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1 Veneziano and Virasoro-Shapiro amplitudes
Before they were recognized as describing relativistic quantum-mechanical strings, a great was made by studying
the properties of scattering amplitudes as a part of the dual model p. problem, you will perform some analysis
on the two most famous dual model amplitudes.

Question 1.1

Consider elastic scattering of identical scalar particles with masses α′m2 = −α(0) = −1. In terms of the
Mandelstam variables

s = − (p1 + p2)
2 , t = − (p1 + p4)

2 , u = − (p1 + p3)
2

find the expression for the scattering angle θs in center-of-momentum frame. Charac of high energy fixed-angle
scattering in terms of Mandelstam variables. What does (s ≫ 1, t < 0 fixed) look like in center-of-momentum
frame?

Question 1.2

The Veneziano amplitude for the scattering of open-string tachyons of mass α′m2 = −1 is given by

AV (s, t) =
Γ(−α(s))Γ(−α(t))

Γ(−α(s)− α(t))
, α(x) := 1 + α′x

Show that the Veneziano amplitude can also be defined by the series expansion

AV (s, t) = −
∞∑
n=0

(α(s) + 1)(α(s) + 2) · · · (α(s) + n)

n!

1

α(t)− n
.

Deduce that the Veneziano amplitude displays Dolen-Horn-Schmid duality.

Question 1.3

Show that in the Regge limit, the Veneziano amplitude behaves according to a

A(s, t) ∼ Γ(−α(t))(−α(s))α(t)

This is subtle: you must actually define the Regge limit so that s has a small imaginar s-channel poles on
the positive s axis. Can you justify this trick?

aStirling’s formula for the Gamma function should prove useful for this.

Question 1.4

Show that in high-energy, fixed-angle scattering, the Veneziano amplitude behaves according to

A(s, t) ∼ F (θs)
−α(s)

Find the function F (θs) and show that this behavior is exponentially soft. As in the previous part, you
should give s a small imaginary part to avoid s-channel poles.
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Question 1.5

The Virasoro-Shapiro amplitude for the scattering of identical scalar tachyons of mass α′m2 = −4 is given
by a

AV S(s, t, u) =
Γ (−αc(s)) Γ (−αc(t)) Γ (−αc(u))

Γ (−αc(s)− αc(t)) Γ (−αc(t)− αc(u)) Γ (−αc(u)− αc(s))
, αc(x) := 1 +

α′x

4
.

Find and argue the validity of an expression for AV S(s, t, u) as a sum of, say, t - and u-channel exchange
contributions (i.e., as a sum of terms which have simple poles in t or u with residues that are polynomials in
s, as arise from tree-level exchange diagrams in the t or u channels in field theory).

aRecall that s+ t+ u = 4m2 = −16/α′ for this amplitude. We write the u dependence to make crossing symmetry manifest.

Question 1.6

Find expressions for the Regge and high-energy, fixed-angle limits of the Virasoro-Shapiro amplitude.

2 Classical string dynamics
Although the analysis of the quantum string is quite a bit more involved than that of the classical string, it
is important to remember that there are some points of contact between classical and quantum theories. In
this exercise, you will analyze the classical bosonic string via the Nambu-Goto action, which is less suitable for
quantization than the Polyakov action, but is a perfectly good (and equivalent) classical theory.

Question 2.1

Recall the Nambu-Goto Lagrangian for the relativistic string,

LNG = −T
√
−h,

where h is the determinant of the induced metric on the worldsheet. Derive the equations of motion implied
by this Lagrangian for both open and closed strings, and show that in both cases they imply

∂iK
i
µ = 0, Ki

µ :=
δL

δ
(
∂xµ(ξ)
∂ξi

) ,
where ξi are worldsheet coordinates and xµ(ξ) are space-time coordinates. Using the equations of motion,
show that the following quantity is conserved by the string dynamics,

Pµ(τ) =

∫ π

0
dσKµτ (σ, τ),

where σ and τ are spatial and temporal coordinates on the string worldsheet. What is the interpretation of
this quantity?

Proof. The induced metric on the world sheet is given by

h =
∂xµ

∂ξi
∂xν

∂ξj
ηµνdξ

idξj
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So the Nambu-Goto Lagrangian is given by

LNG = −T
√
deth = −T

√
−
(
∂x

∂τ

)2(∂x

∂σ

)2

+

(
∂x

∂τ
· ∂x
∂σ

)2

For closed strings, the variation δL has the natural boundary conditions. For open strings, the variation δL
has the fixed boundary conditions on σ. By calculus of variations, both cases produce the Euler-Lagrange
equation:

∂

∂ξi
∂LNG
∂(∂ixµ)

− ∂LNG
∂xµ

= 0

If Ki
µ :=

∂LNG
∂(∂ixµ)

, then we have the equations of motion

∂iK
i
µ = 0 ⇐⇒

∂Kτ
µ

∂τ
= −

∂Kσ
µ

∂σ

For
Pµ(τ) =

∫ π

0
dσKµτ (σ, τ) = ηµν

∫ π

0
dσKτ

ν (σ, τ)

we have
∂P µ

∂τ
= ηµν

∫ π

0
dσ

∂Kτ
ν

∂τ
= −ηµν

∫ π

0
dσ

∂Kσ
ν

∂σ
= −ηµν(Kσ

ν (τ, π)−Kσ
ν (τ, 0))

For closed strings, the periodic boundary condition suggests that Kσ
ν (τ, π) = Kσ

ν (τ, 0). For open strings,
the boundary conditions force Kσ

ν (τ, π) = Kσ
ν (τ, 0) = 0. In both cases, we have ∂τP

µ = 0. Hence Pµ is
conserved by the string dynamics. This should be understood as the momentum of the string.

Question 2.2

Show that in conformal gauge, a the following quantity is also conserved for both open and closed strings,

Mµν =

∫ π

0
dσ (xµ(σ, τ)Kντ (σ, τ)− xν(σ, τ)Kµτ (σ, τ)) .

aIn the lectures and most textbooks, conformal gauge is introduced only for the Polyakov action. Convince yourself that there
should be an analogous gauge choice for the Nambu-Goto string.

Proof. In the conformal gauge for the Nambu-Goto action, the induced metric on the worldsheet is chosen such
that hτσ = 0 and trh = 0. Then

LNG = −T

2

(
−∂x

∂τ
· ∂x
∂τ

+
∂x

∂σ
· ∂x
∂σ

)
So Kτ

µ = T∂τxµ and Kσ
µ = −T∂σxµ. ∂iK

µi = 0 impplies that ∂2
τx

µ = ∂2
σx

µ. We have

∂Mµν

∂τ
= T

∂

∂τ

∫ π

0
dσ (xµ∂τx

ν − xν∂τx
µ)

= T

∫ π

0
dσ (xµ∂2

τx
ν − xν∂2

τx
µ)

= T

∫ π

0
dσ (xµ∂2

σx
ν − xν∂2

σx
µ)

= T (xµ∂σx
ν − xν∂σx

µ)
∣∣∣σ=π

σ=0

As in the previous question,the quantity above vanishes for both closed strings and open strings. Hence

3



Mµν is conserved. This is the anuglar momentum of the string.

Question 2.3

Consider an open string in conformal gauge. Show that the end-points of the string move through spacetime
at the speed of light.

Proof. In the conformal gauge, we have trh = −∂τx · ∂τx+ ∂σx · ∂σx = 0. At the end-points of an open string, we
have ∂σx = 0. Therefore ∂τx ·∂τx = 0. This shows that the vector ∂τx is light-like in Minkowski spacetime.
So physically we can say that it moves through spacetime at the speed of light.

Question 2.4

Verify that the following is a solution of the equations of motion for the Nambu-Goto string in conformal
gauge:

x0(σ, τ) =
1

2

(
p+

a2

p

)
nτ

x1(σ, τ) =
1

2

(
p− a2

p

)
nτ

x2(σ, τ) = a cos(nσ) cos(nτ)

x3(σ, τ) = a cos(nσ) sin(nτ)

xµ(σ, τ) = 0 µ > 4.

Describe the motion of this string through spacetime. Find an analogous solution where the center of mass
of the string is stationary. Find the relationship between spacetime energy and angular momentum for this
family of solutions.

Proof. First we need to verify that the solution is in conformal gauge. The induced metric on the worldsheet:

hττ =
∂x

∂τ
· ∂x
∂τ

= −1

4

(
p+

a2

p

)2

+
1

4

(
p− a2

p

)2

+ a2n2 cos2(nσ) sin2(nτ) + a2n2 cos2(nσ) cos2(nτ)

= a2(−1 + n2 cos2(nσ))

hτσ =
∂x

∂τ
· ∂x
∂σ

= a2n2 cos(nσ) sin(nσ) cos(nτ) sin(nτ)− a2n2 cos(nσ) sin(nσ) cos(nτ) sin(nτ)

= 0

hσσ =
∂x

∂σ
· ∂x
∂σ

= a2n2 sin2(nσ) cos2(nτ) + a2n2 sin2(nσ) sin2(nτ)

= a2n2 sin2(nσ)

So hττ + hσσ = 0. In the conformal gauge, the equations of motion are simple: ∂2
τx

µ = ∂2
σx

µ. We have:

∂2
τx

0 = ∂2
σx

0 = 0, ∂2
τx

1 = ∂2
σx

1 = 0, ∂2
τx

2 = ∂2
σx

2 = −n2x2, ∂2
τx

3 = ∂2
σx

3 = −n2x3

So this is a solution for the Nambu-Goto string in conformal gauge.
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In the x1-direction, the string moves at constant speed. On the x2x3-plane, the string rotates along its
centre at constant angular velocity.

For a similar solution where the centre of mass of the string is stationary, we can simply neglect the motion
in the x1-direction by setting p = a. So we have

x0(σ, τ) = anτ, x1(σ, τ) = 0, x2(σ, τ) = a cos(nσ) cos(nτ), x3(σ, τ) = a cos(nσ) sin(nτ)

Let Kτ = (Kτ
1 , ...,K

τ
3 ). The classical (spatial) angular momentum is given by

M =

∫ π

0
dσ x ∧Kτ =

∫ π

0
dσ

(
x2∂τx

3 − x3∂τx
2
)
e1 = na2

∫ π

0
dσ cos2(nσ)e1 =

πna2

2
e1

The spacetime energy

E =
1

2

∫ π

0
dσKτ ·Kτ =

1

2
a2n2

∫ π

0
dσ cos2(nσ) =

πn2a2

4
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Apart from a few missing factors around and the computation of the spacetime energy, you did a good job!
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