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Section 1

Question 1
Let Q be a set.
(a) Show that the collection of all sets A € 22(Q)) such that either A or A® is countable is a o-algebra.
(b) Give an example of two algebras &, and %, on Q = {1, 2,3} whose union &%, U %, is not an algebra.

(c) (Proofof Lemma 1.3) Suppose that {Z;} jel is a non-empty family of o-algebras on Q. Prove that the intersection N je; &,
is a o-algebra on Q.

Proof. (a) Inthis question countable means at most countable. Let & be the collection.
¢ Since & is at most countable, @ € &; \/
e For Ae %, either A or Q\ A is at most countable. Thus Q\A € &;

e Let I be acountable index set. For {A;:i€ I} € &,let I = JuK suchthat {A; :i € J} and {Q\A; : i € K} are collections
of at most countable sets. If K = &, then

UtAizien={JtAizien ‘/

is a countable union of at most countable sets and hence is at most countable. We deduce that J{A; :i € I} € &.

If K # @, then fix Ay such that Q\ Ay is at most countable. We have
Q\UiArie D =()IQ\A;:i € L€ Q\Ag V4

Q\U{A; : i € I} is a subset of an at most countable set and hence is at most countable. We deduce that [J{A; : i €
I}e %,

We conclude that & is a o-algebra.

(b) On Q ={1,2,3}, the following are algebras:
gl = {,@, {1}) {2)3}’ {1,2r3}} 3-52 = {@, {2}) {1)3}) {1,2’3}}

However, & U %, = {&,{1},{2},{1,3},{2,3},{1,2,3}} is not an algebra, because {1},{2} € & UF, and {1,2} = {1} U {2} ¢
F1UF.

() e Forje], geZF; Hencede(F;:je ]}
s AeNiFj:jell = Vje]: AeF; —= Vje]: NAeF; — Q\AeN{iF;:je ]}
s {AitieNtcN{Fjjel = Vje]: {AitieNlcF; —= Vje]: UlAiiieNte F; — UlA;iieNteN{F;:

jEe T
We conclude that "{A; : j € J} is a o-algebra. \/ O
Question 2
Let 2 = {Pf}je] be a partition of a set Q (i.e., a collection of disjoint non-empty sets with union Q ). Show that the set % (£?)

consisting of all possible unions of sets P; is a o-algebra on Q. Conversely, show that any o-algebra & on a countable set Q is
of the form % (%) for some partition & of Q.

[Warning: the converse is very far from true when Q is uncountable.]

Proof. By definition, % (2?) = {U{P; : j € I} : I < J}. First we show that % (2?) is a o-algebra on Q:
« Since @ =U(P; : j € @}, @ € U(DP). V4
*» For A€ % (2), there exists I < J such that A={P; : j € I}. Since & is a partition of 2,

Q=UPj:jen=UPj:jenuUJtPj: je \I}



Hence Q\A=U{P;: je \I} € U(2).

* For{A;:ieN}c%(2?), A; =U{P;,;: j € I;} for some I; < J. Then
UAisieNy =P j:je L ieNy=J{Pj: jelJUi: i eN}} e %(22)
Hence U{A; :i e N} € % (7). \/

We conclude that % (2?) is a o-algebra on Q.

Conversely, let & be a o-algebra on a countable set Q. We define a equivalence relation on Q: For x, y € Q,
X~y <= VAeF (xe A<= ye A \/

Let £ be the partition defined by this equivalence relation. We claim that & = % (2?).

For x € Q, let [x] denotes the equivalence class of x. For A€ &, if x € A then [x] € A by definition. Hence A is a union of some
equivalence classes. In particular A € % (2?). Hence & < %/(2?). On the other hand, for x € Q,

xl=AeF:xe A} = Q\[x]=|J{Ae F :x¢ A} \/
Since Q\[x] € Q, OQ\[x] is at most countable. Write Q\[x] = {y; : i e N} where y; € A; € & and x ¢ A;. Then
Q\[x] =yt :ieNt=JlAi i eN}

The union is now countable. Hence Q\[x] € & and [x] € &.

Finally, for A € %(2?), since A € Q is at most countable, A = U{[x;] : j € I} for some at most countable index set I. Hence
AEF. U(P) S ZF.

We conclude that % (®) = &. \/ O

Question 3

Let (f») be a sequence of measurable functions on (Q, &) taking values in R. Show that fi + f>, max {f, f2} and sup,, f;, are all
measurable functions.

Proof. R=RU {-oo,+oo} is a linearly and densely ordered set with the topology generated by the basis:
{(a,b):a,beR,a< blu{[—oo0,a):aecR}U{(a,+oo]:acR}

For amap f:Q — R, by Corollary 1.19 f is %-measurable if and only if {x e R: f(x) < t} € & forall t € R.
1. fi+ f> is measurable:

For t € R, note that

xeQ: (i+L))<st=JxeQ: iwsgrfoo<st-gi= (xeQ: i <gin{xeQ: H(x)<t-gqg})

qeQ qeQ \/

For each g € Q, since fi, f> are measurable, {x€ Q: fi(x) < g}, {x€eQ: fi(x)<t-qgle F.Hence{xeQ: filx) <ginf{xe
Q: fo(x) s t—g} € F. AsQis countable, we deduce that the countable union {x € Q: (fi + f2)(x) < t} € &. Hence fi + f>
is measurable. \/

2. We show that ho fi is measurable for any continuous map h: R — R.

Since h is continuous, the pullback of a Borel set in R under h is also Borel. Hence (ho fl)_1 (A) = fl‘1 (h‘l(A)) € & for
any Borel set A < R. Hence ho f; is measurable. \/

3. max{fi, f»} is measurable:
1
Note that max{fi, 2} = > ((fi + f2) +1fi = f21). Since f, is measurable, —f> = h; o f, is measurable, where h; (x) = —x is

continuous. Hence fj — f, is measurable. Hence | f; — f2| = hz o (fi — f) is measurable, where h,(x) = |x]| is continuous.

1
Hence g:= (fi + f2) + | fi — f2| is measurable. Hence max{fi, f2} = h3 o g is measurable, where h3(x) = Ex is continuous.

v



4. (sup,, fn)(x) :=sup{fn(x) : n € N} is measurable:

For t e R,
{er:supfn(x)s r}: N {xeQ: fulx) < t}=Q\(U Q\{xeQ: f(x) < t}) €F
n neN neN
since {x € Q: f,(x) < t} € F for each n € N. Hence sup,, f,, is measurable. \/ O
Question 4

(Lemma 1.29) Let (Q, &) be the product space of two measurable spaces (Q;, %;),i = 1,2. Show that if f : Q — Ris measurable
then

e foreach w; € Q1, Q2 3wy — f (W1, w?2) is F»-measurable and
e for each w; € Qy, Q1 3 W) — f (W1, w>) is F;-measurable.
(Exercise 1.13) Deduce that if D € & and D (w1) := {w3 : (w1, w>) € D} is its section for a fixed w; € Q; then D (w1) € %».
Proof. In this question we use %] x &, to denote {A; x Ay : A} € &1, Ay € &} and use F ® &, to denote the o-algebra generated by
F1 x Fy.
First we prove the result in Exercise 1.13.
Let of (w1) :={D e F1 ® F,: D(w1) € F»} = F ® F, for a fixed w; € Q,. First we show that «f (w,) is a o-algebra:
e Since T(w;) =T € F, T € A (w1).
e For D e o/ (w1):

D(w) € 92 - Q\D(wl) = ((Ql X Qz)\D)(wl) € 92 - (Ql X Qz)\D € d((u]\)/

e For{D;:ieN}Cof(w;):

VieNDj(w)) € F, = UD,-(wl)z(UD,-)(wl)eg2 = UD,-Ed(wl)\/

ieN ieN ieN
Next, for D € &1 x %, D = A; x Ay for some A; € &1 and Ay € &%,. Hence D(w) = Ay € &». In particular 1 x %» € o (w1).
Therefore &1 ® %5 = 0(F x F2) € 0(A (w1)) =« (w1). We deduce that of (w1) = F1 ® Fo.
Now we prove Lemma 1.29. By symmetry it suffices to prove one result: w, — f (w1, ) is #»-measurable for each w; € Q;.

For D € %) ® %, the indicator function 1p is & -measurable. The map w, — 1p(w1,wy) is in fact the indicator function 1p(, )
on . By the previous proof we have shown that D(w1) € %;. Therefore 1p(,,) is %2-measurable.

For a simple function ¢ =} ; ¢;1p,, w2 — @(w1,w?) is }; ¢;1p, ;) and hence is %, -measurable.

For a & -measurable function f: Q; x Q, — R, by Lemma 1.26 there exists a increasing sequence of simple function {¢,}

such that ¢, 1 f. Then ws — f(w;,wy) is the limit of w» — ¢, (w;,w2) as n — co. Again by Lemma 1.26 we deduce that
w2 — f(w1,w7) is F»-measurable. O

4

Question 5. Proof of Theorem 2.10

Let 1, t2 be two finite measures on (Q, F) with y; (Q) = 2 (Q). Verify that {A € F : u; (A) = p2(A)} is a A-system.

Proof. Letof :={A€ F : 1 (A) = ua(A)}
* 11(Q) = u2(Q) implies that Q € .

* For A, B € o with A< B, we have u;(A) = pu2(A) and p; (B) = u2(B). By additivity of py, p1(B) = g1 (AU B\A) = uy(A) +
t1(B\A). Similarly o (B) = u2(A) + p2(B\A). Hence p) (B\A) = pp(B\A). B\A€e .

e Let {A;:neN} < .o be an ascending chain. By continuity of y; and uy,

m( U An) = lim p1(Ap) = lim pp(Ap) = Mz( U An)

neN neN



Hence U{A,,:neN} e «.
We conclude that «f is a A-system. \/ O

Question 6

Use -1 systems Lemma to prove the Monotone Class Theorem (Theorem 1.28) in the case when € = {14 : A € &/} for a
7m-system & .

Proof. Consider & :={E € Q:1g € #}. First we show that & is a A-system.
* 1g e A impliesthat Q € &. \/
e For A, Be & with AS B, 14,1p € 4. As /€ is a vector space, 1p\4 =1p—14 € /. Hence B\A€ &. \/

e Let {A,:neN} c & be an ascending chain. Then {1,, : n € N} is an ascending chain in / with limit 1 j4,.zeny. Hence
1j(a,:neny € . Hence U{A, : neN} € 8. \/
Since € < A, of < &. By n-A systems Lemma, o (/) S &.

Let f:Q — R be abounded o(¥)-measurable function. By Lemma 1.26 there exists a sequence of simple functions

kn
Pn= Z CinlE;,
i=1
such that ¢, 1 f, where E; , € 0(6).
As 0(%€) is the smallest o-algebra such that every function in € is measurable and € = {14 : A € &/}, we have 0(€¥) = o(«/).
Ejn€o0(sf) <& implies that 1g, , € /. Since A is a vector space, ¢, € . Since ¢, | f, we deduce that f € #.

We conclude that ./ contains all bounded o (6¢)-measurable functions. \/ O

Question 7. Lemma 2.4

Let u: o/ — [0,00) be an additive set function on an algebra ¢ taking only finite values. Show that u is countably additive iff
for every sequence (A;) of sets in of with A, | » we have u(A;) — 0.

Proof. "=": Suppose that u is countably additive. By Proposition 2.3(v), for any descending chain {A,, : n € N} with N{A, :neN} =
9,
Jim p(Ap) = u( N An) = (@) =0

neN

"<=": Suppose that for any descending chain {A, : n € N} with N{A, : n € N} = & we have r}gn u(Ay) =0.

k
Consider a countable collection of disjoint sets {A; : n € N}. Let A:= U A, and Ej := A\ U Ay. Then E;, | 0. From finite
neN n=0
additivity we have

k k e}
0= lim p(E,) = lim u(A\ Ap | =pA) - lim Y p(Ap) = p(A) — ) u(Ay)
n—o00 k—o0 ~ k—o00 = =

n=0 n=0 n=0

o0

Hence Z WAy = ,u( U An). We conclude that u is countably additive. O
n=0 neN
Question 8

On R consider the o-algebra < of sets which are either countable or have a countable complement. Let p(A) = 0 for countable
Aand p(A) =1 otherwise , A € of. Show that u is a probability measure on <.

Proof. Since R is uncountable, y(R) = 1. So it suffices to shown that p is a measure on (R, 7).

e Since @ is at most countable, y(2) \:)



e Suppose that {A, : n € N} € o is a countable collection of disjoint sets.

If there exists A;, A; uncountable with A;nA; = &, then R\ A; 2 A; is not countable, contradiction. Hence U{A, : n € N}
can have at most one uncountable element. \/

If every A, is countable, then U{A,, : n € N} is a countable union of countable sets, and hence is countable. We have:

Y A=Y 0=0=p(U 4,
n=0 n=0

ey

Suppose that A; is uncountable and the rest are countable. Then [J{A : n € N} is uncountable and

Y A = pA) + Y Ay =1= u( U An) V4

n=0 n#i neN

Hence p is countably additive. O

Question 9

LetQbeasetand . an-systemon Q. Let & = o(.¥). Suppose that u; and py are two measures on (Q, %) with p; (Q) = (2 (Q) <
oo and y; = pp on.#. Then Theorem 2.10 on uniqueness of extension says that p; = tp on . Find an example on Q = {1,2,3,4}
where this fails if we drop the assumption that .# is a 7-system.

Proof. Let.# ={{1,2},{2,3}}. Then .# is not a m-system and o (.¥) = 22(Q). Let u; : 22(Q) — [0, +00) be a measure such that
u1({1) =0, w(2h =1, u1({3h) =0, pi({4h =1

Let pp : 22(Q) — [0, +00) be a measure such that

H2({1D =1, H2({21) =0, H2({3D =1, H2({4h) =0
Then
i (L,2h) = pe({1,2) =1, H(1L,2h) = e ({1,2) =1, Q) =pe(Q) =2
But it is clear that p; # po. \/ O

Question 10

Let ¥ = ®~! the be inverse the CDF of a standard normal random variable. On the probability space ((0,1),28((0,1)),Leb)
define X (w) = ¥(w) and

Y1 (w) = 10,05 (@) — 1105,1) ()
Y2 (w) = 1(0,0.25) (W) + 1{0.75,1) (@) — 1[0.25,0.75) (W)

e Show that X ~.4(0,1) and Y; ~ Y> are distributed according to v = (8, +6-1) /2.
¢ Describe the joint distributions of (X, Y7) and (X, ¥2) on R2. Are they the same?
¢ Let u be the distribution of | X|. Give an example of a couple of random variables distributed according to y® v.
Proof. 1. Let Fx be the distribution function of X. Then
Fx(xX)=m(we©,1): X <x)=m({we©01): 0 (w<x})=m{we(01):0<dx)) =d(x)

where m is the Lebesgue measure on (0,1). Since @ is the distribution function of N(0, 1), we deduce that X ~ N(0, 1).

2. Let Fy, and Fy, be the distribution functions of ¥; and Y> respectively. Then for Y1, 1(0,1/2)(w) — 1[1/2,1) (@) is equal to -1



forwe [1/2,1) and 1 for w € [0,1/2). Hence

0, X € (—oo,—1)
Fy,(x)=m({we0,1):1p1/2 @) —1ppn <x})=41/2, xe[-1,1)
1, X €[1,00)

For Ys, 1(0,1/4) (w)+ 1[3/4'1)(61)) - 1[1/4,3/4) (w) is equal to -1 for w € [1/4,3/4) and 1 for w € [0,1/4) U [3/4,1). Hence

0, X € (—o0,—1)
Fy,(x) =m({w € (0,1) : 1(0,1/4) (@) + 1(3/4,1) (@) — L1/a,3/2) (@) < x}) =3 1/2, x€[-1,1)
1, x€[1,00)

Then Fy, = Fy, and hence Y; ~ Y. In particular, the distribution function induces the push-forward measure v =

(51+671)/2. V

. Let Fx y, be the joint distribution function of X and Y;. Then

O) }’E(—OO;—I)
Fx, v, (x,y) =4 m((0,0(x))n[1/2,1)), yel-1,1)
m((0,®(x))N(0,1/2)), ye[l,00)

Let Fx,y, be the joint distribution function of X and Y». Then
Oy y € (—OO, - l)

Fx,y,(x,y) = { m((0,®(x)) N [1/4,3/4)), yel-1L1)
m((0,®(x)) N ([0,1/4)U[3/4,1))), ye€(l,00)

Note that Fy,y, (1/4,1) =1/2 and Fx,y,(1/4,1) = 1/4. So the two distruibutions are not the same. \/
. Observe that

Fx (X)) =m{we0,D): | X()|<x)=m{we0,1):—x < X(w) <x}) =0(x) —D(—x)
Consider the probability space ((0,1)%,98((0,1)%),Leb). Let 4, B: (0,1)* — R be random variables defined by

A(wy,w2) := F 3 (@1)
B(w1,w2) := 19,05 (w2) — 1{0.5,1) (w2)
Then A and B are independent, and A ~ |X| and B ~ Y;. Hence (A, B) induces the push-forward measure y® v on

(R?, % (R?)). O

4





