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Section 1

Question 1

LetΩ be a set.

(a) Show that the collection of all sets A ∈P (Ω) such that either A or Ac is countable is a σ-algebra.

(b) Give an example of two algebras F1 and F2 onΩ= {1,2,3} whose union F1 ∪F2 is not an algebra.

(c) (Proof of Lemma 1.3) Suppose that
{
F j

}
j∈J is a non-empty family ofσ-algebras onΩ. Prove that the intersection

⋂
j∈J F j

is a σ-algebra onΩ.

Proof. (a) In this question countable means at most countable. Let F be the collection.

• Since ∅ is at most countable, ∅ ∈F ;

• For A ∈F , either A orΩ\A is at most countable. ThusΩ\A ∈F ;

• Let I be a countable index set. For {Ai : i ∈ I } ⊆F , let I = J∪K such that {Ai : i ∈ J } and {Ω\Ai : i ∈ K } are collections
of at most countable sets. If K =∅, then ⋃

{Ai : i ∈ I } =⋃
{Ai : i ∈ J }

is a countable union of at most countable sets and hence is at most countable. We deduce that
⋃

{Ai : i ∈ I } ∈F .

If K 6=∅, then fix Ak such thatΩ\Ak is at most countable. We have

Ω\
⋃

{Ai : i ∈ I } =⋂
{Ω\Ai : i ∈ I } ⊆Ω\Ak

Ω\
⋃

{Ai : i ∈ I } is a subset of an at most countable set and hence is at most countable. We deduce that
⋃

{Ai : i ∈
I } ∈F .

We conclude that F is a σ-algebra.

(b) OnΩ= {1,2,3}, the following are algebras:

F1 = {∅, {1}, {2,3}, {1,2,3}} F2 = {∅, {2}, {1,3}, {1,2,3}}

However, F1 ∪F2 = {∅, {1}, {2}, {1,3}, {2,3}, {1,2,3}} is not an algebra, because {1}, {2} ∈ F1 ∪F2 and {1,2} = {1}∪ {2} ∉
F1 ∪F2.

(c) • For j ∈ J , ∅ ∈F j . Hence ∅ ∈⋂
{F j : j ∈ J }.

• A ∈⋂
{F j : j ∈ J } ⇐⇒ ∀ j ∈ J : A ∈F j ⇐⇒ ∀ j ∈ J : Ω\A ∈F j ⇐⇒ Ω\A ∈⋂

{F j : j ∈ J }.

• {Ai : i ∈N} ⊆⋂
{F j : j ∈ J } ⇐⇒ ∀ j ∈ J : {Ai : i ∈N} ⊆F j ⇐⇒ ∀ j ∈ J :

⋃
{Ai : i ∈N} ∈F j ⇐⇒ ⋃

{Ai : i ∈N} ∈⋂
{F j :

j ∈ J }.

We conclude that
⋂

{A j : j ∈ J } is a σ-algebra.

Question 2

Let P = {
P j

}
j∈J be a partition of a set Ω (i.e., a collection of disjoint non-empty sets with union Ω ). Show that the set U (P )

consisting of all possible unions of sets P j is a σ-algebra onΩ. Conversely, show that any σ-algebra F on a countable setΩ is
of the form U (P ) for some partition P ofΩ.

[Warning: the converse is very far from true whenΩ is uncountable.]

Proof. By definition, U (P ) = {⋃
{P j : j ∈ I } : I ⊆ J

}
. First we show that U (P ) is a σ-algebra onΩ:

• Since ∅=⋃
{P j : j ∈∅}, ∅ ∈U (P ).

• For A ∈U (P ), there exists I ⊆ J such that A =⋃
{P j : j ∈ I }. Since P is a partition ofΩ,

Ω=⋃
{P j : j ∈ J } =⋃

{P j : j ∈ I }∪⋃
{P j : j ∈ J\I }
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HenceΩ\A =⋃
{P j : j ∈ J\I } ∈U (P ).

• For {Ai : i ∈N} ⊆U (P ), Ai =⋃
{Pi , j : j ∈ Ii } for some Ii ⊆ J . Then⋃

{Ai : i ∈N} =⋃
{Pi , j : j ∈ Ii , i ∈N} =⋃{

P j : j ∈⋃
{Ii : i ∈N}

} ∈U (P )

Hence
⋃

{Ai : i ∈N} ∈U (P ).

We conclude that U (P ) is a σ-algebra onΩ.

Conversely, let F be a σ-algebra on a countable setΩ. We define a equivalence relation onΩ: For x, y ∈Ω,

x ∼ y ⇐⇒ ∀ A ∈F (x ∈ A ⇐⇒ y ∈ A)

Let P be the partition defined by this equivalence relation. We claim that F =U (P ).

For x ∈Ω, let [x] denotes the equivalence class of x. For A ∈F , if x ∈ A then [x] ⊆ A by definition. Hence A is a union of some
equivalence classes. In particular A ∈U (P ). Hence F ⊆U (P ). On the other hand, for x ∈Ω,

[x] =⋂
{A ∈F : x ∈ A} =⇒ Ω\[x] =⋃

{A ∈F : x ∉ A}

SinceΩ\[x] ⊆Ω,Ω\[x] is at most countable. WriteΩ\[x] = {yi : i ∈N} where yi ∈ Ai ∈F and x ∉ Ai . Then

Ω\[x] =⋃
{{yi } : i ∈N} =⋃

{Ai : i ∈N}

The union is now countable. HenceΩ\[x] ∈F and [x] ∈F .

Finally, for A ∈ U (P ), since A ⊆ Ω is at most countable, A = ⋃
{[x j ] : j ∈ I } for some at most countable index set I . Hence

A ∈F . U (P ) ⊆F .

We conclude that U (P ) =F .

Question 3

Let
(

fn
)

be a sequence of measurable functions on (Ω,F ) taking values in R. Show that f1 + f2,max
{

f1, f2
}

and supn fn are all
measurable functions.

Proof. R=R∪ {−∞,+∞} is a linearly and densely ordered set with the topology generated by the basis:

{(a,b) : a,b ∈R, a < b}∪ {[−∞, a) : a ∈R}∪ {(a,+∞] : a ∈R}

For a map f :Ω→R, by Corollary 1.19 f is F -measurable if and only if {x ∈R : f (x) É t } ∈F for all t ∈R.

1. f1 + f2 is measurable:

For t ∈R, note that

{x ∈Ω : ( f1 + f2)(x) É t } = ⋃
q∈Q

{x ∈Ω : f1(x) É q ∧ f2(x) É t −q} = ⋃
q∈Q

(
{x ∈Ω : f1(x) É q}∩ {x ∈Ω : f2(x) É t −q}

)
For each q ∈Q, since f1, f2 are measurable, {x ∈Ω : f1(x) É q}, {x ∈Ω : f2(x) É t −q} ∈F . Hence {x ∈Ω : f1(x) É q}∩ {x ∈
Ω : f2(x) É t −q} ∈F . AsQ is countable, we deduce that the countable union {x ∈Ω : ( f1+ f2)(x) É t } ∈F . Hence f1+ f2

is measurable.

2. We show that h ◦ f1 is measurable for any continuous map h :R→R.

Since h is continuous, the pullback of a Borel set in R under h is also Borel. Hence (h ◦ f1)−1(A) = f −1
1

(
h−1(A)

) ∈F for
any Borel set A ⊆R. Hence h ◦ f1 is measurable.

3. max
{

f1, f2
}

is measurable:

Note that max
{

f1, f2
}= 1

2

(
( f1 + f2)+| f1 − f2|

)
. Since f2 is measurable, − f2 = h1 ◦ f2 is measurable, where h1(x) =−x is

continuous. Hence f1 − f2 is measurable. Hence | f1 − f2| = h2 ◦ ( f1 − f2) is measurable, where h2(x) = |x| is continuous.

Hence g := ( f1+ f2)+| f1− f2| is measurable. Hence max
{

f1, f2
}= h3 ◦g is measurable, where h3(x) = 1

2
x is continuous.



3

4. (supn fn)(x) := sup{ fn(x) : n ∈N} is measurable:

For t ∈R, {
x ∈Ω : sup

n
fn(x) É t

}
= ⋂

n∈N

{
x ∈Ω : fn(x) É t

}=Ω\

( ⋃
n∈N

Ω\
{

x ∈Ω : fn(x) É t
}) ∈F

since
{

x ∈Ω : fn(x) É t
} ∈F for each n ∈N. Hence supn fn is measurable.

Question 4

(Lemma 1.29) Let (Ω,F ) be the product space of two measurable spaces (Ωi ,Fi ) , i = 1,2. Show that if f :Ω→R is measurable
then

• for each ω1 ∈Ω1,Ω2 3ω2 → f (ω1,ω2) is F2-measurable and

• for each ω2 ∈Ω2,Ω1 3ω1 → f (ω1,ω2) is F1-measurable.

(Exercise 1.13) Deduce that if D ∈F and D (ω1) := {ω2 : (ω1,ω2) ∈ D} is its section for a fixed ω1 ∈Ω1 then D (ω1) ∈F2.

Proof. In this question we use F1 ×F2 to denote {A1 × A2 : A1 ∈F1, A2 ∈F2} and use F1 ⊗F2 to denote the σ-algebra generated by
F1 ×F2.

First we prove the result in Exercise 1.13.

Let A (ω1) := {D ∈F1 ⊗F2 : D(ω1) ∈F2} ⊆F1 ⊗F2 for a fixed ω1 ∈Ω1. First we show that A (ω1) is a σ-algebra:

• Since ∅(ω1) =∅ ∈F2, ∅ ∈A (ω1).

• For D ∈A (ω1):
D(ω1) ∈F2 =⇒ Ω\D(ω1) = ((Ω1 ×Ω2)\D)(ω1) ∈F2 =⇒ (Ω1 ×Ω2)\D ∈A (ω1)

• For {Di : i ∈N} ⊆A (ω1):

∀ i ∈NDi (ω1) ∈F2 =⇒ ⋃
i∈N

Di (ω1) =
(⋃

i∈N
Di

)
(ω1) ∈F2 =⇒ ⋃

i∈N
Di ∈A (ω1)

Next, for D ∈ F1 ×F2, D = A1 × A2 for some A1 ∈ F1 and A2 ∈ F2. Hence D(ω1) = A2 ∈ F2. In particular F1 ×F2 ⊆ A (ω1).
Therefore F1 ⊗F2 =σ(F1 ×F2) ⊆σ(A (ω1)) =A (ω1). We deduce that A (ω1) =F1 ⊗F2.

Now we prove Lemma 1.29. By symmetry it suffices to prove one result: ω2 7→ f (ω1,ω2) is F2-measurable for each ω1 ∈Ω1.

For D ∈F1⊗F2, the indicator function 1D is F -measurable. The mapω2 7→ 1D (ω1,ω2) is in fact the indicator function 1D(ω1)

onΩ2. By the previous proof we have shown that D(ω1) ∈F2. Therefore 1D(ω1) is F2-measurable.

For a simple function ϕ=∑
i ci 1Di , ω2 7→ϕ(ω1,ω2) is

∑
i ci 1Di (ω1) and hence is F2-measurable.

For a F -measurable function f : Ω1 ×Ω2 → R, by Lemma 1.26 there exists a increasing sequence of simple function {ϕn}
such that ϕn ↑ f . Then ω2 7→ f (ω1,ω2) is the limit of ω2 7→ ϕn(ω1,ω2) as n → ∞. Again by Lemma 1.26 we deduce that
ω2 7→ f (ω1,ω2) is F2-measurable.

Question 5. Proof of Theorem 2.10

Let µ1,µ2 be two finite measures on (Ω,F ) with µ1(Ω) =µ2(Ω). Verify that
{

A ∈F :µ1(A) =µ2(A)
}

is a λ-system.

Proof. Let A := {
A ∈F :µ1(A) =µ2(A)

}
• µ1(Ω) =µ2(Ω) implies thatΩ ∈A .

• For A,B ∈ A with A ⊆ B , we have µ1(A) = µ2(A) and µ1(B) = µ2(B). By additivity of µ1, µ1(B) = µ1(A ∪B\A) = µ1(A)+
µ1(B\A). Similarly µ2(B) =µ2(A)+µ2(B\A). Hence µ1(B\A) =µ2(B\A). B\A ∈A .

• Let {An : n ∈N} ⊆A be an ascending chain. By continuity of µ1 and µ2,

µ1

( ⋃
n∈N

An

)
= lim

n→∞µ1(An) = lim
n→∞µ2(An) =µ2

( ⋃
n∈N

An

)
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Hence
⋃

{An : n ∈N} ∈A .

We conclude that A is a λ-system.

Question 6

Use π-λ systems Lemma to prove the Monotone Class Theorem (Theorem 1.28) in the case when C = {1A : A ∈ A } for a
π-system A .

Proof. Consider E := {E ⊆Ω : 1E ∈H }. First we show that E is a λ-system.

• 1Ω ∈H implies thatΩ ∈ E .

• For A,B ∈ E with A ⊆ B , 1A ,1B ∈H . As H is a vector space, 1B\A = 1B −1A ∈H . Hence B\A ∈ E .

• Let {An : n ∈N} ⊆ E be an ascending chain. Then {1An : n ∈N} is an ascending chain in H with limit 1⋃
{An :n∈N}. Hence

1⋃
{An :n∈N} ∈H . Hence

⋃
{An : n ∈N} ∈ E .

Since C ⊆H , A ⊆ E . By π-λ systems Lemma, σ(A ) ⊆ E .

Let f :Ω→R be a bounded σ(C )-measurable function. By Lemma 1.26 there exists a sequence of simple functions

ϕn =
kn∑

i=1
ci ,n 1Ei ,n

such that ϕn ↑ f , where Ei ,n ∈σ(C ).

As σ(C ) is the smallest σ-algebra such that every function in C is measurable and C = {1A : A ∈ A }, we have σ(C ) = σ(A ).
Ei ,n ∈σ(A ) ⊆ E implies that 1Ei ,n ∈H . Since H is a vector space, ϕn ∈H . Since ϕn ↑ f , we deduce that f ∈H .

We conclude that H contains all bounded σ(C )-measurable functions.

Question 7. Lemma 2.4

Let µ : A → [0,∞) be an additive set function on an algebra A taking only finite values. Show that µ is countably additive iff
for every sequence (An) of sets in A with An ↓; we have µ (An) → 0.

Proof. "=⇒": Suppose that µ is countably additive. By Proposition 2.3(v), for any descending chain {An : n ∈N} with
⋂

{An : n ∈N} =
∅,

lim
n→∞µ(An) =µ

( ⋂
n∈N

An

)
=µ(∅) = 0

"⇐=": Suppose that for any descending chain {An : n ∈N} with
⋂

{An : n ∈N} =∅ we have lim
n→∞µ(An) = 0.

Consider a countable collection of disjoint sets {An : n ∈ N}. Let A := ⋃
n∈N

An and Ek := A\
k⋃

n=0
An . Then En ↓ 0. From finite

additivity we have

0 = lim
n→∞µ(En) = lim

k→∞
µ

A\
k⋃

n=0
An

=µ(A)− lim
k→∞

k∑
n=0

µ(An) =µ(A)−
∞∑

n=0
µ(An)

Hence
∞∑

n=0
µ(An) =µ

( ⋃
n∈N

An

)
. We conclude that µ is countably additive.

Question 8

OnR consider theσ-algebra A of sets which are either countable or have a countable complement. Let µ(A) = 0 for countable
A and µ(A) = 1 otherwise , A ∈A . Show that µ is a probability measure on A .

Proof. Since R is uncountable, µ(R) = 1. So it suffices to shown that µ is a measure on (R,A ).

• Since ∅ is at most countable, µ(∅) = 0.
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• Suppose that {An : n ∈N} ⊆A is a countable collection of disjoint sets.

If there exists Ai , A j uncountable with Ai ∩A j =∅, then R\Ai ⊇ A j is not countable, contradiction. Hence
⋃

{An : n ∈N}
can have at most one uncountable element.

If every An is countable, then
⋃

{An : n ∈N} is a countable union of countable sets, and hence is countable. We have:

∞∑
n=0

µ(An) =
∞∑

n=0
0 = 0 =µ

( ⋃
n∈N

An

)

Suppose that Ai is uncountable and the rest are countable. Then
⋃

{An : n ∈N} is uncountable and

∞∑
n=0

µ(An) =µ(Ai )+ ∑
n 6=i

µ(An) = 1 =µ
( ⋃

n∈N
An

)

Hence µ is countably additive.

Question 9

LetΩ be a set and I a π-system onΩ. Let F =σ(I ). Suppose that µ1 and µ2 are two measures on (Ω,F ) with µ1(Ω) =µ2(Ω) <
∞ andµ1 =µ2 on I . Then Theorem 2.10 on uniqueness of extension says thatµ1 =µ2 on F . Find an example onΩ= {1,2,3,4}
where this fails if we drop the assumption that I is a π-system.

Proof. Let I = {{1,2}, {2,3}}. Then I is not a π-system and σ(I ) =P (Ω). Let µ1 : P (Ω) → [0,+∞) be a measure such that

µ1({1}) = 0, µ1({2}) = 1, µ1({3}) = 0, µ1({4}) = 1

Let µ2 : P (Ω) → [0,+∞) be a measure such that

µ2({1}) = 1, µ2({2}) = 0, µ2({3}) = 1, µ2({4}) = 0

Then

µ1({1,2}) =µ2({1,2}) = 1, µ1({1,2}) =µ2({1,2}) = 1, µ1(Ω) =µ2(Ω) = 2

But it is clear that µ1 6=µ2.

Question 10

Let Ψ = Φ−1 the be inverse the CDF of a standard normal random variable. On the probability space ((0,1),B((0,1)),Leb)
define X (ω) =Ψ(ω) and

Y1(ω) = 1(0,0.5)(ω)−1[0.5,1)(ω)
Y2(ω) = 1(0,0.25)(ω)+1[0.75,1)(ω)−1[0.25,0.75)(ω)

• Show that X ∼N (0,1) and Y1 ∼ Y2 are distributed according to ν= (δ1 +δ−1)/2.

• Describe the joint distributions of (X ,Y1) and (X ,Y2) on R2. Are they the same?

• Let µ be the distribution of |X |. Give an example of a couple of random variables distributed according to µ⊗ν.

Proof. 1. Let FX be the distribution function of X . Then

FX (x) = m ({ω ∈ (0,1) : X (ω) É x}) = m
({
ω ∈ (0,1) :Φ−1(ω) É x

})= m ({ω ∈ (0,1) :ωÉΦ(x)}) =Φ(x)

where m is the Lebesgue measure on (0,1). SinceΦ is the distribution function of N (0,1), we deduce that X ∼ N (0,1).

2. Let FY1 and FY2 be the distribution functions of Y1 and Y2 respectively. Then for Y1, 1(0,1/2)(ω)−1[1/2,1)(ω) is equal to -1
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for ω ∈ [1/2,1) and 1 for ω ∈ [0,1/2). Hence

FY1 (x) = m
({
ω ∈ (0,1) : 1(0,1/2)(ω)−1[1/2,1)(ω) É x

})=


0, x ∈ (−∞,−1)

1/2, x ∈ [−1,1)

1, x ∈ [1,∞)

For Y2, 1(0,1/4)(ω)+1[3/4,1)(ω)−1[1/4,3/4)(ω) is equal to -1 for ω ∈ [1/4,3/4) and 1 for ω ∈ [0,1/4)∪ [3/4,1). Hence

FY2 (x) = m
({
ω ∈ (0,1) : 1(0,1/4)(ω)+1[3/4,1)(ω)−1[1/4,3/4)(ω) É x

})=


0, x ∈ (−∞,−1)

1/2, x ∈ [−1,1)

1, x ∈ [1,∞)

Then FY1 = FY2 and hence Y1 ∼ Y2. In particular, the distribution function induces the push-forward measure ν =
(δ1 +δ−1)/2.

3. Let FX ,Y1 be the joint distribution function of X and Y1. Then

FX ,Y1 (x, y) =


0, y ∈ (−∞,−1)

m ((0,Φ(x))∩ [1/2,1)) , y ∈ [−1,1)

m ((0,Φ(x))∩ (0,1/2)) , y ∈ [1,∞)

Let FX ,Y2 be the joint distribution function of X and Y2. Then

FX ,Y2 (x, y) =


0, y ∈ (−∞,−1)

m ((0,Φ(x))∩ [1/4,3/4)) , y ∈ [−1,1)

m ((0,Φ(x))∩ ([0,1/4)∪ [3/4,1))) , y ∈ [1,∞)

Note that FX ,Y1 (1/4,1) = 1/2 and FX ,Y2 (1/4,1) = 1/4. So the two distruibutions are not the same.

4. Observe that
F|X |(x) = m ({ω ∈ (0,1) : |X (ω)| É x}) = m ({ω ∈ (0,1) : −x É X (ω) É x}) =Φ(x)−Φ(−x)

Consider the probability space
(
(0,1)2,B

(
(0,1)2

)
,Leb

)
. Let A,B : (0,1)2 →R be random variables defined by

A(ω1,ω2) := F−1
|X |(ω1)

B(ω1,ω2) := 1(0,0.5)(ω2)−1[0.5,1)(ω2)

Then A and B are independent, and A ∼ |X | and B ∼ Y1. Hence (A,B) induces the push-forward measure µ⊗ν on(
R2,B

(
R2

))
.




