuation. For
a,b ∈ R \ {0}, if b 6 | a, then 〈b〉( 〈a,b〉. Since R is a PID, there exists r ∈ R such that 〈r 〉 = 〈a,b〉. Then r | b and r 6∼ b. We have
v(r ) < v(b).

"⇐=": Just repeat the proof of Theorem 2.2.3 verbatim.

Example 2.2.8. PID that are not ED

1. The most classical example is the ring of algebraic integers Z

[
1+p−19

2

]
. It is a principal ideal domain but not a Eu-

clidean domain.

2. Another example given in [Sanders] is the ring
R[x, y]〈

x2 + y2 +1
〉 . Interested readers may find the detailed proof in the re-

ferred notes.

2.3 Factorisation of Polynomials

2.3.1 Divison and Roots of Polynomials
Proposition 2.3.1. Divison Algorithm

Suppose that R is a CRI. f , g ∈ R[x] are non-zero polynomials and the leading coefficient of g is a unit in R. Then there exists
unique q,r ∈ R[x] such that f = qg + r and degr < deg g .

Proof. Existence: If deg g > deg f , then we can set q = 0 and r = f . Now we assume that deg g É deg f . We use induction on deg f .

Suppose that f (x) =
n∑

i=0
ai xi and g (x) =

m∑
i=0

bi xi . Base case: If deg f = deg g = 0, then f = a0, g = b0. We can set q = a0b−1
0 and

r = 0.

Induction case: Suppose that the result holds for deg f < n. Suppose that deg f = n. Notice that h(x) := anb−1
m xn−m g (x) is a

polynomial of degree n and leading coefficient an . Then f −h is a polynomial of degree less than n. By induction hypothesis,
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there exists q ′,r ∈ R[x] such that f −h = q ′g + r and degr < deg g . Hence

f (x) = h(x)+q ′(x)g (x)+ r (x) = (
anb−1

m xn−m +q ′(x)
)

g (x)+ r (x) = q(x)g (x)+ r (x)

where q(x) = q ′(x)+anb−1
m xn−m .

Uniqueness: Suppose that f = q1g + r1 = q2g + r2 and degr1 < deg g , degr2 < deg g . Then

(q1 −q2)g = r1 − r2

Suppose that r1 6= r2. As the leading coefficient of g is a unit, we have:

max{degr1,degr2} Ê deg(r1 − r2) = deg(q1 −q2)g = deg(q1 −q2)+deg g

Ê deg g > max{degr1,degr2}

which is a contraction. Hence r1 = r2 and q1 = q2.

Corollary 2.3.2. F Field =⇒ F [x] ED

If F is a field, then F [x] is a Euclidean domain.

Proof. If F is a field, then the leading coefficient of every non-zero polynomial must be a unit. It follows from Proposition 2.3.1 that
F [x] is a ED with Euclidean valuation v( f ) = deg f .

Proposition 2.3.3. F Field ⇐⇒ F [x] PID

F is a field if and only if F [x] is a principal ideal domain.

Proof. "=⇒": It follows from Corollary 2.3.2 and Theorem 2.2.3.

"⇐=": Suppose that u ∈ F \ {0}. Consider the ideal 〈u, x〉 ⊆ F [x]. As F [x] is a PID, there exists f ∈ F [x] such that 〈u, x〉 = 〈
f
〉

.
Since F is an integral domain, u ∈ 〈

f
〉 =⇒ 0 = degu Ê deg f =⇒ f (x) = v ∈ F . x ∈ 〈v〉 implies that v is a unit in F . Hence

〈u, x〉 = 〈1〉 = F . Therefore u is unit of F and F is a field.

Proposition 2.3.4. Remainder Theorem

Suppose that R is a CRI and f ∈ R[x]. For any c ∈ R, there exists a unique q ∈ R[x] such that f (x) = q(x)(x − c)+ f (c).

Proof. If f = 0 then set q = 0. Suppose that f 6= 0. As x − c ∈ R[x] is monic, by Proposition 2.3.1 there exists q,r ∈ R[x] such that
f (x) = q(x)(x − c)+ r (x) and degr (x) < deg(x − c) = 1. Hence degr = 0 and r ∈ R. Evaluate f at c: f (c) = q(c)(c − c)+ r = r .
Hence we have f (x) = q(x)(x − c)+ f (c) as required.

Remark. Writing f (c) for evc ( f ) might be an abuse of notation, as we are considering f as a polynomial function f : R → R. We
shall prove in Corollary 2.3.8 that polynomials and the functions they represent are not different for infinite integral domains.

Definition 2.3.5. Roots of Polynomials

Suppose that R,S are CRI and R ⊆ S. For f ∈ R[x] and c ∈ S, u is called a root or zero of f on S, if f (c) = 0.

Corollary 2.3.6

Suppose that R is a CRI. For f ∈ R[x], c ∈ R is a root of f if and only if x − c divides f (x).

Proof. Trivial by Remainder Theorem.

Proposition 2.3.7. Maximum Number of Distinct Roots

Suppose that R is an integral domain. Let f ∈ R[x] with deg f = n. Then f has at most n distinct roots in R.
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Proof. Suppose that f has roots c1, ...,cm ∈ R. Then by Corollary 2.3.6, we have g (x) = (x − c1) · · · (x − cm) | f (x). As deg g = m, we
must have m É n = deg f .

Corollary 2.3.8. Polynomials as Functions

Suppose that R is an infinite integral domain. For f , g ∈ R[x], f = g if and only if the evalutions evr ( f ) = evr (g ) (or f (r ) = g (r ))
for all r ∈ R.

Proof. The forward direction is trivial. For the backward direction, f (r ) = g (r ) for all r ∈ R implies that f − g has infinitely many
roots in R. Hence f − g = 0 by Proposition 2.3.7.

Definition 2.3.9. Multiplicity of Roots

Suppose that R is an integral domain. From Corollary 2.3.6 and Proposition 2.3.7 we can infer that, if c ∈ R is a root of f ∈ R[x],
then there exists a unique integer 1 É m É deg f such that f (x) = (x − c)m g (x) and g (c) 6= 0. m is called the multiplicity of the
root c of f . If m = 1, we say that c is a simple root of f . Otherwise we say that c is a multiple root of f .

Definition 2.3.10. Formal Derivatives of Polynomials

Suppose that R is an integral domain and f (x) =
n∑

i=0
ai xi ∈ R[x]. The formal derivative of f is defined to be

f ′(x) =
n∑

i=1
i ai xi−1 ∈ R[x]

Remark. It is not hard to verify that the formal derivatives satisfy the ordinary properties of derivatives (although we do not really
have a differential structure on R). That is, for c ∈ R and f , g ∈ R[x]:

1. (c f )′ = c f ′;

2. ( f + g )′ = f ′+ g ′;

3. ( f g )′ = f ′g + f g ′;

4. ( f n)′ = n f n−1 f ′.

Proposition 2.3.11. Formal Derivatives and Roots

Suppose that R is an integral domain and f ∈ R[x]. Then c ∈ R is a multiple root of f if and only if f (c) = 0 and f ′(c) = 0.

Proof. Suppose that the c is a root of f on R of multiplicity m. Then f (x) = (x − c)m g (x) and g (c) 6= 0. The formal derivative
f ′(x) = m(x − c)m−1g (x)+ (x − c)m g ′(x). f ′(c) = 0 if and only if m > 1.

Corollary 2.3.12

Suppose that R is an integral domain and f ∈ R[x]. f has no multiple roots in R if and only if f and f ′ are coprime.

2.3.2 Factorisation of Polynomials in UFD

Now we begin to discuss the factorisation of polynomials in a UFD. Our ultmate goal is to prove that R[x] is a UFD if R is a
UFD.

Definition 2.3.13. Contents, Primitive Polynomials

Suppose that R is a unique factorisation domain. For f (x) =
n∑

i=0
ai xi ∈ R[x], we define the content of f to be c( f ) := gcd(a0, ..., an).

If c( f ) is a unit in R, we say that f is a primitive polynomial.
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Remark. The definition of contents is inherently ambiguous as it involves gcd. Hence all equality should be interpreted as "asso-
ciates". In fact it is the ideal generated by the content that truly matters. From definition we know that c(a f ) = a c( f ) for a ∈ R. In
particular, for any non-zero f ∈ R[x], f = c( f ) f0 where f0 is primitive.

Lemma 2.3.14

Suppose that R is a unique factorisation domain and f ∈ R[x]. f is not primitive if and only if there exists a prime and pricipal
ideal P ER such that f ∈ P [x].

Proof. For f (x) =
n∑

i=0
ai xi ∈ R[x]:

f is not primitive ⇐⇒ c( f ) = gcd(a0, ..., an) 6∼ 1

⇐⇒ ∃ irreducible q ∈ R : 〈a0, ..., an〉 ⊆
〈

q
〉

⇐⇒ f ∈ 〈
q
〉

R[x]

Since R is a UFD, q is prime and
〈

q
〉

is a prime ideal.

Theorem 2.3.15. Gauss’ Lemma

Suppose that R is a unique factorisation domain and f , g ∈ R[x]. Then c( f g ) = c( f )c(g ). In paricular, the product of primitive
polynomials is primitive.

Proof. Write f = c( f ) f0 and g = c(g )g0. We have c( f g ) = c
(
c( f ) f0 c(g )g0

)= c( f )c(g )c( f0g0). It suffices to prove that f0g0 is primitive.
Suppose that it is not. Then by Lemma 2.3.14 there exists a prime and principal ideal P E R such that f0g0 ∈ P [x]. We know
from Proposition 1.4.6 that P [x] is a prime ideal of R[x]. Hence either f0 ∈ P [x] or g0 ∈ P [x], which implies that either f0 or
g0 is not primitive. Contradiction.

Corollary 2.3.16

Suppose that R is a unique factorisation domain and f , g ∈ R[x]. Then
〈

f
〉⊆ 〈

g
〉 =⇒ 〈

c( f )
〉⊆ 〈

c(g )
〉

.

Lemma 2.3.17

Suppose that R is a unique factorisation domain and F is the field of fractions of R. Let f , g ∈ R[x]. If f F [x] ⊆ g F [x] and〈
c( f )

〉⊆ 〈
c(g )

〉
, then f R[x] ⊆ g R[x].a

aTo clarify, f R[x] is the ideal generated by f in R[x] and f F [x] is the ideal generated by f in F [x].

Proof. Since f F [x] ⊆ g F [x], there exists h ∈ F [x] such that f = g h. By collecting the common denominators of coefficients of h, we

can write h = a

b
h0 where h0 ∈ R[x] is a primitive polynomial. Then we have b f = ag h0. By Gauss’ Lemma the contents are

multiplicative, We have b c( f ) = a c(g )c(h0) = a c(g ). As R is an integral domain and
〈

c( f )
〉⊆ 〈

c(g )
〉

, 〈a〉 ⊆ 〈b〉. That is, a = bc

for some c ∈ R. Hence h = a

b
h0 = ch0 ∈ R[x] and f R[x] ⊆ g R[x] as required.

Proposition 2.3.18. Irreducibility of Polynomials in Field of Fractions

Suppose that R is a unique factorisation domain and F is the field of fractions of R. Let f ∈ R[x] be a non-constant polynomial.
Then f is irreducible in R[x] if and only if f is irreducible in F [x] and is primitive in R[x].

Proof. "⇐=": Trivial.

"=⇒": Suppose that f ∈ R[x] is irreducible. Then f must be primitive, otherwise f = c( f ) f0 where c( f ) 6∼ 1, which is a
contradiction. Assume that f = g h for some g ,h ∈ F [x]. Let a,b ∈ F such that g = ag0, h = bh0, where g0,h0 ∈ R[x] are
primitive. By Gauss’ Lemma g0h0 is primitive.

Hence f = abg0h0 implies that c( f ) = c(g0h0) = 1 and f F [x] = g0h0F [x]. By Lemma 2.3.17 we have f R[x] = g0h0R[x]. Hence
f ∼ g0h0 in R[x]. Since f is irreducible in R[x], either g0 or h0 is a unit in R[x]. It follows that either g or h is a unit in F [x].
Hence f is irreducible in F [x].
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Theorem 2.3.19. R UFD =⇒ R[x] UFD

Suppose that R is a unique factorisation domain. Then R[x] is a unique factorisation domain.

Proof. We shall make use of Theorem 2.1.8. First we verify that R[x] satisfies ACCP. Suppose that〈
f1

〉⊆ 〈
f2

〉⊆ 〈
f3

〉⊆ ·· ·
is an ascending chain of principal ideals in R[x]. By Corollary 2.3.16 it induces an ascending chain of ideals in R:〈

c( f1)
〉⊆ 〈

c( f2)
〉⊆ 〈

c( f3)
〉⊆ ·· ·

Suppose that F is the field of fractions of R. Then the chain also induces an ascending chain of ideals in F [x]:

f1F [x] ⊆ f2F [x] ⊆ f3F [x] ⊆ ·· ·
By hypothesis R is a UFD. Since F is a field, F [x] is a UFD. Then the chains in R and F [x] stablise. By Lemma 2.3.17 the chain
in R[x] also stablises.

Next suppose that f ∈ R[x] is an irreducible, If deg f = 0, then f ∈ R and f is a prime element as R is UFD. So we assume that
f is non-constant. By Proposition 2.3.18, f is irreducible in F [x]. Since F [x] is a UFD, f F [x]E F [x] is a prime ideal. Consider

the composite homomorphism: R[x] F [x] F [x]/ f F [x]ι π

We shall prove that kerπ◦ ι= 〈
f
〉

. Clearly f ∈ kerπ◦ ι. For g ∈ kerπ◦ ι, we have g | f in F [x] or g F [x] ⊆ f F [x]. In addition we
notice that

〈
c(g )

〉⊆ 〈
c( f )

〉= 〈1〉. Hence by Lemma 2.3.17 we have
〈

g
〉⊆ 〈

f
〉

and kerπ◦ ι= 〈
f
〉

.

Finally, by First Isomorphism Theorem, π◦ ι induces a monomorphism ϕ : R[x]/
〈

f
〉→ F [x]/ f F [x]. F [x]/ f F [x] is an integral

domain because f F [x] is prime. Hence R[x]/
〈

f
〉

is also an integral domain and
〈

f
〉
E R[x] is prime. It follows that every

irreducible in R[x] is a prime element.

Corollary 2.3.20. R UFD =⇒ R[x1, ..., xn] UFD

Suppose that R is a unique factorisation domain. Then R[x1, ..., xn] is a unique factorisation domain.

Proof. Notice that R[x1, ..., xn] = R[x1, ..., xn−1][xn]. We can do induction on n.

2.3.3 Irreducibility of Polynomials

Next we shall present some practical propositions about the irreducibility of polynomials. The propositions are commonly stated
in the rings of Z[x] andQ[x], but can be generalised to arbitrary UFD without any difficulty.

Proposition 2.3.21. Irreducibility of Polynomials with deg É 3

Suppose that F is a field and f ∈ F [x] with deg f = 2 or 3. Then f is irreducible if and only if f has no roots on F .

Proof. Trivial.

Proposition 2.3.22. Rational Root Test

Suppose that R is a unique factorisation domain and F is the field of fractions of R. For f (x) =
n∑

i=0
ai xi ∈ R[x], let p/q ∈ F be a

root of f , where p, q ∈ R and gcd(p, q) = 1. Then p | a0 and q | an in R.

Proof. Since f (p/q) = 0, we have a0qn +a1pqn−1 +·· ·+an pn = 0. Move a0qn to one side and factor out p:

a0qn =−p(a1qn−1 +·· ·+an pn−1)

Hence p | a0qn . As gcd(p, q) = 1, we have p | a0 as required.

The other part follows from a similar argument.

Proposition 2.3.23. Reduction Test

Suppose that f ∈ Z[x] is a monic polynomial. For a prime integer p > 0, let π : Z[x]� Fp [x] be the homomorphism induced
by the canonical projection. If π( f ) is irreducible in Fp [x], then f is irreducible in Z[x].
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Proof. Suppose that f = g h. Then π( f ) =π(g )π(h) ∈ Fp [x]. As π( f ) is irreducible, either π(g ) or π(h) is a unit in Fp [x]. Without loss
of generality we assume that π(g ) is a unit. Then degπ(g ) = 0. Since f is monic,

deg g +degh = deg f = degπ( f ) = degπ(g )+degπ(h) = degπ(h)

As degπ(h) É degh, we must have degπ(h) = degh and hence deg g = 0. Therefore g divides the leading coefficient of f and
is a unit. It follows that f is irreducible.

Theorem 2.3.24. Eisenstein’s Criterion

Suppose that R is a unique factorisation domain. Let f (x) =
n∑

i=0
ai xi ∈ R[x] be a non-constant primitive polynomial. If there

exists a prime p ∈ R such that:

1. p 6 | an ;

2. p | a0, a1, ..., an−1;

3. p2 6 | a0.

Then f is irreducible in R[x].

Proof. Suppose that f is not irreducible. f = g h for some non-units g ,h ∈ R[x]. Let π : R[x] → (R/
〈

p
〉

)[x] be the homomorphism

induced by the canonical projection R R/
〈

p
〉

and f , g , h be the images of f , g , h under π.

Write g (x) = ∑r
i=0 bi xi and h(x) = ∑s

i=0 ci xi . By hypothesis, f (x) = an xn where an 6= 0 in R/
〈

p
〉

. Since
〈

p
〉

is prime in R,

R/
〈

p
〉

is an integral domain. Since f = g h, g (x) = br xr and h(x) = cs xs . Since r, s > 0, we have b0,c0 ∈ 〈
p

〉
or p | b0,c0. But

then a0 = b0c0 can be divided by p2. Contradiction.

Example 2.3.25. Irreducibility of Cyclotomic Polynomials

Let p > 0 be a prime integer. Let f (x) = 1+ x +·· ·+ xp−1 ∈Z[x]. These polynomials are called cyclotomic polynomials. They
are irreducible in Z[x].

Proof. This is a non-standard application of Eisenstein’s criterion.

It is obvious that f (x) is irreducible if and only if f (x +1) is. As

f (x) = 1+x +·· ·+xp−1 = xp −1

x −1

we have

f (x +1) = (x +1)p −1

(x +1)−1
=

(
p

1

)
+

(
p

2

)
x +·· ·+

(
p

p −1

)
xp−2 +xp−1

Notice that

(
p

k

)
= p !

k !(p −k)!
is divisible by p for k < p and a0 = p is not divisible by p2. By Eisenstein’s criterion f is irreducible

in Z[x].



Chapter 3

Field Extensions

In this chapter, we will briefly introduce some concepts of field extensions without going too far into field and Galois theory. The
target is to provide some powerful tools for the study of commutative rings.

3.1 Algebraic Extensions

Definition 3.1.1. Field Extensions

Suppose that F and K are fields and F ⊆ K . We say that K is an extension field of F . The field extension is sometimes denoted
by F ⊆ K , K /F , or K | F .

If F ⊆ K is a field extension, then K is a vector space over F . The dimension of K over F is called the degree of field extension
and is denoted by [K : F ] = dimF K . If [K : F ] < ∞, then F ⊆ K is called a finite extension. Otherwise it is called an infinite
extension.

Theorem 3.1.2. Tower Law

Suppose that F ⊆ K ⊆ L are field extensions. The degree of field extension is multiplicative:

[L : F ] = [L : K ][K : F ]

Proof. Suppose that {xi }i∈I is a basis of K over F and {y j } j∈J is a basis of L over K . It is not hard to verify that {xi y j }i∈I , j∈J is a basis
of L over F .

Definition 3.1.3. Algebraic and Transcendental Extensions

Suppose that F ⊆ K is a field extension. If for any u ∈ K there exists f ∈ R[u]\{0} such that f (u) = 0, then u is said to be algebraic
over F . Otherwise u is said to be transcendental over F .

If every element of K is algebraic over F , then F ⊆ K is called an algebraic extension. Otherwise it is called a transcendental
extension.

Proposition 3.1.4. Finite Extension =⇒ Algebraic Extension

If F ⊆ K is a finite extension, then it is an algebraic extension.

Proof. Suppose that [K : F ] = n. For u ∈ K , 1,u, ...,un are linearly dependent over F . Hence there exists a0, ..., an ∈ F such that
f (u) = a0 +a1u +·· · = anun = 0. u is algebraic over F .

Definition 3.1.5. Simple Extensions

Suppose that F ⊆ K is a field extension. For u ∈ K , the subfield of K generated by u on F is denoted by F (u). F (u) is the field of
fraction of F [u].

If there exists u ∈ K such that K = F (u), then F ⊆ K is called a simple extension.

Similarly, if there exists u1, ...,un ∈ K such that K = F (1, ...,un), then F ⊆ K is called a finitely generated extension.

34
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Proposition 3.1.6. Simple Extension of a Transcendental Element

Suppose that F ⊆ K is a field extension and u ∈ K is transcendental over F . Then there is a field isomorphism σ : F (x) → F (u)
such that σ|F = idF , where F (x) is the field of fraction of the polynomial ring F [x].

Proof. σ : f /g 7→ f (u)/g (u) is induced by the evalution homomorphism.. It is obvious that σ is a field isomorphism as there is only
trivial algebraic relation on F (u).

Definition 3.1.7. Minimal Polynomials

Suppose that F ⊆ K is a field extension and u ∈ K is algebraic over F . Then there is a unique monic polynomial m ∈ F [x] such
that m(u) = 0 and f (u) = 0 if and only if m divides f . m is called the minimal polynomial of u over F .

Proposition 3.1.8. Simple Extension of an Algebraic Element

Suppose that F ⊆ K is a field extension and u ∈ K is algebraic over F . Suppose that m ∈ F [x] is the minimal polynomial of u
and degm = n.

1. F [u] = F (u);

2. F [u] ∼= F [x]/〈m(x)〉;
3. [F [u] : F ] = degm = n;

4. {1,u, ...,un−1} is a basis of F [u] over F .

Proof. 2. Apply First Isomorphism Theorem 1.2.9 to the evalution homomorphism: R[u] = imevu
∼= R[x]/kerevu . Since F is a

field, by Proposition 2.3.3, F [x] is a PID. As m is the polynomial of least degree in kerevu , we have kerevu = 〈m(x)〉 and
the result follows.

1. Since m is the minimal polynomial of u, m is irreducible. Since R[x] is a PID, by Corollary 2.1.12, 〈m(x)〉 is maximal. In
particular, R[u] ∼= R[x]/〈m(x)〉 is a field. We know that the field of fraction of a field is exactly itself.

4. For f ∈ F [x], by division algorithm, there exists q,r ∈ F [x] such that f = qm + r and degr < degm = n. Then f (u) =
r (u) = a0 +a1u +·· ·an−1un−1 ∈ span{1,u, ...,un−1}. That is, {1,u, ...,un−1} spans F [u]. On the other hand, suppose that
a0, ..., an−1 ∈ F such that a0 +a1u +·· ·+an−1un−1 = 0. Then a0 = ·· · = an−1 = 0 by minimality of of degree of m. Hence
{1,u, ...,un−1} is linearly independent.

3. Follows immediately from (4).

Corollary 3.1.9. Algebraic Extensions are Transitive

Suppose that F ⊆ K ⊆ L are fields. If F ⊆ K and K ⊆ L are both algebraic extensions, then F ⊆ L is also an algebraic extension.

Proof. For u ∈ L, since u is algebraic over K , there exist a0, ..., an ∈ K such that f (u) = a0 +a1u +·· ·+anun = 0. Hence u is algebraic
over the subfield F (a0, ..., an). By Tower Law,

[F (a0, ..., an ,u) : F ] = [F (a0, ..., an ,u) : F (a0, ..., an)][F (a0, ..., an) : (a0, ..., an−1)] · · · [F (a0) : F ] <∞

By Proposition 3.1.4, u is algebraic over F . Hence F ⊆ L is an algebraic extension.

Corollary 3.1.10. Algebraic Elements form a Field

Suppose that F ⊆ K is a field extension. Let E be the set of elements of K that are algebraic over F . Then E is a field.

Proof. For u, v ∈ E , since they are algebraic over F , F ⊆ F (u, v) is a finite extension and hence is algebraic. We have u ± v,uv,uv−1 ∈
F (u, v) ⊆ E . Hence E is a field.
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Proposition 3.1.11. Simple Extensions lift Field Isomorphisms

Suppose that σ : F1 → F2 is a field isomorphism which extends to a ring isomorphism σ̃ : F1[x] → F2[x]. Suppose that u1 is a
root of an irreducible polynomial p1 ∈ F1[x] and u2 is a root of p2 := σ̃(p1) ∈ F2[x]. Then F1[u1] ∼= F2[u2].

F1[u1] F2[u2]

F1 F2
σ

Proof. Since p1, p2 are irreducible polynomials, they are the minimal polynomials of u1 and u2, repsectively. The field isomorphism
is given by the following composition:

F1[u1] F1[x]/
〈

p1(x)
〉

F2[x]/
〈

p2(x)
〉

F2[u2]∼ ∼ ∼

Remark. In particular, we are interested in the field isomorphisms onto the field itself, which are called field automorphisms. It
motivates us to introduce the following concept:

Definition 3.1.12. Automorphisms, Galois Group

Suppose that F ⊆ K is a field extension. σ : K → K is called a F -automorphism, if σ is both a field isomorphism and a linear
isomorphism of vector space K over F . The set of F -automorphisms of K is called the Galois group of K over F and is denoted
by AutF K or Gal(K | F ).

3.2 Splitting Fields and Algebraic Closure

Definition 3.2.1. Splitting Fields

Suppose that F is a field and f ∈ F [x] has positive degree. We say that f splits over F , if f can be factorized into linear factors
on F .

Suppose that S ⊆ F [x] is a set of polynomials of positive degrees. K is called the splitting field of S over F , if K is the smallest
extension of F such that every f ∈ S splits over K .

When S = { f }, K is called the splitting field of f over F , if K is the smallest extension of F such that f splits over K . In particular,
if f (x) = c(x −u1) · · · (x −un) ∈ K [x], then K = F (u1, ...,un).

Remark. The extension of a F to a splitting field K of S ⊆ F [x] is equivalent to adjoining all roots of the polynomials in S to F . It is
immediate from definition that F ⊆ K is an algebraic extension.

Lemma 3.2.2. Splitting Field of a Finite Set of Polynomials

Suppose that F is a field and S = { f1, ..., fn} ⊆ F [x] are polynomials of positive degrees. K is the splitting field of S over F if and
only if K is the splitting field of f1 · · · fn over F .

Proof. Suppose that F ⊆ K is an algebraic extension. The result follows from a simple observation that f1, ..., fn split over K if and
only if f1 · · · fn splits over K .

Remark. The proposition suggests that the only cases we concern are that S is a singleton and that S is infinite.

Theorem 3.2.3. Existence of Splitting Field: Single Polynomial

Suppose that F is a field and f ∈ F [x] has positive degree. Then there exists a splitting field K of f over F . Moreover, [K : F ] É
(deg f )!.

Proof. Existence: We use induction on deg f . Base case: If deg f = 1, f (x) = ax +b splits over F . Then K = F and [K : F ] = 1.

Induction case: Suppose that the result holds for deg f < n. Suppose that f ∈ F [x] has degree n and does not split over F . Let
g be an irreducible factor of f (deg g > 1). There exists a simple extension F ⊆ F (u) such that g is the minimal polynomial
of u on F . Then [F (u) : F ] = deg g . f (x) = (x −u)h(x) for some h ∈ F [x]. As degh < n, by induction hypothesis, there exists a
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splitting field K of h over F (u). Hence K is a splitting field of f over F . By Tower Law:

[K : F ] = [K : F (u)][F (u) : F ] É (n −1)! ·deg g É n!

which completes the induction.

Uniqueness: Again we use induction on deg f .

The following proposition is a generalisation of Proposition 3.1.11.

Proposition 3.2.4. Splitting Fields lift Field Isomorphisms

Suppose that σ : F1 → F2 is a field isomorphism which extends to a ring isomorphism σ̃ : F1[x] → F2[x]. Suppose that K1 is a
splitting field of f1 ∈ F1[x] over F1 and K2 is a splitting of f2 := σ̃( f1) ∈ F2[x] over F2. Then K1

∼= K2.

Proof. We use induction on deg f1. The base case is trivial. Suppose that K1
∼= K2 for deg f1 < n. For deg f1 = n, let g1 be an irreducible

factor of f1 with deg g1 > 1 and g2 := σ̃(g1). Let u be a root of g1 on K1 and v a root of g2 on K2. By Proposition 3.1.11, we
have a field isomorphism F1(u) ∼= F2(v). As [K1 : F1(u)] < n and [K2 : F2(v)] < n, by induction hypothesis F (u) ∼= F (v) extends
to a field isomorphism K1

∼= K2.

Corollary 3.2.5. Uniqueness of Splitting Field: Single Polynomial

Suppose that F is a field and f ∈ F [x] has positive degree. Any splitting fields of f over F are F -isomorphic.

Definition / Proposition 3.2.6. Algebraically Closed Fields

The following statements of a field F are equivalent:

1. Every non-constant polynomial f ∈ F [x] has a root in F ;

2. Every non-constant polynomial f ∈ F [x] splits over F ;

3. If f ∈ F [x] is irreducible then deg f = 1;

4. Every algebraic extension of F is F itself;

5. There exists a subfield E ⊆ F such that F is algebraic over E and all irreducible polynomials in E [x] split over F .

A field satisfying any of the above conditions is called an algebraically closed field.

Proof. Trivial.

Proposition 3.2.7. Algebraically Closed Fields are Infinite

If F is an algebraically closed field, then F is infinite.

Proof. We can adapt Euclid’s proof on the infinitude of prime integers.

Suppose that F = {a1, ..., an} is a finite field. Then

f (x) =
n∏

i=1
(x −ai )+1 ∈ F [x]

is a non-constant polynomial with no roots in F . Contradiction.

Definition / Proposition 3.2.8. Algebraic Closure

Suppose that F ⊆ K is a field extension. The following statements are equivalent:

1. F ⊆ K is an algebraic extension and K is algebraically closed;

2. K is the splitting field over F of all non-constant polynomials in F [x].

K is called the algebraic closure of F .
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Proof. Trivial.

Example 3.2.9. C is Algebraically Closed

C :=R[i] =R[x]/
〈

x2 +1
〉

is the algebraic closure of R. This is known as the fundamental theorem of algebra. The proof of this
theorem, however, uses mainly the tools from analysis. (There is no "pure" algebraic definition of R.)

Next we turn to the problem of existence and uniqueness of algebraic closure. Suppose that F is the algebraic closure of F . For
S ⊆ F [x], the splitting field of S over F is a subfield of F . Therefore the existence of arbitrary splitting fields is equivalent to the
existence of algebraic closure. Unsurprisingly, the main difficulty in the proof is set-theoretic instead of ring-theoretic.

Theorem 3.2.10. Existence of Algebraic Closure

Every field F has an algebraic closure F .

Proof. The construction is due to Emil Artin.

Step 1: There exists a field extension F ⊆ K1 such that every non-constant polynomial f ∈ F [x] has at least one root in K1.

Let S ⊆ F [x] be the set of polynomials which are non-constant and monic. Consider a copy of S as indeterminates XF :=
{x f : f ∈ S}. We consider the polynomial ring F [XF ] (see Definition 1.4.7) and the ideal I := 〈

{ f (x f ) : f ∈ S}
〉
E F [XF ].

We claim that I is proper in F [XF ].

Suppose that it is not. Then there exists g1, ..., gn ∈ F [XF ] and f1, ..., fn ∈ S such that 1 =
n∑

i=1
gi fi (x fi ). By applying Propo-

sition 3.1.8 repeatly, we can construct a field extension E of F on which f1, ..., fn ∈ F [x] have roots α1, ...,αn respectively.
The map of sets ϕ : XF → E defined by ϕ(x fi ) =αi induces the evalution homomorphism ϕ̃ : F [XF ] → E . We have:

1 = ϕ̃
(

n∑
i=1

gi fi (x fi )

)
=

n∑
i=1

ϕ̃(gi ) fi (αi ) = 0

which is a contradiction.

Since I is proper, by Corollary 1.3.7 there exists a maximal ideal M E F [XF ] such that I ⊆ M . Let K1 := F [XF ]/M . Clearly
K1 is a field and θ : F → K1 defined by θ(a) = a +M is a field monomorphism. We can embed F into K1. Every non-
constant monic polynomial f has a root t f +M in K1.

Step 2: For K1, we can similarly construct K2 in which every non-constant polynomial f ∈ K1[x] has a root. By repeating this
process we obtain a chain of field extensions:

F ⊆ K1 ⊆ K2 ⊆ K3 ⊆ ·· ·
Let L :=⋃∞

i=1 Ki . We claim that L is an algebraically closed field.

It is obvious that L is a field, as for any a,b ∈ L there exists i ∈N such that a,b ∈ Ki . For a non-constant f ∈ L[x], f ∈ Ki [x]
for some i ∈N. Then f has a root on Ki+1 ⊆ L. By Proposition 3.2.6 L is algebraically closed.

Step 3: Let F be the set of algebraic elements of L over F . We claim that F is an algebraic closure of F .

By Corollary 3.1.10 F is a field. It is clear from the above discussions that F is algebraically closed as L is algebraically
closed. Moreover F ⊆ F is an algebraic extension. Hence by Proposition 3.2.8 F is an algebraic closure of F .

Remark. We have indirectly used Zorn’s Lemma (existence of maximal ideals) in the proof. As [Aluffi] states in his remark, how-
ever, the existence of algebraic closure is a consequence of the compactness theorem for first-order logic, which is known to be
weaker than the axiom of choice (equivalent to Zorn’s Lemma). An online discussion of this problem may be found on https:
//mathoverflow.net/questions/46566/.

Remark. It may be tempting to try to formulate some universal properties for algebraic closure. However this is impossible and
the morphisms are by no means unique. As suggested in Proposition 3.1.11 for the case of single polynomial, the F−isomorphisms
depend on the choice of roots of the polynomial.

The tool of proving uniqueness is again Zorn’s Lemma.

Lemma 3.2.11

Suppose that F ⊆ L is a field extension and L is algebraically closed. Then for any algebraic extension F ⊆ K , there exists a field
monomorphism ι : K ,→ L with ι|F = idF .

https://mathoverflow.net/questions/46566/
https://mathoverflow.net/questions/46566/
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Proof. Consider the set

S := {(E , ιE ) : F ⊆ E ⊆ K , ιE : E ,→ L is a field monomorphism such that ιE |F = idF }

with a partial order

(E , ιE ) ¹ (E ′, ιE ′ ) ⇐⇒ E ⊆ E ′ ∧ ιE ′ |E = ιE .

S is non-empty, as (F, ιF ) ∈ S . Suppose that C ⊆ S is a chain. Let EC := ⋃
E∈C E . For α ∈ EC , there exists E ∈ C such that

α ∈ E . We can define ιEC (α) := ιE (α). It is clear that it is independent of the choice of E . Then (EC , ιEC ) is an upper bound of
C . By Zorn’s Lemma, S has a maximal element. We denote it by (G , ιG ). We claim that G = K .

Let H := ιG (G) ⊆ L. Suppose that G ( K . There exists α ∈ K \ G . Consider the simple extension G ⊆ G(α). Since F ⊆ K is
algebraic extension, α is algebraic over G . Let m ∈ G[x] be the minimal polynomial of α. ιG induces the ring isomorphism
ι̃G : G[x] → H [x]. Since L is algebraically closed, ι̃G (m) has a root β in L. By Proposition 3.1.11, the field isomorphism G ∼= H
lifts to G[α] ∼= H [β]. We have (G[α], ιG[α]) strictly larger than (G , ιG ) in S , contradicting the maximality of (G , ιG ).

Corollary 3.2.12. Uniqueness of Algebraic Closure

Suppose that K1 and K2 are algebraic closures of the field F . Then there exists an F−isomorphism K1
∼= K2.

Proof. Since K1 is algebraic over F and K2 is algebraically closed, by Lemma 3.2.11, there exists a field monomorphism σ : K1 ,→ K2

with σ|F = idF . If σ is not surjective, then K1 ⊆ K2 is a non-trivial algebraic extension, contradicting that K1 is algebraically
closed. Hence σ is an F−isomorphism.

Corollary 3.2.13. Existence and Uniqueness of Splitting Field: General Case

Suppose that F is a field and S ⊆ F [x] is a set of polynomials. Then there exists a splitting field K of S over F , which is unique
up to F−isomorphism.

Proof. The existence of splitting fields follows from the existence of algebraic closure. The proof of uniqueness is a simple adaptation
of Lemma 3.2.11.

3.3 Separable, Normal and Galois Extensions

Definition 3.3.1. Normal Extensions

The field extension F ⊆ K is called a normal extension, if the minimal polynomial over F of every element in K splits over K .

Proposition 3.3.2. Normal Extension ⇐⇒ Splitting Extension

A finite field extension F ⊆ K is normal if and only if K is the splitting field of some f ∈ F [x].

Definition 3.3.3. Separable Extensions

Let F be a field, and f ∈ F [x] \ {0}. We say that p is separable, if all the irreducible factors of f have no multiple roots in the
splitting field of f .

Suppose that F ⊆ K is an algebraic field extension. We say that it is a separable extension, if the minimal polynomial over F of
every element in K is separable.

Remark. By Corollary 2.3.12, we see that f ∈ F [x] is separable if and only if f and f ′ are coprime. Moreover, if f is inseparable and
irreducible, then f ′ = 0.

Proposition 3.3.4. Separability and Characteristic

Suppose that F is a field with charF = 0. Then any finite extension of F is a separable extension.

Proof. Suppose that F ⊆ K is an inseparable extension. Let f ∈ F [x] be a monic irreducible polynomial. Then f ′ = 0. If f (x) =
xn +

n−1∑
k=0

ak xk , then f ′(x) = nxn−1
n−1∑
k=1

kak xk−1 6= 0, since n 6= 0 in F . This is a contradiction.
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Proposition 3.3.5. Separability of Tower of Extensions

Suppose that F ⊆ K ⊆ L are field extensions. If F ⊆ L is separable, then both F ⊆ K and K ⊆ L are separable.

Definition / Proposition 3.3.6. Fixed Fields, Galois Extension

Suppose that F ⊆ K is a finite extension. The Galois group Gal(K | F ) has a natural group action on F . The elements fixed by
Gal(K | F ) form a subfield of K :

K Gal(K |F ) := {u ∈ K : ∀σ ∈ Gal(K | F ) σ(u) = u}

which is called the fixed field of Gal(K | F ). The following statements are equivalent:

1. F = K Gal(K |F );

2. F ⊆ K is a separable and normal extension;

3. K is the splitting field of some separable polynomial f ∈ F [x].

If F ⊆ K satisfies any of the conditions, then it is called a Galois extension.

3.4 Galois Correspondence

In this section, we fix a finite field extension F ⊆ K and its Galois group Gal(K | F ). We introduce the prime notation temporar-
ily:

• For a subgroup H of the Galois group Gal(K | F ), we denote the subfield of K fixed by H by K H or simply H ′;

• For an intermediate field M of F ⊆ K , we denote the Galois group of M ⊆ K by Gal(K | M) or simply M ′.

Lemma 3.4.1. Artin’s Lemma

Suppose that K is field and G É Aut(K ) is a finite subgroup of the group of all field automorphisms of K . Then K G ⊆ K is a finite
Galois extension, and the inclusion G ,→ Gal

(
K | K G

)
is an isomorphism of groups.

Theorem 3.4.2. Galois Correspondence, Part 1

Suppose that F ⊆ K is a finite Galois extension. There is a bijective correspondence between the intermediate fields of F ⊆ K
and the subgroups of Gal(K | F ), given by

{intermediate fields of K | F } {subgroups of Gal(K | F )}

M Gal(K | M)

K H H

where [K : M ] = |Gal(K | M)|. Moreover, the correspondence reverses inclusion relations:

{intermediate fields of K | F } {subgroups of Gal(K | F )}

L ⊆ M Gal(K | L) Ê Gal(K | M)

K H ⊆ K J H Ê J

Remark. In our prime notation, we can write things in a more elegant way. If L, M are intermediate fields with L ⊆ M , then [M : L] =
[M ′ : L′]. If H , J are subgroups of Gal(K | F ) with J É H , then [H : J ] = [H ′ : J ′].

Corollary 3.4.3

Suppose that F ⊆ K is a finite Galois extension. Then it has finitely many intermediate fields.
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Theorem 3.4.4. Galois Correspondence, Part 2

Suppose that F ⊆ K is a finite Galois extension. Let M be an intermediate field. Then F ⊆ M is an Galois extension if and only
if Gal(K | M) is a normal subgroup of Gal(K | F ). In such case, there is a group isomorphism:

Gal(K | M)

Gal(K | F )
∼= Gal(M | F )

3.5 Finite and Perfect Fields

In this section we consider fields with non-zero characteristic p.

Definition 3.5.1. Frobenius Automorphisms, Perfect Fields

Suppose that F is a field with charF = p. Then the map x 7→ xp is a ring homomorphism on F , and is called the Frobenius
homomorphism.

F is called a perfect field, if all the finite extensions of K are separable.

Proposition 3.5.2. Perfect Fields

Suppose that F is a field.

1. If charF = 0, then F is perfect;

2. If charF = p, then F is perfect if and only if the Frobenius homomorphism is surjective.

3. Finite fields are perfect.

Proposition 3.5.3. Extensions of Perfect Fields

Suppose that F ⊆ K is a separable extension. Then F is perfect if and only if K is perfect.

Proposition 3.5.4. Finite Fields

Let p be a prime number, and m,n ∈Z+.

1. For each pm , there exists a unique finite field Fpm up to isomorphism, which is the splitting field of xpm −x over Fp .

2. Gal
(
Fpm | Fp

)∼=Z/mZ, whose generator is given by the Frobenius automorphism.

3. For each divisor d of m, there is a unique subfield Fpd of Fpm .

Corollary 3.5.5. Primitive Element Theorem for Finite Fields

Suppose that F and K are finite fields and F ⊆ K . Then there exists α ∈ K such that K = F (α).

Theorem 3.5.6. Primitive Element Theorem

Suppose that F ⊆ K is a finite separable extension. Then it is a simple extension.

3.6 Cyclotomic and Cyclic Extensions
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Definition 3.6.1. Roots of Unity

Suppose that F is a field. The n-th roots of unity of F forms a group:

µn(F ) := {ρ ∈ F : ρn = 1}

which is a subgroup of F×. µn(F ) is a finite cyclic group.

Suppose that |µn(F )| = n. Then ω ∈µn(F ) is called a primitive n-th root of unity, if ω generates µn(F ).

Definition 3.6.2. Cyclotomic Extensions, Cyclotomic Polynomials

Suppose that F is a field with charF 6 | n. Then the splitting field of xn −1 over F is denoted by F (ωn), where ωn is a primitive
n-th root of unity of F (ωn). The extension F ⊆ F (ωn) is called a cyclotomic extension.

The n-th cyclotomic polynomial of F is defined by

Φn(x) := ∏
ω∈µn (F (ωn ))
ω primitive

(x −ω)

Proposition 3.6.3

xn −1 = ∏
d |n

Φn(x)

Proposition 3.6.4. Galois Group of Cyclotomic Extension

Suppose that F ⊆ F (ωn) is a cyclotomic extension. Then it is a Galois extension with Galois group

Gal(F (ωn) | F ) ∼= Aut(µn(F (ωn))) ∼= (Z/kZ)×

where k := |µn(F (ωn))|.

Proposition 3.6.5. Cyclotomic Polynomials ofQ

Suppose that Φn is the n-th cyclotomic polynomial ofQ.

1. Φn ∈Z[x];

2. Φn is irreducible;

3. If m,n ∈Z+ are coprime, then deg(ΦnΦm) = degΦn degΦm .

Definition 3.6.6. Kummer Extensions

Suppose that F is field with charF 6 | n in which xn −1 splits. Let K be the splitting field of xn −a over F for some a ∈ F . Then
F ⊆ K is called a Kummer extension.

Proposition 3.6.7. Galois Group of Kummer Extension

Suppose that F ⊆ K is a Kummer extension defined as above. Then it is a Galois extension. Let α be a root of xn −a in K . Then
there exists a group monomorphism ϕ : Gal(K | F ) → µn(F ) given by ϕ(σ) =σ(α)/α. The map is independent of the choice of
α.

3.7 Radical Extensions
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Definition 3.7.1. Radical Extension, Solution by Radicals

Suppose that F ⊆ F (α1, ...,αk ) is a finite extension. It is called a radical extension, if there exists n1, ...,nk ∈ N such that αni
i ∈

F (α1, ...,αi−1) for each i .

Let f ∈ F [x]. We say that f is solvable by radicals, if the splitting field of f is a radical extension of F .

Theorem 3.7.2. Solvability by Radicals

The finite extension F ⊆ K is a radical extension if Gal(K | F ) is a solvable group.

3.8 Transcendental Extensions

Definition 3.8.1. Algebraic Independence

Suppose that F ⊆ K is a field extension. S ⊆ K is said to algebraically independent over F , if for any α1, ...,αn ∈ S, there is no
f (x1, ..., xn) ∈ F [x1, ..., xn] such that f (α1, ...,αn) = 0.

Definition 3.8.2. Transcendence Bases

Suppose that F ⊆ K is a field extension. A subset S ⊆ K is called a transcendence basis of K over F , if S is algebraically inde-
pendent over F and K is an algebraic extension of F (S).

Proposition 3.8.3. Cardinality of Transcendence Bases

Suppose that F ⊆ K is a field extension. If S and T are transcendence bases of K over F , then cardS = cardT .

Definition 3.8.4. Transcendence Degree

Suppose that F ⊆ K is a field extension. We define the transcendence degree tr.deg(K | F ) of F ⊆ K to be the cardinality of any
transcendence basis of K over F

Proposition 3.8.5. Tower Law of Transcendence Degree

Suppose that F ⊆ K ⊆ L are field extensions. The transcendence degree of field extensions is additive:

tr.deg(L | F ) = tr.deg(L | K )+ tr.deg(K | F )



Chapter 4

Modules

4.1 Modules and Algebras

4.1.1 Definitions and Examples

For a category C (in particular for C = Set) and a object S in C, the set of automorphisms AutC(S) is a group. Hence we can define
a group (left-)action of a group G on S via a group homomorphism σ : G → AutC(S). Similarly, if M is an Abelian group, then the
set of automorphisms AutAb(M) naturally forms a unital ring. We can define a ring (left-)action of a ring R on M via a unital ring
homomorphism σ : R → Aut(M). In this way we identify M as a left R-module.

For r ∈ R, m ∈ M , we often consider σ(r )(m) as the multiplication r m. In this way we obtain our familiar definition of left R-
modules:

Definition 4.1.1. Left R-Modules

A left R-module M is an Abelian group (M ,+) with a map (namely scalar multiplication) R ×M → M , (r,m) 7→ r m, satisfying
the following axioms:

1. Associativity: ∀r, s ∈ R ∀m ∈ M : r (sm) = (r s)m

2. Distributivity: ∀r, s ∈ R ∀m,n ∈ M : (r + s)m = r m + sm, r (m +n) = r m + r n

3. Identity: ∀m ∈ M : 1R m = m

Remark. Analogusly we can define a right R-module M to be an Abelian group M with a map M ×R → M , (m,r ) 7→ mr satisfying
similar axioms.

For a ring (R,+, ·), we can define the opposite ring Rop = (R,+,?), where r ? s := s · r for all r, s ∈ R. If R is commutative, we in fact
have R ∼= Rop.

Now we immediately observe that a right R-module is simply a left Rop-module. If R is commutative, then there is essentially no
need to distinguish between the left and right modules1. We shall say R-modules instead of left R-modules.

Definition 4.1.2. R-Module Homomorphisms

Suppose that M and N are left R-modules. A group homomorphism f : M → N is said to be an R-module homomorphism, if

∀r ∈ R ∀m ∈ M : f (r m) = r f (m)

In other words, R-module homomorphism = group homomorphism + compactible module structure.

Definition 4.1.3. Submodules

Suppose that M is an R-module. N ⊆ M is said to be a submodule of M , if the inclusion map ι : N ,→ M is a R-module
homomorphism.

Definition 4.1.4. The Category R-Mod

It is clear that left R-modules together with their homomorphisms form a catgory, which is denoted by R-Mod.

Correspondingly, the category of right R-modules is denoted by Mod-R.

1Even if R is commutative, M can have compatible left and right R-module structures which are not identical, in which case M is said to be a bimodule.

44
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Example 4.1.5. Examples of Modules

1. Every Abelian group G has a unique Z-module structure:

∀n ∈Z ∀g ∈G : ng := g +·· ·+ g︸ ︷︷ ︸
n times

This is because Z is initial in Ring, so there is a unique ring homomorphism σ :Z→ Aut(G).

In fact, the category Z-Mod is just Ab.

2. If F is a field, then a F -module V is called a vector space over F . The F -module homomorphisms between vector spaces
are called linear maps. The category of all vector spaces over F is denoted by F -Vect.

3. Suppose that R and S are unital rings. Then a unital ring homomorphism α : R → S defines an R-module structure on S
by (r, s) 7→α(r )s for r ∈ R and s ∈ S.

4. Take S = R and α= idR in the previous example. Then R itself is an R-module. In particular, the (left-)submodules of R
is exactly the (left-)ideals of R.

5. Suppose that R is a CRI and M , N are R-modules. Then the set of R-module homomorphisms from M to N , HomR (M , N ),
also has an R-module structure. For r ∈ R and ϕ ∈ HomR (M , N ), the prescription:

∀m ∈ M : (rϕ)(m) := rϕ(m)

defines a map rϕ : M → N . It is a group homomorphism because M and N are Abelian groups. It is an R-module
homomorphism because R is commutative:

∀a ∈ R ∀m ∈ M : (rϕ)(am) = rϕ(am) = r aϕ(m) = arϕ(m) = a(rϕ)(m)

Therefore (r,ϕ) 7→ rϕ endows HomR (M , N ) with an R-module structure.

If R is non-commutative, then HomR (M , N ) may be just an Abelian group.

6. Suppose that R is a CRI, M is a R-module, andϕ : M → M is a R-module homomorphism. Thenϕ defines a R[x]-module
structure on M by ( f ,m) 7→ f (ϕ)(m) for f ∈ R[x] and m ∈ M . 1

4.1.2 Submodules and Quotient Modules
Proposition 4.1.6. Kernels and Images are Submodules

Suppose that f : M → N is an R-module homomorphism. Then ker f is a submodule of M , and im f is a submodule of N .

Proposition 4.1.7

Suppose that M is an R-module.

For r ∈ R, r M := {r m ∈ M : m ∈ M } is a submodule of M .

For I /R, I M := {r m ∈ M : r ∈ I , m ∈ M } is a submodule of M .

Just as groups and rings, we can define the quotient modules, which satisfy the three isomorphism theorems:

Definition 4.1.8. Quotient Modules

Suppose that M is an R-module and N É M is a submodule. Then it is easy to check that m ∼ m′ ⇐⇒ m −m′ ∈ M defines an
equivalence relation on M . In particular M/N is a quotient group. We define scalar multiplication on M/N by:

∀r ∈ R ∀m +N ∈ M/N : r (m +N ) := r m +N

Then M/N is an R-module. We call it a quotient module.

As usual, we can formulate the universal property as follows:

1This follows from the fact that the set of endomorphisms of M , EndR (M), is not only an R-module, but also an R-algebra.
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Proposition 4.1.9. Quotient Modules: Universal Property

Suppose that M is an R-module and N is a submodule of M . The quotient module is the module M/N with the canonical
projection π : M�M/N satisfying the following universal perperty:

For any R-module P and R-module homomorphism f : M → P such that N ⊆ ker f , there exists a unique R-module homomor-
phism f̃ : M/N → P such that f = f̃ ◦π.

M P

M/N

f

π
∃! f̃

Moreover, any R-module satisfying the universal property is uniquely determined up to R-module isomorphism.

Remark. From the universal property, we note that every submodule N is the kernel of the canonical projection π : M � M/N .
Unlike in Grp or Ring, being a kernel poses no restriction on the sub-structures in R-Mod. We shall see that R-Mod is a very "nice"
category in some sense (see Section 4.2).

Next we shall present the three isomorphisms for modules. The proofs are identical to those for the rings.

Theorem 4.1.10. Canonical Decomposition / First Isomorphism Theorem

Suppose that f : M → N is an R-module homomorphism. Then the following diagram commutes:

M M/ker f im f N

f

π f̃ ι

In particular, f̃ is an isomorphism between M/ker f and im f .

Theorem 4.1.11. Second Isomorphism Theorem

Suppose that N and P are submodules of an R-module M . Then N ∩P is a submodule of N and N +P is a submodule of M .
In particular, we have the R-module isomorphism:

N

N ∩P
∼= N +P

P

Theorem 4.1.12. Third Isomorphism Theorem

Suppose that M is an R-module and N É P É M . Then P/N É M/N . In particular we have the R-module isomorphism:

M/N

P/N
∼= M/P

Definition 4.1.13. Submodules generated by a subset

Suppose that M is an R-module and A ⊆ M is a subset. The submodule of M generated by A is the intersection of all submod-
ules of M that contain A. It is denoted by 〈A〉. Explicitly,

〈A〉 =
{

n∑
i=1

ri mi : r1, ...,rn ∈ R, m1, ...,mn ∈ A, n ∈N
}

A module is said to be finitely generated, if it is generated by a finite set; a module is said to be cyclic, if it is generated by a
single element.

Remark. We give the definition of free modules using universal property. The case is analogous to the free groups in Grp. The
detailed discussion of free and finitely gerenated modules will be delayed to Section 5.1.
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Definition 4.1.14. Free Modules, Universal Property

Suppose that M is a R-module and X ⊆ M . We say that M is a free module on X , if:

For any R-module N and map ϕ : X → N , there exists a unique R-module homomorphism ϕ̃ : M → N such that ϕ= ϕ̃◦ ι.

X N

M

ϕ

ι ∃! ϕ̃

where ι : X ,→ M is the inclusion map. X is called a basis of M .

Moreover, any free module on X is unique up to R-module isomorphism.

Remark. After defining direct products of modules in Section 4.2, we shall see that the set-theoretic constuction of a free R-module
on X is R⊕X .

Proposition 4.1.15. Finitely Generated R-Modules

Suppose that M is a finitely generated R-module. Then M is isomorphic to a quotient of Rn for some n ∈N.

Proof. Let I be a generating set of M . We choose X = {1, ...,n} where n = card I . Then R⊕X = Rn and ϕ̃ : Rn → M is surjective. By first
isomorphism theorem the result follows.

4.1.3 Algebra

Next we briefly introduce the concept of algebra. Roughly speaking, an R-algebra is a ring with a compatible R-module structure
defined in the way of Example 4.1.5.3.

Definition 4.1.16. R-Algebras

Suppose thatα : R → S is a unital ring homomorphism such thatα(R) commutes with S. Then we say that (S,α) is an R-algebra,
or that α defines an R-algebra structure on S.

Remark. To see why this definition makes sense, we consider the compatibility of ring multiplication and scalar multiplcation. For
r1,r2 ∈ R and s1, s2 ∈ S:

r1r2 · s1s2 =α(r1)α(r2)s1s2 =α(r1)s1α(r2)s2 = (r1 · s1)(r2 · s2)

where · denotes scalar multiplcation and juxitaposition denotes ring multiplication. In order to let the second equality to hold, we
must have that α(R) commutes with S.

Definition 4.1.17. R-Algebra Homomorphisms

Suppose that S and T are R-algebras. A map f : S → T is said to be an R-algebra homomorphism, if it is both a ring homomor-
phism and an R-module homomorphism.

Definition 4.1.18. The Category R-Alg

R-algebras with their homomorphisms form a catgory, which is denoted by R-Alg.

Example 4.1.19. Ring ∼=Z-Alg

Every unital ring R is has a unique Z-algebra structure:

∀n ∈Z ∀r ∈ R : nr := r +·· ·+ r︸ ︷︷ ︸
n times
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Example 4.1.20. Free Commutative R-Algebras

Suppose that R is a CRI. The polynomial ring R[X ] on R is a free commutative R-algebra. It is "free" in the sense that it satisfies
the universal property of a free object on the set X in the category of commutative R-algebras:

For any commutative R-algebra A and map ϕ : X → A, there exists a unique R-algebra homomorphism ϕ̃ : F [X ] → A such that
ϕ= ϕ̃◦ ι.

X A

R[X ]

ϕ

ι ∃! ϕ̃

Proposition 4.1.21. Finitely Generated Commutative R-Algebras

Suppose that R is a CRI and A is a finitely generated commutative R-algebra. Then A is isomorphic to a quotient of the
polynomial ring R[x1, ..., xn] for some n ∈N.

Proof. Let I be a generating set of A. We choose X = {x1, ..., xn} where n = card I . Then ϕ̃ : R[x1, ..., xn] → A is surjective. By first
isomorphism theorem the result follows.

Definition 4.1.22. Finite v.s. Finite-Type

Suppose that S is an R-algebra. Then the ring homomorphismα : R → S is said to be finite, if S is a finitely generated R-module;
it is said to be of finite-type, if S is a finitely generated R-algebra.

Remark. It is obvious that being finite is a stronger condition than being of finite type. A special case of the converse, where a
finite-type field extension is finite, is known as Hilbert’s Weak Nullstellensatz ??.

4.2 The Category R-Mod

We shall introduce some categorical construction that makes R-Mod an Abelian category.

This section can be skipped in the first reading.

4.2.1 Products and Coproducts

The construction of products and coproducts of R-modules by universal properties is idential to those of rings.

Definition 4.2.1. Products and Coproducts in R-Mod

Suppose the {Mi }i∈I is a family of R-modules.

The product is the R-module
∏
i∈I

Mi with the canonical projectionsπ j :
∏
i∈I

Mi �M j satisfying the following universal property:

For any R-module N and R-module homomorphisms f j : N → M j , there exists a unique R-module homomorphism
σ : N →∏

i∈I
Mi such that f j =π j ◦σ.

The coproduct or the direct sum is the R-module
⊕
i∈I

Mi with the canonical inclusions ι j : M j ,→
⊕
i∈I

Mi satisfying the following

universal property:

For any R-module N and R-module homomorphisms f j : M j → N , there exists a unique R-module homomorphism
σ :

⊕
i∈I

Mi → N such that f j =σ◦ ι j .

N
∏
i∈I

Mi

M j

∃! σ

f j
π j

N
⊕
i∈I

Mi

M j

f j

∃!σ

ι j
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Lemma 4.2.2. Existence of Products and Coproducts

Let {Mi }i∈I be a the family of R-modules. Then the product
∏
i∈I

Mi and the coproduct
⊕
i∈I

Mi exists in R-Mod.

Remark. Products are special cases of limits, and coproducts are speccial cases of colimits. In general, the small limits and small
colimits exist in R-Mod. Therefore the category R-Mod is complete and cocomplete.

Proposition 4.2.3. Finite Product and Coproduct Coincide

Let {Mi }i∈I be a the family of R-modules, where I is a finite index set. Then the product
∏
i∈I

Mi and the coproduct
⊕
i∈I

Mi

coincide.

Remark. Let M and N be R-modules. The product ans coproduct of M and N concide. It is called a biproduct or a direct sum of
M and N , and is denoted by M ⊕N .

4.2.2 Kernels and Cokernels

In set-theoretic language, the cokernel of a morphism f : A → B is the quotient object coker f := B/im f . coker f may not exist. For
example, if f is a ring homomorphism, then im f is generally not an ideal of B . However, the cokernels always exist in R-Mod. Below
we shall give a categorical description of kernels and cokernels.

Definition 4.2.4. (Categorical) Kernels and Cokernels

Let ϕ : M → N be an R-module homomorphism.

The kernel of ϕ is the R-module homomorphism kerϕ : K → M satisfying the following universal property:

For any R-module P and R-module homomorphism σ : P → M such that ϕ◦σ= 0, there exists a unique R-module homomor-
phism σ̃ : P → K such that σ= kerϕ◦ σ̃.

We say that kerϕ exhibits K as the kernel of ϕ. The universal property essentially says that ϕ ◦σ = 0 implies that σ factors
through the kernel of ϕ.

The cokernel of ϕ is the R-module homomorphism cokerϕ : N →C satisfying the following universal property:

For any R-module P and R-module homomorphism σ : N → P such that σ◦ϕ = 0, there exists a unique R-module homomor-
phism σ̃ : C → P such that σ= σ̃◦cokerϕ.

We say that cokerϕ exhibits C as the cokernel ofϕ. The universal property essentially says that σ◦ϕ= 0 implies that σ factors
through the cokernel of ϕ.

P M N

K

σ ϕ

∃! σ̃
kerϕ

0

M N P

C

ϕ

0

cokerϕ ∃! σ̃

σ

Remark. In the categorical language, the image of ϕ is defined by imϕ := ker(cokerϕ). The coimage of ϕ is defined by coimϕ :=
coker(kerϕ).

The following lemma is straightforward.

Lemma 4.2.5. Existence of Kernels and Cokernels

Let ϕ : M → N be an R-module homomorphism. Then the kernel kerϕ : K → M and the cokernel cokerϕ : N → C exist in
R-Mod.

Lemma 4.2.6

Let ϕ : M → N be an R-module homomorphism.

1. ϕ is a monomorphism if and only if it is the kernel of some R-module homomorphism;

2. ϕ is an epimorphism if and only if it is the cokernel of some R-module homomorphism.
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Corollary 4.2.7

1. Every kernel in R-Mod is the kernel of its cokernel;

2. Every cokernel in R-Mod is the cokernel of its kernel.

4.2.3 Abelian Categories

Definition 4.2.8. Ab-Enriched Categories, Additive Categories, Pre-Abelian Categories, Abelian Categories

Let C be a locally smalla category. Consider the following properties:

(1) Every Hom set in C is equipped with the structure of an Abelian group, such that the composition

Hom(X ,Y )×Hom(Y , Z ) → Hom(X , Z )

is Z-bilinear.

(2) The zero object 0 exists in C.

(3) Finite products and coproducts exist in C.

(4) Kernels and cokernels exist in C.

(5) Every monomorphism is a kernel, and every epimorphism is a cokernel.

We say that C is

• Ab-enriched, if it satisfies (1);

• additive, if it satisfies (1)-(3);

• pre-Abelian, if it satisfies (1)-(4);

• Abelian, if it satisfies (1)-(5).

aInformally, every Hom(X ,Y ) is a set.

Remark. Abelian categories can be viewed as a vast generalisation of the category of Abelian groups Ab.

Corollary 4.2.9. R-Mod is Abelian

R-Mod is an Abelian Category.

Remark. The following powerful theorem states that, in most cases working in Abelian categories are the same as working in R-Mod.
A sketch of proof can be found in Charles Weibel’s An Introduction to Homological Algebra, §1.6.

Theorem 4.2.10. Freyd-Mitchell Embedding Theorem

If A is a smalla Abelian category, then there is a (not necessarily commutative) ring R and an exactb, fully faithful functor from
A into R-Mod, which embeds A as a full subcategory in the sense that HomA(M , N ) ∼= HomR (M , N ).

aInformally, the class of morphisms Mor(A) is a set.
bSee Definition ??.

4.3 Exact Sequences

4.3.1 Chain Complexes and Exact Sequences
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Definition 4.3.1. Chain Complexes, Exactness

A chain complex (M•,d•) of R-modules is a sequence

· · · Mi+1 Mi Mi−1 · · ·di+1 di

such that di ◦di+1 = 0. d• are called the differential maps.

Note that di ◦di+1 = 0 is equivalent to imdi+1 ⊆ kerdi . We say that the sequence is exact at Mi if imdi+1 = kerdi .a

aIn a more “categorical” description, the exactness means that di+1 = kerdi and di = cokerdi+1.

It is immediate from the definition that:

• The chain 0 A B · · ·f
is exact at A if and only if f is a monomorphism;

• The chain · · · A B 0
f

is exact at B if and only if f is an epimorphism;

• The chain 0 A B 0
f

is exact at A and B if and only if f is an isomorphism.

Definition 4.3.2. Short Exact Sequence

The following sequence is called a short exact sequence if it is exact at A, B and C .

0 A B C 0
f g

Equivalently, f is a monomorphism, g is an epimorphism, and ker g = im f .

Short exact sequences are ample in R-Mod.

Example 4.3.3. Examples of short exact sequences

1. Let ϕ : M → N be a R-module homomorphism. Then we have the short exact sequence:

0 kerϕ M imϕ 0

2. Let M be an R-module and N be a submodule of M . Then we have the short exact sequence:

0 N M M/N 0ι π

where ι : N → M is the inclusion and π : M → M/N is the quotient map.

3. Let M1 and M2 be R-modules. We have the short exact sequence:

0 M1 M1 ⊕M2 M2 0
ι1 π2

where ι1 : M1 → M1 ⊕M2 is the inclusion and π2 : M1 ⊕M2 → M2 is the projection.

Remark. Let ϕ : M → N be a R-module homomorphism. In fact we can construct a slightly longer exact sequence:

0 kerϕ M N cokerϕ 0
ϕ
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Definition 4.3.4. Splitting Short Exact Sequences

We say that the short exact sequence

0 A B C 0
f g

splits, if there is an isomorphism of short exact sequences given by

0 A B C 0

0 M M ⊕N N 0

f g

ι π
∼ ∼ ∼

In particular, B ∼= A⊕C as R-modules.

Example 4.3.5. Non-Example of Splitting Short Exact Sequence

The following sequence is exact but does not split:

0 Z Z Z/2Z 0·2

Theorem 4.3.6. Splitting Lemma

Consider the short exact sequence of R-modules:

0 A B C 0
f g

The following are equivalent:

1. There exists a retraction r : B → A such that r ◦ f = idA ;

2. There exists a section s : C → B such that g ◦ s = idC ;

3. The short exact sequence splits.

4.3.2 Diagram Chase

We present two crucial lemmata. Their proofs illustrate the principle of diagram chase.

Theorem 4.3.7. Snake Lemma

Suppose that we have the following commutative diagram:

M M ′ M ′′ 0

0 N N ′ N ′′

ϕ ϕ′ ϕ′′

where the rows are exact sequences. Then there is a long exact sequence

kerϕ kerϕ′ kerϕ′′ cokerϕ cokerϕ′ cokerϕ′′δ

Remark. δ : kerϕ′′ → cokerϕ is called the connecting map.

Proof.
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kerϕ kerϕ′ kerϕ′′

M M ′ M ′′ 0

0 N N ′ N ′′

cokerϕ cokerϕ′ cokerϕ′′

ϕ ϕ′ ϕ′′
δ

Theorem 4.3.8. Five Lemma

Suppose that we have the following commutative diagram:

M1 M2 M3 M4 M5

N1 N2 N3 N4 N5

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

where the rows are exact sequences.

1. If ϕ1 is an epimorphism, and ϕ2,ϕ4 are monomorphisms, then ϕ3 is a monomorphism;

2. If ϕ5 is a monomorphism, and ϕ2,ϕ4 are epimorphisms, then ϕ3 is an epimorphism;

3. In particular, ifϕ1 is an epimorphism,ϕ5 is a monomorphism, andϕ2,ϕ4 are isomorphisms, thenϕ2 is an isomorphism.

4.3.3 Exact Functors

Definition 4.3.9. Additive Functors

Let F : R-Mod→ S-Mod be a functor. We say that F is additive, if for all R-modules M and N ,

F : HomR (M , N ) → HomS (F (M),F (N ))

is a homomorphism of Abelian groups.

Definition 4.3.10. Exact Functors

Let F : R-Mod→ S-Mod be an additive functor. F is said to be

1. left exact, if for any exact sequence 0 A B C , the sequence 0 F (A) F (B) F (C )
is exact;

2. right exact, if for any exact sequence A B C 0 , the sequence F (A) F (B) F (C ) 0
is exact;

3. exact, if it is both left and right exact.

Proposition 4.3.11. Characterisations of Exact Functors

Let F : R-Mod→ S-Mod be an additive functor. The following are equivalent:

1. F is exact;

2. F preserves any short exact sequence;

3. F preserves any exact sequence.
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4.3.4 Homology

Homology is a central tool in algebraic topology and algebraic geometry.

Definition 4.3.12. Homology

Let (M•,d•) be a chain complex of R-modules. We define the n-th homology to be the R-module:

Hn(M•) := kerdn

imdn+1

Remark. We note that the chain is exact at Mn if and only if Hn(M•) = 0. We can view the homology as a meaure of failure of the
chain from being exact.

Remark. Homology can be considered as a vast generalisation of the notion of kernels and cokernels. Take the chain complex

0 M1 M0 0
ϕ

Then H1(M•) = kerϕ and H0(M•) = cokerϕ.

Lemma 4.3.13

Let (M•,d•) be a chain complex of R-modules. Then dn : Mn → Mn−1 induces d̃n : cokerdn+1 → kerdn−1 such that Hn(M•) =
ker d̃n and Hn−1(M•) = coker d̃n .

Definition 4.3.14. Chain maps

Let (M•,d•) and (N•,d ′•) be two chain complexes. A morphism or chain map of chain complexes f• : (M•,d•) → (N•,d ′•) is a
family of R-module homomorphisms fi : Mi → Ni such that the following diagram commutes:

· · · Mi+1 Mi Mi−1 · · ·

· · · Ni+1 Ni Ni−1 · · ·

di+1 di

d ′
i+1 d ′

i

fi+1 fi fi−1

Remark. The chain complexes of R-modules form a category Ch(R-Mod), whose morphisms are chain maps.

Lemma 4.3.15. Ch(R-Mod) is Abelian

The category Ch(R-Mod) of chain complexes of R-modules is an Abelian category.

Lemma 4.3.16

Let f• : (M•,d•) → (N•,d ′•) be a chain map between chain complexes of R-modules. Then f• induces the R-module homomor-
phism Hn( f ) : Hn(M•) → Hn(N•).

In particular, the n-th homology Hn is a covariant functor from Ch(R-Mod) to R-Mod.

Theorem 4.3.17. Long Exact Sequence of Homology

A short exact sequence of chain complexes of R-modules

0 A• B• C• 0
f• g•

induces a long exact sequence of homology

· · · Hn(A•) Hn(B•) Hn(C•)

Hn−1(A•) Hn−1(B•) Hn−1(C•) · · ·

δn
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Remark. The long exact sequence can be represented by the exact triangle:

H•(C•)

H•(A•) H•(B•)

−1

The theorem can also be drawn as three-dimensional commutative diagrams:

Cn Hn(C•)

An Bn Hn(A•) Hn(B•)

Cn−1 Hn−1(C•)

An−1 Bn−1 Hn−1(A•) Hn−1(B•)

δn

δn−1

δn+1

0

0

0

H•
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Chapter 5

Linear Algebra

5.1 Free Modules and Finitely Generated Modules

5.1.1 Free Modules and Vector Spaces

5.1.2 Cayley-Hamilton Theorem

5.2 Sturcture Theorem for Modules over PID

5.2.1 Smith Normal Form

5.2.2 Classification Theorem

5.2.3 Rational Canonical Form

5.2.4 Jordan Normal Form

5.3 Tensor Product

5.3.1 Constructions of Tensor Product

5.3.2 Flatness

5.3.3 Multilinear Algebra

5.4 Hom and Duality

5.4.1 Dual Functor

5.4.2 Tensor-Hom Adjunction

5.5 Projective and Injective Modules

5.5.1 Projective Modules

5.5.2 Injective Modules

5.5.3 Enough Injectives in R-Mod

5.5.4 Projective and Injective Resolutions

5.6 Tor and Ext Functors

5.6.1 δ-Functors

5.6.2 Derived Functors

5.6.3 Tor and Ext

5.7 Balancing Tor and Ext

5.7.1 Mapping Cones

5.7.2 Double Complexes

5.7.3 Balancing Tor

5.7.4 Balancing Ext



Chapter 6

Commutative Algebra

6.1 Chain Conditions and Noetherian Rings

6.1.1 Chain Conditions

Definition 6.1.1. Ascending and Descending Chain Conditions

Suppose that R is a ring. We say that (the ideals of) R satisfy the ascending (resp. descending) chain condition, if any ascending
(resp. descending) chain of ideals {In}n∈N eventually stablises.

Suppose that M is a R-module. Similarly we can define the ascending (resp. descending) chain condition for the submodules
of M .

Proposition 6.1.2. Chain Conditions and Exact Sequences

Let R be a CRI. Suppose that we have a short exact sequence of R-modules:

0 M ′ M M ′′ 0

Then M satisfies the ascending (resp. descending) chain condition if and only if both M ′ and M ′′ satisfy the ascending (resp.
descending) chain condition.

Definition / Proposition 6.1.3. Noetherian Rings

Suppose that R is a CRI. The following are equivalent:

1. every ideal of R is finitely generated;

2. the ideals of R satisfy the ascending chain condition;

3. every non-empty set of ideals of R has a maximal element.

If R satisfies any of the above conditions, then we say that R is a Noetherian ring.

Definition / Proposition 6.1.4. Noetherian Modules

Suppose that R is a CRI and M is a R-module. The following are equivalent:

1. every submodule of M is finitely generated;

2. the submodules of M satisfy the ascending chain condition;

3. every non-empty set of submodules of M has a maximal element.

If M satisfies any of the above conditions, then we say that M is a Noetherian module.

Proposition 6.1.5. Quotient and Fraction Ring of Noetherian Rings

Suppose that R is a Noetherian ring,

1. For I /R, the quotient ring R/I is also Noetherian.

2. For a multiplicatively closed subset S ⊆ R, the ring of fractions S−1R is also Noetherian.
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Proposition 6.1.6. Modules over Noetherian Rings

Suppose that M is a finitely generated module over a Noetherian ring R, then M is a Noetherian module.

6.1.2 Properties of Noetherian Rings
Theorem 6.1.7. Hilbert’s Basis Theorem

Suppose that R is a Noetherian ring. Then the polynomial ring R[x] is also Noetherian.

Corollary 6.1.8. Polynomial Ring R[x1, ..., xn]

If R is a Noetherian ring, then R[x1, ..., xn] is also Noetherian.

Lemma 6.1.9. Artin-Tate Lemma

Suppose that R ⊆ S ⊆ T are ring extensions, where R is Noetherian. If T is finitely generated as a R-algebra and is finitely
generated as a S-module, then S is finitely generated as a R-algebra.

Theorem 6.1.10. Hilbert’s Weak Nullstellensatz

Suppose that F ⊆ K is a field extension. If K is a finitely generated F -algebra, then F ⊆ K is a finite extension.

6.2 Localisation of Rings and Modules

We have introduced the concept of localisation of rings in Section 1.5.3. We shall further develop this idea and extend it to modules
in this section.

Definition / Proposition 6.2.1. Modules over Ring of Fractions

Suppose that R is a CRI, and S ⊆ R is multiplicatively closed. Let M be a R-module such that, for each s ∈ S, the scalar mul-
tiplication m 7→ sm is an isomorphism of M . Then there exists a unique S−1R structure on M such that (r /1R )m = r m for all
m ∈ M . The resulting S−1R-module is denoted by S−1M .

Proposition 6.2.2. Localisations Preserve Exactness

Suppose that R is a CRI, and S ⊆ R is multiplicatively closed. Consider the complex of R-modules:

· · · Mi−1 Mi Mi+1 · · ·ϕi−1 ϕi

The sequence is exact at Mi if and only if the following complex of S−1R-modules is exact at S−1Mi :

· · · S−1Mi−1 S−1Mi S−1Mi+1 · · ·(ϕi−1)S (ϕi )S

Proposition 6.2.3

Suppose that R is a CRI, and S ⊆ R is multiplicatively closed. Let M be an R-module. There exists an isomorphism of S−1R-
modules f : S−1R ⊗R M → S−1M given by f (r /s ⊗R m) = r m/s.

Corollary 6.2.4. Flatness of Localisations

Suppose that R is a CRI, and S ⊆ R is multiplicatively closed. Let M be an R-module. The S−1R-module S−1M is flat.

A property ψ of a CRI R (or a R-module M) is said to be a local proerty, if R (or M) has ψ if and only if RP (or MP ) has ψ for all prime
ideals P ∈ SpecR.
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Proposition 6.2.5

Suppose that R is a CRI. Let I , J be ideals of R. The following are equivalent:

1. I = J ;

2. I RP = JRP for all P ∈ SpecR;

3. I RM = JRM for all M ∈ MaxSpecR.

6.3 Primary Decomposition

Definition 6.3.1. Primary Ideals

[] Suppose that R is a CRI. A non-trivial ideal I is said to be primary, if all zero-divisors of R/I are nilpotent.

Proposition 6.3.2. Radical of Primary Ideals

Suppose that R is a CRI. If I is a primary ideal of R, then
p

I is the smallest prime ideal containing I .

Remark. If I is a primary ideal and
p

I = P is a prime ideal, we also say that I is P-primary.

Proposition 6.3.3

Suppose that R is a CRI and I /R. If
p

I is a maximal ideal of R, then I is a primary ideal.

Lemma 6.3.4

Suppose that R is a CRI and I is a P-primary ideal.

1. For r ∈ I , (I : r ) = R;

2. For r ∉ I ,
p

(I : r ) = P ;

3. For r ∉ P , (I : r ) = I .

Lemma 6.3.5

Suppose that R is a CRI and P ∈ SpecR. If Q1, ...,Qn are P-primary ideals, then the intersection
n⋂

k=1
Qk is also P-primary.

Definition 6.3.6. Primary Decomposition

Suppose that R is a CRI and I /R. We say that I is decomposable, if there is a set of primary ideals Q1, ...,Qn of R such that

I =
n⋂

k=1
Qk . The set is called a primary decomposition of I . The decomposition is said to be minimal, if

1. All radicals
√

Qk are distinct;

2. For each k ∈ {1, ...,n},
⋂
j 6=k

Q j 6⊆Qk .

Remark. Every decomposable ideal has a minimal primary decomposition.

Theorem 6.3.7. First Uniqueness Theorem of Primary Decomposition

Suppose that R is a CRI, and I /R is decomposable. Let I =
n⋂

k=1
Qk be a minimal primary decomposition of I . Let Pi := √

Qi .

Then the set {P1, ...,Pn} of prime ideals coincides with the set {
p

(I : r ) : r ∈ R} and hence is independent of the choice of{
Q1, ...,Qn

}
.
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Corollary 6.3.8. Primary Decomposition of Radical Ideals

Suppose that R is a CRI, and I is a decomposable radical ideal of R. If I =
n⋂

k=1
Qk is a primary decomposition of I , then Q1, ...,Qn

are prime ideals.

Theorem 6.3.9. Lasker-Noether Theorem

Suppose that R is a Noetherian ring. Then every ideal of R is decomposable.

Corollary 6.3.10. Minimal Prime Ideals in Noetherian Ring

Suppose that R is a Noetherian ring. Then R has finitely many minimal prime ideals

6.4 Integral Extension

6.4.1 Integral Dependence

In this section we focus on a special type of ring extensions R ⊆ S, integral extensions, which is the generalisation to algebraic field
extensions.

Definition 6.4.1. Integral Elements, Integral Extensions

Suppose that R ⊆ S is a ring extension. α ∈ S is said to be integral over R, if there exists a monic polynomial f ∈ R[x] such that
f (α) = 0.

S is said to integral over R if every α ∈ S is integral over R.

Proposition 6.4.2. Characterisations of Integral Elements

Suppose that R ⊆ S is a ring extension. The following are equivalent:

1. α ∈ S is integral over R;

2. R[α] is a finitely generated R-module;

3. There exists a faithful R[α]-module M which is finitely generated as an R-module.

Proposition 6.4.3. Integral Closure forms a Subring

Suppose that R ⊆ S is a ring extension. The set of integral elements of S over R is a subring of S, and is called the integral
closure of R in S.

Definition 6.4.4. Integrally Closed Domains

Suppose that R ⊆ S is a ring extension. We say that R is integrally closed in S, if the integral closure of R in S is R itself.

If R is an integral domain, we say that R is integrally closed (without qualifications), if R is integrally closed in its field of
fractions.

Corollary 6.4.5. Transitivity of Integral Dependence

Suppose that R ⊆ S ⊆ T are ring extensions. If T is integral over S, and S is integral over R, then T is integral over R.

Corollary 6.4.6. Finite Type + Integral ⇐⇒ Finite

Suppose that f : R → S is a ring homomorphism, so that S is an R-algebra. If S is a finite-generated as an R-algebra and S is
integral over f (A), then S is a finitely generated as an R-module.
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Proposition 6.4.7. Quotient and Fraction Ring of Integral Extensions

Suppose that R ⊆ S is an integral ring extension.

1. For J /S, let I := J ∩R /R. Then S/J is integral over R/I .

2. For a muliplcatively closed subset T ⊆ R, T −1S is integral over T −1R.

Proposition 6.4.8. Integral Closure is a Local Property

Suppose that R is an integral domain. The following are equivalent:

1. R is integrally closed;

2. RP is integrally closed for all P ∈ SpecR;

3. RM is integrally closed for al M ∈ MaxSpecR.

6.4.2 Prime Ideals in Integral Extensions

Suppose that R ⊆ S is an integral ring extension. The inclusion map ι : R ,→ S induces the pull-back of prime spectrum Spec(ι) :
SpecS → SpecR. We aim to study the relation between SpecR and SpecS.

Lemma 6.4.9

Suppose that R ⊆ S is an integral extension and R is an integral domain. Then R is a field if and only if S is a field.

Corollary 6.4.10

Suppose that R ⊆ S is an integral extension. Let Q ∈ SpecS. Then Q ∈ MaxSpecS if and only if P :=Q ∩R ∈ MaxSpecR.

Theorem 6.4.11. Lying-Over Theorem

Suppose that R ⊆ S is an integral ring extension. Then Spec(ι) : SpecS → SpecR is surjective and closed (map closed sets to
closed sets) under Zariski topology.

Corollary 6.4.12. Going-Up Theorem

Suppose that R ⊆ S is an integral extension. Suppose that P1 ⊆ P2 are two prime ideals of R. Let Q1 ∈ SpecS such that P1 =
Q1 ∩R. Then there exists Q2 ∈ SpecS such that P2 =Q2 ∩R and Q1 ⊆Q2.

Proposition 6.4.13. Spec(ι) has finite fibre

Suppose that R ⊆ S is an integral ring extension. For any P ∈ SpecR, Spec(ι)−1(P ) is finite.

6.5 Dimension Theory

6.5.1 Krull’s Dimension

Definition 6.5.1. Height, Krull’s Dimension

Suppose that R is a CRI. For P ∈ SpecR, we define the height ht(P ) of P in R to be the largest integer n such that there exists a
chain of prime ideals:

{0} = P0 ( P1 ( · · ·( Pn = P

The Krull’s dimension of R is defined by
dimR := sup

{
ht(P ) : P ∈ SpecR

}
We collect some elementary facts about the dimension:
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Proposition 6.5.2. Properties of Height and Dimension

Suppose that R is a CRI, and N := N (R) is its nilradical. Then

1. dimR = dimR/N ;

2. For P ∈ SpecR, ht(P ) = ht(P/N );

3. dimR = sup
{
ht(P ) : P ∈ MaxSpecR

}
.

Proposition 6.5.3. Dimension of Integral Extensions

Suppose that R ⊆ S is an integral extension. Then dimR = dimS.

6.5.2 Graded Rings and Modules

Definition 6.5.4. Graded Rings and Modules

Suppose that R is a CRI. A grading of R is a sequence (Rn)n∈N of additive subgroups of R such that R =
∞⊕

n=0
Rn and Ri ·R j ⊆ Ri+ j .

In such case R0 is a subring of R and R has a natural R0-module structure.

Suppose that M is a module over the graded ring R. A grading of M (with respect to the grading (Rn)n∈N) is a sequence (Mn)n∈N

of additive subgroups of M such that M =
∞⊕

n=0
Mn and Ri ·M j ⊆ Mi+ j .

Proposition 6.5.5. Noetherian Graded Rings

Suppose that R is a graded ring with grading (Rn). Then R is Noetherian if and only if R0 is Noetherian and R is finitely
generated as an R0-algebra.

Definition 6.5.6. I -Filtration of Modules, Rees Algebra

Suppose that R is a CRI and I /R. The descending chain of M-modules

M = M0 ⊇ M1 ⊇ ·· ·

is said to be an I -filtration, if I Mi ⊆ Mi+1 for all i ∈N.

Consider the direct sum of R-modules: R] :=
∞⊕

n=0
I n . It has a natural structure of a graded ring and an R-module, and is called

the Rees algebra associated to R and I . The direct sum M ] :=
∞⊕

n=0
M n is naturally an R]-module.

Theorem 6.5.7. Artin-Rees Lemma

Suppose that R is a Noetherian ring and I /R. Let M be a finitely generated R-module and (Mn) be a stable I -filtration on M .
For a submodule N É M , the filtration (N ∩Mn) is a stable I -filtration on N .

Theorem 6.5.8. Krull’s Intersection Theorem

Suppose that R is a Noetherian ring and I /R. Let M be a finitely generated R-module. Then

∞⋂
n=0

I n M = ⋃
r∈1+I

kerrM

where rM is the map m 7→ r m.



64 CHAPTER 6. COMMUTATIVE ALGEBRA

Corollary 6.5.9

Suppose that R is a Noetherian ring and I /R. Then
∞⋂

n=0
I n = {0}.

Corollary 6.5.10

Suppose that R is a Noetherian ring and I /R. Let M be a finitely generated R-module. If I ⊆ J (R), then
∞⋂

n=0
I n M = {0}.

6.5.3 Artinian Rings

Definition 6.5.11. Artinian Rings

A ring R is said to be an Artinian ring, if the ideals of R satisfy the descending chain condition.

Proposition 6.5.12. Artinian Local Rings

Suppose that R is a Noetherian local ring with the unique maximal ideal M . The following are equivalent:

1. dimR = 0;

2. M is the nilradical of R;

3. M n = 0 for some n Ê 1;

4. R is Artinian.

Corollary 6.5.13. Artinian = Noetherian + Dimension 0

R is an Artinian ring if and only if R is a Noetherian ring of dimension 0.

Theorem 6.5.14. Sturcture Theorem of Artinian Rings

Suppose that R is an Artinian ring. Then R is uniquely (up to isomorphism) a finite product of Artinian local rings.

6.5.4 Dimension of Noetherian Rings
Theorem 6.5.15. Krull’s Principal Ideal Theorem

uppose that R is a Noetherian ring. Let f ∈ R be a non-unit and let P be a minimal prime ideal among those containing f .
Then ht(P ) É 1.

Corollary 6.5.16

Suppose that R is a Noetherian ring. Let f1, ..., fk ∈ R be non-units and let P be a minimal prime ideal among those containing〈
f1, ..., fk

〉
. Then ht(P ) É k.

Remark. The corollary shows that every prime ideal in a Noetherian ring has finite height. Moreover, if R is a local ring, then
dimR <∞.

Theorem 6.5.17. Dimension of Noetherian Polynomial Rings

Suppose that R is a Noetherian ring. Then dimR[x] = dimR +1.

Corollary 6.5.18

Suppose that R is a Noetherian ring. Then dimR[x1, ..., xn] = dimR +n.
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Theorem 6.5.19. Dimension and Transcendence Degree

Suppose that F is a field and R is a finitely generated F -algebra. Suppose that F is an integral domain with field of fractions K .
Then we have

dimR = tr.deg(K | F ) <∞

6.6 Dedekind Domains

Definition 6.6.1. Dedekind Domains

A ring R is called a Dedekind domain, if it is an integrally closed Noetherian integral domain of dimension 1.

Proposition 6.6.2

Suppose that R is a Dedekind domain.

1. All non-zero prime ideals of R are maximal;

2. If Q1, Q2 are primary ideals of R such that
√

Q1 6=
√

Q2, then Q1 and Q2 are coprime.

Corollary 6.6.3

Suppose that R is a Dedekind domain. If I /R has the minimal primary decomposition I =
n⋂

k=1
Qk , then

n⋂
k=1

Qk =
n∏

k=1
Qk .

Proposition 6.6.4

Suppose that R is a Noetherian local domain of dimension 1, with the unique maximal ideal M . The following are equivalent:

1. R is integrally closed;

2. M is a principal ideal;

3. For every non-zero I /R, I = M n for a unique n ∈N.

Corollary 6.6.5

Suppose that R is a Dedekind domain.

1. For non-zero P ∈ SpecR, RP is a principal ideal domain.

2. If Q is a P-primary ideal of R, then Q = P n for some n.

Theorem 6.6.6. Prime Decomposition in Dedekind Domain

In a Dedekind domain, every ideal has a unique decomposition into products of distinct prime ideals, which is unique up to
reindexing.

Proposition 6.6.7. Ideal Generators in Dedekind Domain

Every ideal in a Dedekind domain is generated by at most two elements.

6.7 Hilbert’s Nullstellensatz

6.7.1 Noether’s Normalisation Lemma

We have already presented a proof of Weak Nullstellensatz using Artin-Tate Lemma in Theorem 6.1.10. In this section we present
another proof using the following Noether’s Normalisation Lemma:
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Theorem 6.7.1. Noether’s Normalisation Lemma

Suppose that F is a field and R is a finitely generated F -algebra. Then there exists an injective homomorphism of F -algebras:

F [x1, ..., xn] ,→ R

such that R is finitely generated as an F [x1, ..., xn]-module.

Proof of Weak Nullstellensatz 6.1.10 from Noether’s Normalisation Lemma.

6.7.2 Nullstellensatz in Algebraic Geometry

Fix F to be an algebraically closed field. We study the affine space F n and the action of the polynomial ring R := F [x1, ..., xn] acting
on it.

Definition 6.7.2. Algebraic Sets, Vanishing Ideals

For S ⊆ F [x1, ..., xn], we define the algebraic set of S to be

V (S) := {
(a1, ..., an) ∈ F n : ∀ f ∈ S f (a1, ..., an) = 0

}
For X ⊆ F n , we define the vanishing ideal of X to be

I (X ) := {
f ∈ F [x1, ..., xn] : ∀ (a1, ..., an) ∈ Y f (a1, ..., an) = 0

}
It is easy to verify that I (X ) is an ideal in F [x1, ..., xn].

Similar to Galois correspondence in Section 3.4, we have the following correspondence between V and I :

Proposition 6.7.3

Let S ⊆ F [x1, ..., xn] and X ⊆ F n .

1. V (F [x1, ..., xn]) = F n and I (F n) = F [x1, ..., xn];

2. V (S) = V (〈S〉) and I (X ) = 〈I (X )〉;
3. For S ⊆ T ⊆ F [x1, ..., xn], we have V (S) ⊇ V (T );

4. For X ⊆ Y ⊆ F n , we have I (X ) ⊇I (Y );

5. S ⊆IV (S) and X ⊆ V I (X );

6. S = V IV (S) and X =IV I (X ).

Proposition 6.7.4. Maximal Ideals of F [x1, ..., xn]

Let F be an algebraically closed field. I is a maximal ideal of F [x1, ..., xn], if and only if there exists (a1, ..., an) ∈ F n such that

I = 〈x1 −a1, ..., xn −an〉

Moreover, f ∈ 〈x1 −a1, ..., xn −an〉 if and only if f (a1, ..., an) = 0.

Theorem 6.7.5. Hilbert’s Strong Nullstellensatz

Let F be an algebraically closed field. Let I /F [x1, ..., xn]. Then
p

I =IV (I ) in F n .

Remark. The Strong Nullstellensatz tell us that the algebraic sets in F n are in bijective correspondence with the radical ideals in
F [x1, ..., xn].

6.7.3 Jacobson Rings
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