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Section A: Introductory

Question 1

Let f: (M, g) — (N, h) be a surjective local isometry between connected Riemannian manifolds.
(a) Show that if (M, g) is complete then (N, h) is complete.
(b) If (N, h) is complete, is (M, g) complete? Give a proof or a counterexample.

Let (M ,g) be the universal cover of (M, g) with the covering metric.

(c) Show that (M, g) is complete if and only if (M, g) is complete.

Question 2

Let B™ be the unit ball in R™ and let

g:

(1 — s 3722)2

By considering normalized geodesics in (B™, g) through 0, show that (B", g) is complete.

Question 3

Let (N, g) be an oriented (n + 1)-dimensional Riemannian manifold. Let f : N — R be a smooth function
and let h = e*/g.

(a) Let V9 and V" be the Levi-Civita connections of g and h. Show that
VEY = V&Y + X(NY + Y (f)X — g(X,Y)VIf

for all vector fields X,Y on N.

(b) Let M be a connected oriented hypersurface in (N, g) with unit normal vector field v so that the shape
operator satisfies

S, =Aid
for a smooth function A : M — R. Show that the shape operator of M in (NN, h) satisfies
Se—fy = :U'ld

for a smooth function p : M — R which should be identified in terms of A and f.

Now let R > 0, let
n+1
M = {(xl,...,an) c H* . fo = RQ}
i=1
with its standard orientation and let A be the hyperbolic metric on "1,

(c) Calculate the mean curvature and sectional curvatures of M in (H ntl h) with its induced metric.



Section B: Core

Question 4

(a) Let (M.g) be a complete Riemannian manifold with non-positive sectional curvature, let p, ¢ be points
in M and let « be a curve in M from p to q.

Show that there is a unique geodesic v in (M, g) from p to ¢ which is homotopic to a.

(b) Let (M, g) be an oriented even-dimensional manifold with positive sectional curvature and let 7 : St —
(M, g) be a closed geodesic.

Proof.

Show that there is a closed curve a : St — (M, g) homotopic to 7 such that L(a) < L(7).

(a)

By taking the path component of p, we may assume that M is connected. Let M be the universal
cover of M. Then M is connected, simply-connected, complete, with non-positive sectional curvature.
By Cartan-Hadamard Theorem, M is diffeomorphic to R™. As the universal cover is defined up to
homeomorphism, we can actually take M =R". Moreover, the covering map is exp, : TpM = R" —
M. Hence the lift of geodesics in M are straight lines in R"™.

Let 7 : (R",p) — (M, p) be the covering map. By path lifting property, a : [0,1] — M uniquely lifts
to @ : [0,1] — R™ such that a(0) = p. Let ¢ := a(1). Now let ¥ : [0, 1] — R™ be the unique geodesic
(i.e. straight line) connecting p and q~ Since R™ is simply-connected, & ~ 7 and hence o ~ v := w0 7.
To show that « is unique, suppose 7/ is another geodes1c connecting p and q such that 7 ~'. By
homotopy lifting property, the homotopy H from ~ to +/ lifts to a homotopy H from 5 5 to¥d'. But then
we must have ¥ = 5’ by uniqueness of geodesic in R™. Hence + is unique.

First we need to prove the following lemma (hint from Exercise 9.4 of do Carmo):
There exists a parallel vector field V' along v such that V(1) = V(0).

For t € [0,1], let (T, y)*" be the orthonormal complement of 4 in T, M. Let 7 : (T g7)" —
(Tﬁy(t)’y)L be the parallel transport of vector fields from ~(0) to y(¢) along 7. It is clear that {7 }e[o 1]
is a one-parameter family of orientation preserving isometries of R™. Since M is even-dimensional, by
Synge—Weinstein Theorem, 73 has a fixed vector for each t. In particular, when we take t = 1, we
obtain a parallel vector field V'(¢) along « such that V(0) = V(1).

Suppose that for all closed curve a with o ~ v, we have L(a) > L(y). We construct a variation of -y as
follows. Let V' be a normalised parallel vector field along v constructed as above. So V' is orthogonal
to 4 and V(0) = V(1). Let

f(s,t) == expy ) (sV (1))
Ofi

s —2(0,t) = V(t). In particular V (t) = 0. Substituting into the second variation formula,

. of
Liy(0) = / K(V,4)dt - <DDS i (0,t),7(t))

Since V(0) = V(1) and 4(0) = (1), then we have

Then Vy(t) =

we obtain
t=1

t=0

*Ef / K dt <0
On the other hand, as(t) := f(s,t) defines a family of closed curves homotopy to g = v. By

assumption, L(as) > L(v) for all s. Then Ef(s) > E(0) for all s. It means that E;(0) = 0 and
E¢(0) > 0. This is a contradiction. We conclude that v has a homotopic curve with smaller length. [J

Vo vl dane |
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Question 5

(a) Let n,m € N. Show that 8" x 8" admits a Riemannian metric of positive Ricci curvature if and only
ifn>2and m>2.

(b) Let G be a connected Lie group with identity e which admits a bi-invariant Riemannian metric. Suppose
that the centre of the Lie algebra g = TG is trivial.

Show that G and its universal cover are compact, and hence that SL(n, R) does not admit a bi-invariant
metric for n > 2.

| You may assume that the results of Problem sheet 3 Question 4 extend to any Lie group with a bi-
invariant Riemannian metric. |

(c) Show that RP? x RP? does not admit a Riemannian metric of positive sectional curvature.

| Hint: You may want to think about the orientable double cover. |

Proof. (a) First we show that for (n,m) € {(1,1),(1,2),(2,1)}, S™ x S™ does not admit positive Ricci curvature.
Note that S™ x S™ is compact and hence geodesically complete by Hopf-Rinow Theorem. If it admits
positive Ricci curvature, then by a Corollary Bonnet—Myers Theorem, 71 (S™ x S™) is finite. But we
know that

Z2,
Wl(SnXSm)gﬂ'l(Sn) ><7'('1(Sm)g Z,
0,

So we have a contradiction.

Now suppose that n,m > 2. We equip S™ and S™ with the round metric, and equip S™ x S™ with
the product metric. We know that S™ has constant sectional curvature K = 1. So S™ x S™ has
prp2) (S X S™). We may assume that X # 0.
Since n > 2, we can find normalised Y; € T}, S™ orthogonal to X7 in S™. So

non-negative sectional curvature. Let (X1, X2) € T

Ric((X1, X2), (X1, X2)) = R((Y1,0), (X1, X2), (X1, X2), (Y7,0))
= Rsn(i/thle?Yl) = gsn(XlaXl)Ksn(Xh}/l)
= ¢ (X1, X1) >0

Hence the Ricci curvature is positive. \/

(b) By Question 4 of Sheet 3, the Riemann curvature for X,Y, Z € g is given by

R(X,Y)Z = —>[[X,Y], 7] = % ady oadx (V)

1
4

For X, Y € g, the Ricci curvature is given by
n
Ric(X,Y) = z;g(R(Ei, X.Y), Ei) =~ Zg([[Ei, X, Y], E;)
1=

1 1
- 4 Zg(adx oady (E;), b;) = 1 tr(adx oady)
=1

1
= _ZH<X7 Y)

where k is the Killing form on g. Since 3(g) = {0}, k is non-degenerate. The fact that the sectional
curvature is non-negative implies that Ric(X, X) > 0 for normalised X € g. Since the unit ball in g
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is compact, Ric(X,X) > ¢ > 0 for some constant c¢. Using the bi-invariance of the metric we have
Ric(X, X) > ¢ > 0 for all normalised vector field X in G.

Since G is connected, exp, : g — G is surjective, and hence G is geodesically complete by Hpof-Rinow
Theorem. Now by Bonnet—Myers Theorem, GG is compact. The universal cover G of G is also complete
with positive Ricci curvature. So G is also compact.

Note that SL(2,R) is unbounded, because for M,, := diag(a, a™t) € SL(2,R),
IMa||? =o®+a? = as a — 0o

So SL(2,R) is not compact. By the above proof we deduce that SL(2,R) does not admit a bi-invariant
metric. Since SL(2,R) embeds into SL(n,R) for n > 2, we conclude that SL(n,R) does not admit a
bi-invariant metric.

Suppose that RP? x RP? admits positive sectional curvature. By Kiinneth’s Theorem, the highest

homology group
Hy(RP? x RP?) = Hy(RP?) ® Hy(RP?) =0

Then RP? x RP? is non-orientable. It has a connected oriented double cover M. Since RP? x RP?
is compact with positive sectional curvature, so is M. In particular M is geodesically complete. By
Synge’s Theorem, M is simply-connected.

On the other hand, note that 71 (RP? x RP?) 2 7y (RP?) x 71 (RP?) 2 (Z/2)2. 71 (M) is an index two

subgroup of 7 (RP? x RP?). So 7 (M) = Z/2. In particular M is not simply-connected. Contradiction.

Therefore RP? x RP? does not admit positive sectional curvature. J! ]
V 800 .

Section C: Optional

Question 6

Determine whether each of the following statements is true or false, and give a proof or counterexample as

appropriate.

The unitary group U(m) admits a Riemannian metric with strictly positive Ricci curvature for some
m > 1.

The manifold ™ x 8™ admits a Riemannian metric with non-positive sectional curvature if and only if
n=m=1.

Euclidean space R™ admits a constant curvature 1 Riemannian metric for any n > 1.

If K is the Klein bottle then K x 8™ admits a Riemannian metric with positive sectional curvature for
any n > 1.

Complex projective space CP" admits a constant curvature 1 Riemannian metric if and only if n = 1.

[ Hint: You may assume that w1 (CP") = {1} and H? (CP") # 0 for all n. |
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