Peize Liu St. Peter's College University of Oxford

Problem Sheet 1

B8.1: Probability, Measure & Martingales

Grade: Alpha++
This is beauty. Your solutions are better than sample solutions.

П

Section 1

Question 1

Let Ω be a set.

- (a) Show that the collection of all sets $A \in \mathcal{P}(\Omega)$ such that either A or A^c is countable is a σ -algebra.
- (b) Give an example of two algebras \mathscr{F}_1 and \mathscr{F}_2 on $\Omega = \{1, 2, 3\}$ whose union $\mathscr{F}_1 \cup \mathscr{F}_2$ is *not* an algebra.
- (c) (Proof of Lemma 1.3) Suppose that $\{\mathscr{F}_j\}_{j\in J}$ is a non-empty family of σ -algebras on Ω . Prove that the intersection $\bigcap_{j\in J}\mathscr{F}_j$ is a σ -algebra on Ω .

Proof. (a) In this question **countable** means **at most countable**. Let \mathscr{F} be the collection.

- Since \emptyset is at most countable, $\emptyset \in \mathcal{F}$;
- For $A \in \mathcal{F}$, either A or $\Omega \setminus A$ is at most countable. Thus $\Omega \setminus A \in \mathcal{F}$;
- Let *I* be a countable index set. For $\{A_i : i \in I\} \subseteq \mathcal{F}$, let $I = J \cup K$ such that $\{A_i : i \in J\}$ and $\{\Omega \setminus A_i : i \in K\}$ are collections of at most countable sets. If $K = \emptyset$, then

$$\bigcup \{A_i : i \in I\} = \bigcup \{A_i : i \in J\}$$

is a countable union of at most countable sets and hence is at most countable. We deduce that $\bigcup \{A_i : i \in I\} \in \mathscr{F}$.

If $K \neq \emptyset$, then fix A_k such that $\Omega \setminus A_k$ is at most countable. We have

$$\Omega \setminus \bigcup \{A_i : i \in I\} = \bigcap \{\Omega \setminus A_i : i \in I\} \subseteq \Omega \setminus A_k$$

 $\Omega \setminus \bigcup \{A_i : i \in I\}$ is a subset of an at most countable set and hence is at most countable. We deduce that $\bigcup \{A_i : i \in I\} \in \mathscr{F}$.

We conclude that \mathcal{F} is a σ -algebra.

(b) On $\Omega = \{1, 2, 3\}$, the following are algebras:

$$\mathscr{F}_1 = \{\varnothing, \{1\}, \{2,3\}, \{1,2,3\}\}\$$
 $\mathscr{F}_2 = \{\varnothing, \{2\}, \{1,3\}, \{1,2,3\}\}\$

However, $\mathscr{F}_1 \cup \mathscr{F}_2 = \{\varnothing, \{1\}, \{2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}\$ is not an algebra, because $\{1\}, \{2\} \in \mathscr{F}_1 \cup \mathscr{F}_2$ and $\{1,2\} = \{1\} \cup \{2\} \notin \mathscr{F}_1 \cup \mathscr{F}_2$.

- (c) For $j \in J$, $\emptyset \in \mathcal{F}_j$. Hence $\emptyset \in \bigcap \{\mathcal{F}_j : j \in J\}$.
 - $A \in \bigcap \{\mathcal{F}_i : j \in J\} \iff \forall j \in J : A \in \mathcal{F}_i \iff \forall j \in J : \Omega \setminus A \in \mathcal{F}_i \iff \Omega \setminus A \in \bigcap \{\mathcal{F}_i : j \in J\}.$
 - $\bullet \ \{A_i: i \in \mathbb{N}\} \subseteq \bigcap \{\mathcal{F}_j: j \in J\} \iff \forall \ j \in J: \ \{A_i: i \in \mathbb{N}\} \subseteq \mathcal{F}_j \iff \forall \ j \in J: \ \bigcup \{A_i: i \in \mathbb{N}\} \in \mathcal{F}_j \iff \bigcup \{A_i: i \in \mathbb{N}\} \in \bigcap \{\mathcal{F}_j: j \in J\}.$

We conclude that $\bigcap \{A_i : j \in J\}$ is a σ -algebra.

Ouestion 2

Let $\mathscr{P}=\left\{P_j\right\}_{j\in J}$ be a partition of a set Ω (i.e., a collection of disjoint non-empty sets with union Ω). Show that the set $\mathscr{U}(\mathscr{P})$ consisting of all possible unions of sets P_j is a σ -algebra on Ω . Conversely, show that any σ -algebra \mathscr{F} on a countable set Ω is of the form $\mathscr{U}(\mathscr{P})$ for some partition \mathscr{P} of Ω .

[Warning: the converse is very far from true when Ω is uncountable.]

Proof. By definition, $\mathscr{U}(\mathscr{P}) = \{ \bigcup \{P_j : j \in I\} : I \subseteq J \}$. First we show that $\mathscr{U}(\mathscr{P})$ is a σ -algebra on Ω :

- Since $\emptyset = \bigcup \{P_i : j \in \emptyset\}, \emptyset \in \mathcal{U}(\mathcal{P}).$
- For $A \in \mathcal{U}(\mathcal{P})$, there exists $I \subseteq J$ such that $A = \bigcup \{P_j : j \in I\}$. Since \mathcal{P} is a partition of Ω ,

$$\Omega = \bigcup \{P_j: j \in J\} = \bigcup \{P_j: j \in I\} \cup \bigcup \{P_j: j \in J \backslash I\}$$

Hence $\Omega \setminus A = \bigcup \{P_i : j \in J \setminus I\} \in \mathcal{U}(\mathcal{P}).$

• For $\{A_i : i \in \mathbb{N}\} \subseteq \mathcal{U}(\mathcal{P}), A_i = \bigcup \{P_{i,j} : j \in I_i\}$ for some $I_i \subseteq J$. Then

$$\bigcup\{A_i:i\in\mathbb{N}\}=\bigcup\{P_{i,j}:j\in I_i,i\in\mathbb{N}\}=\bigcup\left\{P_j:j\in\bigcup\{I_i:i\in\mathbb{N}\}\right\}\in\mathcal{U}(\mathcal{P})$$

Hence $\bigcup \{A_i : i \in \mathbb{N}\} \in \mathcal{U}(\mathcal{P})$.

We conclude that $\mathcal{U}(\mathcal{P})$ is a σ -algebra on Ω .

Conversely, let \mathscr{F} be a σ -algebra on a countable set Ω . We define a equivalence relation on Ω : For $x, y \in \Omega$,

$$x \sim y \iff \forall A \in \mathcal{F} (x \in A \iff y \in A)$$

Let \mathscr{P} be the partition defined by this equivalence relation. We claim that $\mathscr{F} = \mathscr{U}(\mathscr{P})$.

For $x \in \Omega$, let [x] denotes the equivalence class of x. For $A \in \mathcal{F}$, if $x \in A$ then $[x] \subseteq A$ by definition. Hence A is a union of some equivalence classes. In particular $A \in \mathcal{U}(\mathcal{P})$. Hence $\mathcal{F} \subseteq \mathcal{U}(\mathcal{P})$. On the other hand, for $x \in \Omega$,

$$[x] = \bigcap \{A \in \mathcal{F} : x \in A\} \implies \Omega \setminus [x] = \bigcup \{A \in \mathcal{F} : x \notin A\}$$

Since $\Omega \setminus [x] \subseteq \Omega$, $\Omega \setminus [x]$ is at most countable. Write $\Omega \setminus [x] = \{y_i : i \in \mathbb{N}\}$ where $y_i \in A_i \in \mathscr{F}$ and $x \notin A_i$. Then

$$\Omega \setminus [x] = \bigcup \{ \{y_i\} : i \in \mathbb{N} \} = \bigcup \{ A_i : i \in \mathbb{N} \}$$

The union is now countable. Hence $\Omega \setminus [x] \in \mathcal{F}$ and $[x] \in \mathcal{F}$.

Finally, for $A \in \mathcal{U}(\mathcal{P})$, since $A \subseteq \Omega$ is at most countable, $A = \bigcup \{[x_j] : j \in I\}$ for some at most countable index set I. Hence $A \in \mathcal{F}$. $\mathcal{U}(\mathcal{P}) \subseteq \mathcal{F}$.

We conclude that $\mathcal{U}(\mathcal{P}) = \mathcal{F}$.

\checkmark

Question 3

Let (f_n) be a sequence of measurable functions on (Ω, \mathcal{F}) taking values in $\overline{\mathbb{R}}$. Show that $f_1 + f_2$, $\max\{f_1, f_2\}$ and $\sup_n f_n$ are all measurable functions.

Proof. $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ is a linearly and densely ordered set with the topology generated by the basis:

$$\{(a,b): a,b \in \mathbb{R}, a < b\} \cup \{[-\infty,a): a \in \mathbb{R}\} \cup \{(a,+\infty]: a \in \mathbb{R}\}$$

For a map $f: \Omega \to \overline{\mathbb{R}}$, by Corollary 1.19 f is \mathscr{F} -measurable if and only if $\{x \in \overline{\mathbb{R}} : f(x) \le t\} \in \mathscr{F}$ for all $t \in \mathbb{R}$.

1. $f_1 + f_2$ is measurable:

For $t \in \mathbb{R}$, note that

$$\{x \in \Omega : \ (f_1 + f_2)(x) \leq t\} = \bigcup_{q \in \mathbb{Q}} \{x \in \Omega : \ f_1(x) \leq q \land f_2(x) \leq t - q\} = \bigcup_{q \in \mathbb{Q}} \left(\{x \in \Omega : \ f_1(x) \leq q\} \cap \{x \in \Omega : \ f_2(x) \leq t - q\} \right)$$

For each $q \in \mathbb{Q}$, since f_1, f_2 are measurable, $\{x \in \Omega : f_1(x) \le q\}, \{x \in \Omega : f_2(x) \le t - q\} \in \mathcal{F}$. Hence $\{x \in \Omega : f_1(x) \le q\} \cap \{x \in \Omega : f_2(x) \le t - q\} \in \mathcal{F}$. As \mathbb{Q} is countable, we deduce that the countable union $\{x \in \Omega : (f_1 + f_2)(x) \le t\} \in \mathcal{F}$. Hence $f_1 + f_2$ is measurable.

2. We show that $h \circ f_1$ is measurable for any continuous map $h : \overline{\mathbb{R}} \to \overline{\mathbb{R}}$.

Since h is continuous, the pullback of a Borel set in $\overline{\mathbb{R}}$ under h is also Borel. Hence $(h \circ f_1)^{-1}(A) = f_1^{-1}(h^{-1}(A)) \in \mathscr{F}$ for any Borel set $A \subseteq \overline{\mathbb{R}}$. Hence $h \circ f_1$ is measurable.

3. $\max\{f_1, f_2\}$ is measurable:

Note that $\max\{f_1,f_2\} = \frac{1}{2} \left((f_1+f_2) + |f_1-f_2| \right)$. Since f_2 is measurable, $-f_2 = h_1 \circ f_2$ is measurable, where $h_1(x) = -x$ is continuous. Hence $f_1 - f_2$ is measurable. Hence $|f_1 - f_2| = h_2 \circ (f_1 - f_2)$ is measurable, where $h_2(x) = |x|$ is continuous. Hence $g := (f_1 + f_2) + |f_1 - f_2|$ is measurable. Hence $\max\{f_1, f_2\} = h_3 \circ g$ is measurable, where $h_3(x) = \frac{1}{2}x$ is continuous.

4. $(\sup_n f_n)(x) := \sup\{f_n(x) : n \in \mathbb{N}\}\$ is measurable:

For $t \in \mathbb{R}$,

$$\left\{x\in\Omega:\sup_n f_n(x)\leqslant t\right\}=\bigcap_{n\in\mathbb{N}}\left\{x\in\Omega:f_n(x)\leqslant t\right\}=\Omega\setminus\left(\bigcup_{n\in\mathbb{N}}\Omega\setminus\left\{x\in\Omega:f_n(x)\leqslant t\right\}\right)\in\mathscr{F}$$

since $\{x \in \Omega : f_n(x) \le t\} \in \mathcal{F}$ for each $n \in \mathbb{N}$. Hence $\sup_n f_n$ is measurable.

✓

Question 4

(Lemma 1.29) Let (Ω, \mathscr{F}) be the product space of two measurable spaces $(\Omega_i, \mathscr{F}_i)$, i = 1, 2. Show that if $f : \Omega \to \mathbb{R}$ is measurable then

- for each $\omega_1 \in \Omega_1$, $\Omega_2 \ni \omega_2 \to f(\omega_1, \omega_2)$ is \mathscr{F}_2 -measurable and
- for each $\omega_2 \in \Omega_2$, $\Omega_1 \ni \omega_1 \to f(\omega_1, \omega_2)$ is \mathcal{F}_1 -measurable.

(Exercise 1.13) Deduce that if $D \in \mathcal{F}$ and $D(\omega_1) := \{\omega_2 : (\omega_1, \omega_2) \in D\}$ is its section for a fixed $\omega_1 \in \Omega_1$ then $D(\omega_1) \in \mathcal{F}_2$.

Proof. In this question we use $\mathscr{F}_1 \times \mathscr{F}_2$ to denote $\{A_1 \times A_2 : A_1 \in \mathscr{F}_1, A_2 \in \mathscr{F}_2\}$ and use $\mathscr{F}_1 \otimes \mathscr{F}_2$ to denote the σ -algebra generated by $\mathscr{F}_1 \times \mathscr{F}_2$.

First we prove the result in Exercise 1.13.

Let $\mathcal{A}(\omega_1) := \{D \in \mathcal{F}_1 \otimes \mathcal{F}_2 : D(\omega_1) \in \mathcal{F}_2\} \subseteq \mathcal{F}_1 \otimes \mathcal{F}_2$ for a fixed $\omega_1 \in \Omega_1$. First we show that $\mathcal{A}(\omega_1)$ is a σ -algebra:

- Since $\emptyset(\omega_1) = \emptyset \in \mathscr{F}_2, \emptyset \in \mathscr{A}(\omega_1)$.
- For $D \in \mathcal{A}(\omega_1)$:

$$D(\omega_1) \in \mathcal{F}_2 \implies \Omega \backslash D(\omega_1) = ((\Omega_1 \times \Omega_2) \backslash D)(\omega_1) \in \mathcal{F}_2 \implies (\Omega_1 \times \Omega_2) \backslash D \in \mathcal{A}(\omega_1) / \mathcal{A}(\omega_1) / \mathcal{A}(\omega_1) = ((\Omega_1 \times \Omega_2) \backslash D)(\omega_1) \in \mathcal{F}_2 \implies (\Omega_1 \times \Omega_2) \backslash D \in \mathcal{A}(\omega_1) / \mathcal{A}(\omega_1) = ((\Omega_1 \times \Omega_2) \backslash D)(\omega_1) \in \mathcal{F}_2 \implies (\Omega_1 \times \Omega_2) \backslash D \in \mathcal{A}(\omega_1) / \mathcal{A}(\omega_1) = ((\Omega_1 \times \Omega_2) \backslash D)(\omega_1) \in \mathcal{F}_2 \implies (\Omega_1 \times \Omega_2) \backslash D \in \mathcal{A}(\omega_1) / \mathcal{A}(\omega_1) = ((\Omega_1 \times \Omega_2) \backslash D)(\omega_1) \in \mathcal{F}_2 \implies (\Omega_1 \times \Omega_2) \backslash D \in \mathcal{A}(\omega_1) / \mathcal{A}(\omega_1) = ((\Omega_1 \times \Omega_2) \backslash D)(\omega_1) \in \mathcal{F}_2 \implies (\Omega_1 \times \Omega_2) \backslash D \in \mathcal{A}(\omega_1) / \mathcal{A}(\omega_1) = ((\Omega_1 \times \Omega_2) \backslash D)(\omega_1) \in \mathcal{F}_2 \implies ((\Omega_1 \times \Omega_2) \backslash D)(\omega_1) \in \mathcal{A}(\omega_1) / \mathcal{A}(\omega_1) = ((\Omega_1 \times \Omega_2) \backslash D)(\omega_1) \in \mathcal{A}(\omega_1) / \mathcal{A}(\omega_1) = ((\Omega_1 \times \Omega_2) \backslash D)(\omega_1) \in \mathcal{A}(\omega_1) / \mathcal{A}(\omega_1) = ((\Omega_1 \times \Omega_2) \backslash D)(\omega_1) \in \mathcal{A}(\omega_1) / \mathcal{A}(\omega_1) = ((\Omega_1 \times \Omega_2) \backslash D)(\omega_1) \in \mathcal{A}(\omega_1) / \mathcal{A}(\omega_1) = ((\Omega_1 \times \Omega_2) \backslash D)(\omega_1) = ((\Omega_1 \times \Omega_2) \backslash D$$

• For $\{D_i : i \in \mathbb{N}\} \subseteq \mathcal{A}(\omega_1)$:

$$\forall i \in \mathbb{N} \ D_i(\omega_1) \in \mathscr{F}_2 \implies \bigcup_{i \in \mathbb{N}} D_i(\omega_1) = \left(\bigcup_{i \in \mathbb{N}} D_i\right)(\omega_1) \in \mathscr{F}_2 \implies \bigcup_{i \in \mathbb{N}} D_i \in \mathscr{A}(\omega_1) \checkmark$$

Next, for $D \in \mathscr{F}_1 \times \mathscr{F}_2$, $D = A_1 \times A_2$ for some $A_1 \in \mathscr{F}_1$ and $A_2 \in \mathscr{F}_2$. Hence $D(\omega_1) = A_2 \in \mathscr{F}_2$. In particular $\mathscr{F}_1 \times \mathscr{F}_2 \subseteq \mathscr{A}(\omega_1)$. Therefore $\mathscr{F}_1 \otimes \mathscr{F}_2 = \sigma(\mathscr{F}_1 \times \mathscr{F}_2) \subseteq \sigma(\mathscr{A}(\omega_1)) = \mathscr{A}(\omega_1)$. We deduce that $\mathscr{A}(\omega_1) = \mathscr{F}_1 \otimes \mathscr{F}_2$.

Now we prove Lemma 1.29. By symmetry it suffices to prove one result: $\omega_2 \mapsto f(\omega_1, \omega_2)$ is \mathscr{F}_2 -measurable for each $\omega_1 \in \Omega_1$.

For $D \in \mathscr{F}_1 \otimes \mathscr{F}_2$, the indicator function $\mathbf{1}_D$ is \mathscr{F} -measurable. The map $\omega_2 \mapsto \mathbf{1}_D(\omega_1, \omega_2)$ is in fact the indicator function $\mathbf{1}_{D(\omega_1)}$ on Ω_2 . By the previous proof we have shown that $D(\omega_1) \in \mathscr{F}_2$. Therefore $\mathbf{1}_{D(\omega_1)}$ is \mathscr{F}_2 -measurable.

For a simple function $\varphi = \sum_i c_i \mathbf{1}_{D_i}$, $\omega_2 \mapsto \varphi(\omega_1, \omega_2)$ is $\sum_i c_i \mathbf{1}_{D_i(\omega_1)}$ and hence is \mathscr{F}_2 -measurable.

For a \mathscr{F} -measurable function $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$, by Lemma 1.26 there exists a increasing sequence of simple function $\{\varphi_n\}$ such that $\varphi_n \uparrow f$. Then $\omega_2 \mapsto f(\omega_1, \omega_2)$ is the limit of $\omega_2 \mapsto \varphi_n(\omega_1, \omega_2)$ as $n \to \infty$. Again by Lemma 1.26 we deduce that $\omega_2 \mapsto f(\omega_1, \omega_2)$ is \mathscr{F}_2 -measurable.

Question 5. Proof of Theorem 2.10

Let μ_1, μ_2 be two finite measures on (Ω, \mathcal{F}) with $\mu_1(\Omega) = \mu_2(\Omega)$. Verify that $\{A \in \mathcal{F} : \mu_1(A) = \mu_2(A)\}$ is a λ -system.

Proof. Let $\mathscr{A} := \{A \in \mathscr{F} : \mu_1(A) = \mu_2(A)\}$

- $\mu_1(\Omega) = \mu_2(\Omega)$ implies that $\Omega \in \mathcal{A}$.
- For $A, B \in \mathcal{A}$ with $A \subseteq B$, we have $\mu_1(A) = \mu_2(A)$ and $\mu_1(B) = \mu_2(B)$. By additivity of μ_1 , $\mu_1(B) = \mu_1(A \cup B \setminus A) = \mu_1(A) + \mu_1(B \setminus A)$. Similarly $\mu_2(B) = \mu_2(A) + \mu_2(B \setminus A)$. Hence $\mu_1(B \setminus A) = \mu_2(B \setminus A)$. $B \setminus A \in \mathcal{A}$.
- Let $\{A_n : n \in \mathbb{N}\} \subseteq \mathcal{A}$ be an ascending chain. By continuity of μ_1 and μ_2 ,

$$\mu_1\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \lim_{n\to\infty}\mu_1(A_n) = \lim_{n\to\infty}\mu_2(A_n) = \mu_2\left(\bigcup_{n\in\mathbb{N}}A_n\right)$$

Hence $\bigcup \{A_n : n \in \mathbb{N}\} \in \mathcal{A}$.

We conclude that \mathcal{A} is a λ -system.

Question 6

Use π - λ systems Lemma to prove the Monotone Class Theorem (Theorem 1.28) in the case when $\mathscr{C} = \{\mathbf{1}_A : A \in \mathscr{A}\}$ for a π -system \mathscr{A} .

Proof. Consider $\mathscr{E} := \{E \subseteq \Omega : \mathbf{1}_E \in \mathscr{H}\}$. First we show that \mathscr{E} is a λ -system.

- $\mathbf{1}_{\Omega} \in \mathcal{H}$ implies that $\Omega \in \mathcal{E}$.
- For $A, B \in \mathcal{E}$ with $A \subseteq B$, $\mathbf{1}_A$, $\mathbf{1}_B \in \mathcal{H}$. As \mathcal{H} is a vector space, $\mathbf{1}_{B \setminus A} = \mathbf{1}_B \mathbf{1}_A \in \mathcal{H}$. Hence $B \setminus A \in \mathcal{E}$.
- Let $\{A_n:n\in\mathbb{N}\}\subseteq\mathcal{E}$ be an ascending chain. Then $\{\mathbf{1}_{A_n}:n\in\mathbb{N}\}$ is an ascending chain in \mathcal{H} with limit $\mathbf{1}_{\bigcup\{A_n:n\in\mathbb{N}\}}$. Hence $\mathbf{1}_{\bigcup\{A_n:n\in\mathbb{N}\}}\in\mathcal{H}$. Hence $\bigcup\{A_n:n\in\mathbb{N}\}\in\mathcal{E}$.

Since $\mathscr{C} \subseteq \mathscr{H}$, $\mathscr{A} \subseteq \mathscr{E}$. By π - λ systems Lemma, $\sigma(\mathscr{A}) \subseteq \mathscr{E}$.

Let $f:\Omega\to\mathbb{R}$ be a bounded $\sigma(\mathscr{C})$ -measurable function. By Lemma 1.26 there exists a sequence of simple functions

$$\varphi_n = \sum_{i=1}^{k_n} c_{i,n} \mathbf{1}_{E_{i,n}}$$

such that $\varphi_n \uparrow f$, where $E_{i,n} \in \sigma(\mathscr{C})$.

As $\sigma(\mathscr{C})$ is the smallest σ -algebra such that every function in \mathscr{C} is measurable and $\mathscr{C} = \{\mathbf{1}_A : A \in \mathscr{A}\}$, we have $\sigma(\mathscr{C}) = \sigma(\mathscr{A})$. $E_{i,n} \in \sigma(\mathscr{A}) \subseteq \mathscr{E}$ implies that $\mathbf{1}_{E_{i,n}} \in \mathscr{H}$. Since \mathscr{H} is a vector space, $\varphi_n \in \mathscr{H}$. Since $\varphi_n \uparrow f$, we deduce that $f \in \mathscr{H}$.

We conclude that ${\mathcal H}$ contains all bounded $\sigma({\mathcal C})$ -measurable functions.

✓

Question 7. Lemma 2.4

Let $\mu: \mathscr{A} \to [0,\infty)$ be an additive set function on an algebra \mathscr{A} taking only finite values. Show that μ is countably additive iff for every sequence (A_n) of sets in \mathscr{A} with $A_n \downarrow \emptyset$ we have $\mu(A_n) \to 0$.

Proof. "⇒": Suppose that μ is countably additive. By Proposition 2.3(v), for any descending chain $\{A_n : n \in \mathbb{N}\}$ with $\bigcap \{A_n : n \in \mathbb{N}\}$ = \emptyset ,

$$\lim_{n\to\infty}\mu(A_n)=\mu\bigg(\bigcap_{n\in\mathbb{N}}A_n\bigg)=\mu(\varnothing)=0$$

" \Leftarrow ": Suppose that for any descending chain $\{A_n : n \in \mathbb{N}\}$ with $\bigcap \{A_n : n \in \mathbb{N}\} = \emptyset$ we have $\lim_{n \to \infty} \mu(A_n) = 0$.

Consider a countable collection of disjoint sets $\{A_n : n \in \mathbb{N}\}$. Let $A := \bigcup_{n \in \mathbb{N}} A_n$ and $E_k := A \setminus \bigcup_{n=0}^k A_n$. Then $E_n \downarrow 0$. From finite additivity we have

$$0 = \lim_{n \to \infty} \mu(E_n) = \lim_{k \to \infty} \mu \left(A \setminus \bigcup_{n=0}^k A_n \right) = \mu(A) - \lim_{k \to \infty} \sum_{n=0}^k \mu(A_n) = \mu(A) - \sum_{n=0}^\infty \mu(A_n)$$

Hence $\sum_{n=0}^{\infty} \mu(A_n) = \mu \left(\bigcup_{n \in \mathbb{N}} A_n \right)$. We conclude that μ is countably additive.

Question 8

On $\mathbb R$ consider the σ -algebra $\mathscr A$ of sets which are either countable or have a countable complement. Let $\mu(A)=0$ for countable A and $\mu(A)=1$ otherwise , $A\in\mathscr A$. Show that μ is a probability measure on $\mathscr A$.

Proof. Since \mathbb{R} is uncountable, $\mu(\mathbb{R}) = 1$. So it suffices to shown that μ is a measure on $(\mathbb{R}, \mathcal{A})$.

• Since \varnothing is at most countable, $\mu(\varnothing) = 9$

• Suppose that $\{A_n : n \in \mathbb{N}\} \subseteq \mathcal{A}$ is a countable collection of disjoint sets.

If there exists A_i, A_j uncountable with $A_i \cap A_j = \emptyset$, then $\mathbb{R} \setminus A_i \supseteq A_j$ is not countable, contradiction. Hence $\bigcup \{A_n : n \in \mathbb{N}\}$ can have at most one uncountable element.

If every A_n is countable, then $\bigcup \{A_n : n \in \mathbb{N}\}$ is a countable union of countable sets, and hence is countable. We have:

$$\sum_{n=0}^{\infty} \mu(A_n) = \sum_{n=0}^{\infty} 0 = 0 = \mu \left(\bigcup_{n \in \mathbb{N}} A_n \right)$$

Suppose that A_i is uncountable and the rest are countable. Then $\bigcup \{A_n : n \in \mathbb{N}\}\$ is uncountable and

$$\sum_{n=0}^{\infty} \mu(A_n) = \mu(A_i) + \sum_{n \neq i} \mu(A_n) = 1 = \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right)$$

Hence μ is countably additive.

Question 9

Let Ω be a set and \mathscr{I} a π -system on Ω . Let $\mathscr{F} = \sigma(\mathscr{I})$. Suppose that μ_1 and μ_2 are two measures on (Ω, \mathscr{F}) with $\mu_1(\Omega) = \mu_2(\Omega) < \infty$ and $\mu_1 = \mu_2$ on \mathscr{I} . Then Theorem 2.10 on uniqueness of extension says that $\mu_1 = \mu_2$ on \mathscr{I} . Find an example on $\Omega = \{1, 2, 3, 4\}$ where this fails if we drop the assumption that \mathscr{I} is a π -system.

Proof. Let $\mathscr{I} = \{\{1,2\},\{2,3\}\}$. Then \mathscr{I} is not a π -system and $\sigma(\mathscr{I}) = \mathscr{P}(\Omega)$. Let $\mu_1 : \mathscr{P}(\Omega) \to [0,+\infty)$ be a measure such that

$$\mu_1(\{1\}) = 0$$
,

$$\mu_1(\{2\}) = 1$$
,

$$\mu_1(\{3\}) = 0,$$

$$\mu_1(\{4\}) = 1$$

Let $\mu_2: \mathcal{P}(\Omega) \to [0, +\infty)$ be a measure such that

$$\mu_2(\{1\}) = 1$$
,

$$\mu_2(\{2\}) = 0$$
,

$$\mu_2(\{3\}) = 1$$
,

$$\mu_2(\{4\}) = 0$$

Then

$$\mu_1(\{1,2\}) = \mu_2(\{1,2\}) = 1,$$

$$\mu_1(\{1,2\}) = \mu_2(\{1,2\}) = 1,$$

$$\mu_1(\Omega) = \mu_2(\Omega) = 2$$

But it is clear that $\mu_1 \neq \mu_2$.

Question 10

Let $\Psi = \Phi^{-1}$ the be inverse the CDF of a standard normal random variable. On the probability space $((0,1), \mathcal{B}((0,1)), \text{Leb})$ define $X(\omega) = \Psi(\omega)$ and

$$Y_1(\omega) = \mathbf{1}_{(0,0.5)}(\omega) - \mathbf{1}_{[0.5,1)}(\omega)$$

$$Y_2(\omega) = \mathbf{1}_{(0,0.25)}(\omega) + \mathbf{1}_{[0.75,1)}(\omega) - \mathbf{1}_{[0.25,0.75)}(\omega)$$

- Show that $X \sim \mathcal{N}(0,1)$ and $Y_1 \sim Y_2$ are distributed according to $v = (\delta_1 + \delta_{-1})/2$.
- Describe the joint distributions of (X, Y_1) and (X, Y_2) on \mathbb{R}^2 . Are they the same?
- Let μ be the distribution of |X|. Give an example of a couple of random variables distributed according to $\mu \otimes v$.

Proof. 1. Let F_X be the distribution function of X. Then

$$F_X(x) = m\left(\{\omega \in (0,1) : X(\omega) \le x\}\right) = m\left(\left\{\omega \in (0,1) : \Phi^{-1}(\omega) \le x\right\}\right) = m\left(\left\{\omega \in (0,1) : \omega \le \Phi(x)\right\}\right) = \Phi(x)$$

where *m* is the Lebesgue measure on (0,1). Since Φ is the distribution function of N(0,1), we deduce that $X \sim N(0,1)$.

2. Let F_{Y_1} and F_{Y_2} be the distribution functions of Y_1 and Y_2 respectively. Then for Y_1 , $\mathbf{1}_{(0,1/2)}(\omega) - \mathbf{1}_{[1/2,1)}(\omega)$ is equal to -1

for $\omega \in [1/2, 1)$ and 1 for $\omega \in [0, 1/2)$. Hence

$$F_{Y_1}(x) = m\left(\left\{\omega \in (0,1): \mathbf{1}_{(0,1/2)}(\omega) - \mathbf{1}_{[1/2,1)}(\omega) \leq x\right\}\right) = \begin{cases} 0, & x \in (-\infty,-1) \\ 1/2, & x \in [-1,1) \\ 1, & x \in [1,\infty) \end{cases}$$

For Y_2 , $\mathbf{1}_{(0,1/4)}(\omega) + \mathbf{1}_{[3/4,1)}(\omega) - \mathbf{1}_{[1/4,3/4)}(\omega)$ is equal to -1 for $\omega \in [1/4,3/4)$ and 1 for $\omega \in [0,1/4) \cup [3/4,1)$. Hence

$$F_{Y_2}(x) = m\left(\left\{\omega \in (0,1): \mathbf{1}_{(0,1/4)}(\omega) + \mathbf{1}_{[3/4,1)}(\omega) - \mathbf{1}_{[1/4,3/4)}(\omega) \leq x\right\}\right) = \begin{cases} 0, & x \in (-\infty,-1) \\ 1/2, & x \in [-1,1) \\ 1, & x \in [1,\infty) \end{cases}$$

Then $F_{Y_1} = F_{Y_2}$ and hence $Y_1 \sim Y_2$. In particular, the distribution function induces the push-forward measure $\nu = (\delta_1 + \delta_{-1})/2$.

3. Let F_{X,Y_1} be the joint distribution function of X and Y_1 . Then

$$F_{X,Y_1}(x,y) = \begin{cases} 0, & y \in (-\infty, -1) \\ m((0,\Phi(x)) \cap [1/2, 1)), & y \in [-1, 1) \\ m((0,\Phi(x)) \cap (0, 1/2)), & y \in [1, \infty) \end{cases}$$

Let F_{X,Y_2} be the joint distribution function of X and Y_2 . Then

$$F_{X,Y_2}(x,y) = \begin{cases} 0, & y \in (-\infty, -1) \\ m((0, \Phi(x)) \cap [1/4, 3/4)), & y \in [-1, 1) \\ m((0, \Phi(x)) \cap ([0, 1/4) \cup [3/4, 1))), & y \in [1, \infty) \end{cases}$$

Note that $F_{X,Y_1}(1/4,1) = 1/2$ and $F_{X,Y_2}(1/4,1) = 1/4$. So the two distruibutions are not the same.

4. Observe that

$$F_{|X|}(x) = m\left(\{\omega \in (0,1): |X(\omega)| \leq x\}\right) = m\left(\{\omega \in (0,1): -x \leq X(\omega) \leq x\}\right) = \Phi(x) - \Phi(-x)$$

Consider the probability space $((0,1)^2, \mathcal{B}((0,1)^2), \text{Leb})$. Let $A, B: (0,1)^2 \to \mathbb{R}$ be random variables defined by

$$A(\omega_1, \omega_2) := F_{|X|}^{-1}(\omega_1)$$

$$B(\omega_1, \omega_2) := \mathbf{1}_{(0,0.5)}(\omega_2) - \mathbf{1}_{[0.5,1)}(\omega_2)$$

Then *A* and *B* are independent, and $A \sim |X|$ and $B \sim Y_1$. Hence (A, B) induces the push-forward measure $\mu \otimes v$ on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$.