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Question 1

Embed R2 in the projective plane RP2 by (x, y) 7→ [1, x, y]. Find the point of intersection in RP2 of the projective lines corre-
sponding to the parallel lines y = mx and y = mx + c in R2.

Proof. The embedding (x, y) 7→ [1 : x : y] maps (0,0) to [1 : 0 : 0], (1,m) to [1 : 1 : m], (0,c) to [1 : 0 : c], and (1,m + c) to [1 : 1 : m + c].
The projective line corresponding to y = mx is spanned by (1,0,0) and (1,0,m) in R3, and has homogeneous equation

mx − y = 0

The projective line corresponding to y = mx +c is spanned by (1,0,c) and (1,1,m+c) in R3, and has homogeneous equation

cw +mx − y = 0

(In fact the line ax +by + c = 0 in R2 corresponds to the projective line cw +ax +by = 0 in RP2.)

Combining the two equations we deduce that the only point of intersection of the two projective lines is [0 : 1 : m] ∈RP2.

Question 2

Let Z2 be the field {0,1}. Show that the number of points in n-dimensional projective space over Z2 is 2n+1 − 1. How many
projective lines are there in this space?

Proof. See Q3 for the general discussion.

For p = 2, |Z2P
n | = 2n+1 −1. The number of projective lines in Z2P

n is
1

3
(2n+1 −1)(2n −1).

Question 3

What are the answers in Q2 if you instead work over the field Zp with p elements, where p is prime?

Proof. First we count |ZpP
n |. The (n +1)-dimensional vector space Zn+1

p has cardinality pn+1. Each vector v ∈ Zn+1
p spans a one-

dimensional subspace:
〈v〉 = {

0,v,2v, ..., (p −1)v
}

Each one-dimensional subspace contains p −1 non-zero vectors in Zn+1
p , and two distinct one-dimensional subspace only

intersect at the origin. Therefore we deduce that

|ZpP
n | = pn+1 −1

p −1

Next we count the projective lines in ZpP
n . Note that every projective line is uniquely determined by a two-dimensional

subspace of Zn+1
p . For any two distinct points 〈v〉 ,〈w〉 in Zn+1

p , there is a unique projective line 〈v,w〉 that contains the two
points. The total number of such choices is (

|ZpP
n |

2

)
= p

2

pn+1 −1

p −1

pn −1

p −1

For each projective line in ZpP
n , the number of points on the line is

|ZpP
1| = p2 −1

p −1
= p +1

Hence each projective line is counted (
p +1

2

)
= 1

2
p(p +1)

times repeatedly. We deduce that the number of projective lines in ZpP
n is

(pn −1)(pn+1 −1)

(p −1)2(p +1)
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Question 4

Show that

f : ([z0, z1] , [w0, w1]) 7→ [z0w0,−z0w1 − z1w0, z1w1]

is a well-defined map from CP1 ×CP1 to CP2. Also show that this map is surjective. Is the corresponding map f :RP1 ×RP1 →
RP2 surjective?

Proof. For λ ∈C\ {0}, we have [z0 : z1] = [λz0 :λz1] and [w0 : w1] = [λw0 :λw1].

f ([λz0 :λz1], [w0 : w1]) = [λz0w0 : −λz0w1 −λz1w0 :λz1w1] = [z0w0 : −z0w1 − z1w0 : z1w1] = f ([z0 : z1] , [w0 : w1]);

f ([z0 : z1], [λw0 :λw1]) = [λz0w0 : −λz0w1 −λz1w0 :λz1w1] = [z0w0 : −z0w1 − z1w0 : z1w1] = f ([z0 : z1] , [w0 : w1])

Hence f :CP1 ×CP1 →CP2 is well-defined.

We shall show that f is surjective. That is, for any [a : b : c] ∈C P 2, there exists [z0 : z1] , [w0 : w1] ∈CP1 such that
f ([z0 : z1] , [w0 : w1]) = [a : b : c].

• If ac 6= 0:

By definition, we have z0w0 = a, z1w1 = c, z0w1 + z1w0 = −b. Let α := z0w1 and β := z1w0. Then α+β = −b and
αβ= ac. Therefore α,β be the roots of the quadratic equation

x2 +bx +ac = 0

which has two complex roots

α,β= −b ±
p

b2 +4ac
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Now we can take [z0 : z1] =
[

1 :
β

a

]
= [a :β], [w0 : w1] =

[
1 :

α

a

]
= [a :α]. Then

f ([z0 : z1] , [w0 : w1]) = [a2 : −a(α+β) :αβ] = [a2 : ab : ac] = [a : b : c]

as required.

• If either a = 0 or c = 0:

By symmetry we consider a 6= 0 and c = 0. Note that the above construction where [z0 : z1] = [a : β], [w0 : w1] = [a : α]
still works.

• If a = c = 0:

Here b 6= 0. We take [z0 : z1] = [0 :
p

bi], [w0 : w1] = [
p

bi : 0]. Then

f ([z0 : z1] , [w0 : w1]) = [0 : b : 0]

as required.

The corresponding map from real projective spaces is not surjective. Consider the point [1 : 1 : 1] ∈RP2. As above, we see that
α := z0w1 and β := z1w0 are the roots of the quadratic equation

x2 +x +1 = 0

But the equation has no real solutions. Hence we cannot find [z0 : z1] , [w0 : w1] ∈RP1 such that
f ([z0 : z1] , [w0 : w1]) = [1 : 1 : 1].

Question 5

Adapt the ideas from the lectures to show that complex projective space CPn is compact. What is the relationship between
this space and a sphere of appropriate dimension?
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Proof. The proof will depend on the definition ofCPn . Here we starts from the algebraic definition: CPn is the set of one-dimensional
linear subspaces of Cn+1.

First we note that every one-dimensional subspace of Cn+1 is 〈v〉 for some v ∈ Cn+1 \ {0}, and 〈v〉 = 〈w〉 if and only if there
exists λ ∈ C \ {0} such that v = λw. Then CPn is equivalent to the quotient set (Cn+1 \ {0})/ ∼, where v ∼ w if and only if there
exists λ ∈C\ {0} such that v =λw. In this way CPn has the quotient topology induced from the Euclidean topology of Cn+1.

Let π : Cn+1 → CPn be the quotient map. Consider the restriction π|S2n+1 : S2n+1 → CPn , where S2n+1 is the unit sphere

in Cn+1. π|S2n+1 is surjective, because for any 〈v〉 ∈ CPn , 〈v〉 = p

(
v

‖v‖
)
. By Heine-Borel Theorem Sn is compact. Hence

CPn =π(S2n+1) is compact, because π preserves compactness.

In fact, CPn is homeomorphic to S2n+1/ ∼. The sphere S2n+1 is a (2n +1)-dimensional real manifold.

Question 6

Prove Pappus’s theorem by using the general position ideas outlined in lectures. First prove the theorem in the degenerate
case when A,B ,C ′,B ′ are not in general position. Then assume these points are in general position and take them to be
[1,0,0],[0,1,0],[0,0,1],[1,1,1] . Calculate the three intersections explicitly, verify they are collinear, and explain why this proves
the theorem in general.

Proof. The is the same question as Question 8 in ASO Projective Geometry Sheet 1.

If A,B ,C ′,B ′ are not in general position, we may consider the case that C ′ lies in the projective line ABC . The other cases are
similar.

If C ′ ∈ ABC , then BC ′∩B ′C =C A′∩C ′A =C . Then C and AB ′∩ A′B are of course on the same projective line.

It follows from general position theorem that there exists a unique projective transformation such that

A 7→ [1,0,0], B 7→ [0,1,0], C ′ 7→ [0,0,1] B ′ 7→ [1,1,1].

Clearly projective transformations preserve projective lines. So without loss of generality we can take

A = [1,0,0], B = [0,1,0], C ′ = [0,0,1] B ′ = [1,1,1].

Since C ∈ AB , C = [a,b,0] for some a,b ∈ F . Since A′ ∈C ′B ′, A′ = [c : c : d ] for some c,d ∈ F . A direct calculation shows that:

〈x〉 = AB ′∩ A′B = [c : d : d ]
〈

y
〉= BC ′∩B ′C = [0 : b −a : −a] 〈z〉 =C A′∩C ′A = [(a −b)c : 0 : −bd ]

Then we have (b −a)x−dy+z = 0. Hence AB ′∩ A′B , BC ′∩B ′C and C A′∩C ′A are collinear.


