Peize Liu
St. Peter’s College
University of Oxford

Problem Sheet 1
B3.3: Algebraic Curves

25 January, 2021



Question 1

Embed R? in the projective plane RP2 by (x,y) — [1, x, yl. Find the point of intersection in RP?2 of the projective lines corre-
sponding to the parallel lines y = mx and y = mx + ¢ in R2.

Proof. The embedding (x,y) — [1:x:y]l maps (0,0)to[1:0:0],(1,m)to[1:1:m], (0,c0)to[1:0:c],and (1,m+c)to[l:1:m+c].
The projective line corresponding to y = mx is spanned by (1,0,0) and (1,0, m) in R3, and has homogeneous equation

mx—-y=0
The projective line corresponding to y = mx + ¢ is spanned by (1,0, ¢) and (1,1, m + ¢) in R3, and has homogeneous equation
cw+mx—y=0

(In fact the line ax + by + ¢ = 0 in R? corresponds to the projective line cw + ax + by = 0 in RP?.)

Combining the two equations we deduce that the only point of intersection of the two projective lines is [0:1: m] € RP?. O

Question 2

Let Z; be the field {0,1}. Show that the number of points in n-dimensional projective space over Z, is 2!

projective lines are there in this space?

— 1. How many

Proof. See Q3 for the general discussion.

1
For p =2, |Z,P"| = 2"**! — 1. The number of projective lines in Z,P" is 5(2"+1 -1)@2"-1). O

Question 3

What are the answers in Q2 if you instead work over the field Z,, with p elements, where p is prime?

Proof. First we count |Z,P"|. The (n + 1)-dimensional vector space Z”}“ has cardinality p"*!. Each vector v e ZZ“ spans a one-
dimensional subspace:
() ={0,v,2v,...,(p - 1)v}

Each one-dimensional subspace contains p — 1 non-zero vectors in ZZ“, and two distinct one-dimensional subspace only

intersect at the origin. Therefore we deduce that

pn+1 -1

1Z,P"| = ———
p-1

Next we count the projective lines in Z,P". Note that every projective line is uniquely determined by a two-dimensional

subspace of Zz“. For any two distinct points (v),(w) in ZZH’ there is a unique projective line (v,w) that contains the two

points. The total number of such choices is

|Zp[FD”| _ppn+l_1pn_1
2 | 2 p-1 p-1

For each projective line in Z,P", the number of points on the line is

2
-1
1z,p'| =2 = p+l
p_

Hence each projective line is counted

p+1 _1
i

times repeatedly. We deduce that the number of projective lines in Z,P" is

(pn_ 1)(pn+l _ 1)
(p-D*p+1)




Question 4

Show that
[ ([z0, 211, [wo, w1]) — [20 Wo, —20 W1 — 21 Wy, 21 W1 ]

is a well-defined map from CP!' x CP! to CP?. Also show that this map is surjective. Is the corresponding map f : RP! x RP! —
RP? surjective?

Proof. For A € C\ {0}, we have [z : z1] = [Az9: Az1] and [wp : w1] = [Awp : Aw].

fAzg: Az1], [wo : wi]) = [Azowp : —Azowy — Az wy : Azywil = [zowo : —zowr — z1wo : z1wil = f([z0: z1], [wo : wnl);
fzo:z1], [Awg : Awn]) = [Azowg : —Azgwy — Azywy : Azywi] = [Zowo : —zowy — z1wo : zywil = f([z0: z1], [wo : unl)
Hence f: CP! x CP! — CP? is well-defined.

We shall show that f is surjective. That is, for any [a: b:c] € CP?, there exists [zg : z1], [wp : w1] € CP! such that
fllzo:z1l,lwo:unl) =la:b:c].

e Ifac #0:
By definition, we have zowg = a, zyw; = ¢, 2w + z1wp = —b. Let a := zgw; and P := zywy. Then a+ f = —b and
af = ac. Therefore a, B be the roots of the quadratic equation

X +bx+ac=0

which has two complex roots
_ —btVb*+4ac

a,
p 2

Now we can take [zg: z;] = [1 :g

=la:pl, [wy:un]= [1:%] =[a: a]. Then

flzo:z1],[wp: wl]):[az:—a(a+ﬁ):aﬁ]:[azzab:ac] =la:b:c]

as required.
e Ifeithera=0o0rc=0:

By symmetry we consider a # 0 and ¢ = 0. Note that the above construction where [z : z1] = [a: 8], [wy : w1] = [a: a]
still works.

e Ifa=c=0:

Here b # 0. We take [z : z1] = [0: vV/bil, [wg : w;] = [V/bi:0]. Then
fzo: 1), [wo : wr]) = 10:b:0]

as required.

The corresponding map from real projective spaces is not surjective. Consider the point [1: 1: 1] € RP?. As above, we see that
a:=zyw; and B := z; wy are the roots of the quadratic equation

P+x+1=0
But the equation has no real solutions. Hence we cannot find [z : 2], [wp : w1] € RP! such that

flzo:z1], [wo:wi]) =[1:1:1]. O

Question 5

Adapt the ideas from the lectures to show that complex projective space CP” is compact. What is the relationship between
this space and a sphere of appropriate dimension?



Proof. The proofwill depend on the definition of CP”. Here we starts from the algebraic definition: CP" is the set of one-dimensional
linear subspaces of C"**1,

First we note that every one-dimensional subspace of C**! is (v) for some v € C"*!\ {0}, and (v) = (w) if and only if there
exists A € C\ {0} such that v = Aw. Then CP”" is equivalent to the quotient set (C"*! \ {0})/ ~, where v ~ w if and only if there
exists A € C\ {0} such that v= Aw. In this way CP" has the quotient topology induced from the Euclidean topology of C"*!.

Let w : C""! — CP" be the quotient map. Consider the restriction /g1 : S?"*! — CP", where S?**! is the unit sphere
v

in C™1, 7|gene1 is surjective, because for any (v) € CP”, (v) = p(ﬂ) By Heine-Borel Theorem S” is compact. Hence
v

CP" = (S?**1) is compact, because 7 preserves compactness.

In fact, CP" is homeomorphic to §2n+ly . The sphere §27+L jg a (2m + 1)-dimensional real manifold. O

Question 6

Prove Pappus’s theorem by using the general position ideas outlined in lectures. First prove the theorem in the degenerate
case when A, B,C’, B are not in general position. Then assume these points are in general position and take them to be
[1,0,0],0,1,0],[0,0,1],[1,1,1] . Calculate the three intersections explicitly, verify they are collinear, and explain why this proves
the theorem in general.

Proof. The is the same question as Question 8 in ASO Projective Geometry Sheet 1.

If A, B,C’, B’ are not in general position, we may consider the case that C’ lies in the projective line ABC. The other cases are
similar.

If C' € ABC, then BC'nB'C=CA'nC'A=C. Then C and AB' n A’B are of course on the same projective line.
It follows from general position theorem that there exists a unique projective transformation such that
A~—[1,0,0, B~—[0,1,0], C'~—10,0,1] B ~—[1,1,1].
Clearly projective transformations preserve projective lines. So without loss of generality we can take
A=1[1,0,0], B=10,1,0], C'=[0,0,1 B'=1[1,1,1].
Since C € AB, C =[a, b,0] for some a, b€ F. Since A’ € C'B', A’ = [c: c:d] for some c,d € F. A direct calculation shows that:
x)=AB'NnA'B=[c:d:d] (y)=BC'nB'C=[0:b-a:-a] (zy=CA'nC'A=[(a—Db)c:0:-bd]
Then we have (b— a)x— dy+z=0. Hence AB'n A'B, BC'nB'C and CA' n C’ A are collinear. O



