Peize Liu St. Peter's College University of Oxford

Problem Sheet 4 C3.11: Riemannian Geometry

Section A: Introductory

Question 1

Let $f:(M,g)\to (N,h)$ be a surjective local isometry between connected Riemannian manifolds.

- (a) Show that if (M, g) is complete then (N, h) is complete.
- (b) If (N, h) is complete, is (M, g) complete? Give a proof or a counterexample.

Let $(\widetilde{M}, \widetilde{g})$ be the universal cover of (M, g) with the covering metric.

(c) Show that $(\widetilde{M}, \widetilde{g})$ is complete if and only if (M, g) is complete.

Question 2

Let B^n be the unit ball in \mathbb{R}^n and let

$$g = \frac{4\sum_{i=1}^{n} dx_i^2}{\left(1 - \sum_{i=1}^{n} x_i^2\right)^2}$$

By considering normalized geodesics in (B^n, g) through 0, show that (B^n, g) is complete.

Question 3

Let (N,g) be an oriented (n+1)-dimensional Riemannian manifold. Let $f:N\to\mathbb{R}$ be a smooth function and let $h=e^{2f}g$.

(a) Let ∇^g and ∇^h be the Levi-Civita connections of g and h. Show that

$$\nabla_X^h Y = \nabla_X^g Y + X(f)Y + Y(f)X - g(X,Y)\nabla^g f$$

for all vector fields X, Y on N.

(b) Let M be a connected oriented hypersurface in (N, g) with unit normal vector field ν so that the shape operator satisfies

$$S_{\nu} = \lambda \text{ id}$$

for a smooth function $\lambda: M \to \mathbb{R}$. Show that the shape operator of M in (N,h) satisfies

$$S_{e^{-f}\nu} = \mu \mathrm{id}$$

for a smooth function $\mu: M \to \mathbb{R}$ which should be identified in terms of λ and f.

Now let R > 0, let

$$M = \left\{ (x_1, \dots, x_{n+1}) \in H^{n+1} : \sum_{i=1}^{n+1} x_i^2 = R^2 \right\}$$

with its standard orientation and let h be the hyperbolic metric on H^{n+1} .

(c) Calculate the mean curvature and sectional curvatures of M in (H^{n+1}, h) with its induced metric.

Section B: Core

Question 4

(a) Let (M.g) be a complete Riemannian manifold with non-positive sectional curvature, let p,q be points in M and let α be a curve in M from p to q.

Show that there is a unique geodesic γ in (M, g) from p to q which is homotopic to α .

(b) Let (M, g) be an oriented even-dimensional manifold with positive sectional curvature and let $\gamma : \mathcal{S}^1 \to (M, g)$ be a closed geodesic.

Show that there is a closed curve $\alpha: \mathcal{S}^1 \to (M, g)$ homotopic to γ such that $L(\alpha) < L(\gamma)$.

Proof. (a) By taking the path component of p, we may assume that M is connected. Let \widetilde{M} be the universal cover of M. Then \widetilde{M} is connected, simply-connected, complete, with non-positive sectional curvature. By Cartan-Hadamard Theorem, \widetilde{M} is diffeomorphic to \mathbb{R}^n . As the universal cover is defined up to homeomorphism, we can actually take $\widetilde{M} = \mathbb{R}^n$. Moreover, the covering map is $\exp_p : T_p M \cong \mathbb{R}^n \to M$. Hence the lift of geodesics in M are straight lines in \mathbb{R}^n .

Let $\pi:(\mathbb{R}^n,\widetilde{p})\to (M,p)$ be the covering map. By path lifting property, $\alpha:[0,1]\to M$ uniquely lifts to $\widetilde{\alpha}:[0,1]\to\mathbb{R}^n$ such that $\widetilde{\alpha}(0)=\widetilde{p}$. Let $\widetilde{q}:=\widetilde{\alpha}(1)$. Now let $\widetilde{\gamma}:[0,1]\to\mathbb{R}^n$ be the unique geodesic (i.e. straight line) connecting \widetilde{p} and \widetilde{q} . Since \mathbb{R}^n is simply-connected, $\widetilde{\alpha}\simeq\widetilde{\gamma}$ and hence $\alpha\simeq\gamma:=\pi\circ\widetilde{\gamma}$. To show that γ is unique, suppose γ' is another geodesic connecting p and q such that $\gamma\simeq\gamma'$. By homotopy lifting property, the homotopy H from γ to γ' lifts to a homotopy \widetilde{H} from $\widetilde{\gamma}$ to $\widetilde{\gamma}'$. But then we must have $\widetilde{\gamma}=\widetilde{\gamma}'$ by uniqueness of geodesic in \mathbb{R}^n . Hence γ is unique.

(b) First we need to prove the following lemma (hint from Exercise 9.4 of do Carmo):

There exists a parallel vector field V along γ such that V(1) = V(0).

For $t \in [0,1]$, let $(T_{\gamma(t)}\gamma)^{\perp}$ be the orthonormal complement of $\dot{\gamma}$ in $T_{\gamma(t)}M$. Let $\tau_t : (T_{\gamma(0)}\gamma)^{\perp} \to (T_{\gamma(t)}\gamma)^{\perp}$ be the parallel transport of vector fields from $\gamma(0)$ to $\gamma(t)$ along γ . It is clear that $\{\tau_t\}_{t\in[0,1]}$ is a one-parameter family of orientation preserving isometries of \mathbb{R}^n . Since M is even-dimensional, by Synge-Weinstein Theorem, τ_t has a fixed vector for each t. In particular, when we take t=1, we obtain a parallel vector field V(t) along γ such that V(0) = V(1).

Suppose that for all closed curve α with $\alpha \simeq \gamma$, we have $L(\alpha) \geqslant L(\gamma)$. We construct a variation of γ as follows. Let V be a normalised parallel vector field along γ constructed as above. So V is orthogonal to $\dot{\gamma}$ and V(0) = V(1). Let

$$f(s,t) := \exp_{\gamma(t)}(sV(t))$$

Then $V_f(t) = \frac{\partial f_i}{\partial s}(0, t) = V(t)$. In particular $\dot{V}(t) = 0$. Substituting into the second variation formula, we obtain

$$\frac{1}{2}\ddot{E}_f(0) = -L(\gamma)^2 \int_0^1 K(V,\dot{\gamma}) dt - g \left(\frac{D}{Ds} \frac{\partial f_i}{\partial s}(0,t), \dot{\gamma}(t) \right) \Big|_{t=0}^{t=1}$$

Since V(0) = V(1) and $\dot{\gamma}(0) = \dot{\gamma}(1)$, then we have

$$\frac{1}{2}\ddot{E}_f(0) = -L(\gamma)^2 \int_0^1 K(V, \dot{\gamma}) \, dt < 0$$

On the other hand, $\alpha_s(t) := f(s,t)$ defines a family of closed curves homotopy to $\alpha_0 = \gamma$. By assumption, $L(\alpha_s) \ge L(\gamma)$ for all s. Then $E_f(s) \ge E_f(0)$ for all s. It means that $\dot{E}_f(0) = 0$ and $\ddot{E}_f(0) \ge 0$. This is a contradiction. We conclude that γ has a homotopic curve with smaller length. \square

Very well done!

Question 5

- (a) Let $n, m \in \mathbb{N}$. Show that $S^n \times S^m$ admits a Riemannian metric of positive Ricci curvature if and only if $n \ge 2$ and $m \ge 2$.
- (b) Let G be a connected Lie group with identity e which admits a bi-invariant Riemannian metric. Suppose that the centre of the Lie algebra $\mathfrak{g} = T_e G$ is trivial.

Show that G and its universal cover are compact, and hence that $SL(n, \mathbb{R})$ does not admit a bi-invariant metric for $n \ge 2$.

[You may assume that the results of Problem sheet 3 Question 4 extend to any Lie group with a biinvariant Riemannian metric.]

(c) Show that $\mathbb{RP}^2 \times \mathbb{RP}^2$ does not admit a Riemannian metric of positive sectional curvature.

[Hint: You may want to think about the orientable double cover.]

Proof. (a) First we show that for $(n,m) \in \{(1,1),(1,2),(2,1)\}$, $S^n \times S^m$ does not admit positive Ricci curvature. Note that $S^n \times S^m$ is compact and hence geodesically complete by Hopf–Rinow Theorem. If it admits positive Ricci curvature, then by a Corollary Bonnet–Myers Theorem, $\pi_1(S^n \times S^m)$ is finite. But we know that

$$\pi_1(S^n \times S^m) \cong \pi_1(S^n) \times \pi_1(S^m) \cong \begin{cases}
\mathbb{Z}^2, & (n,m) = (1,1) \\
\mathbb{Z}, & (n,m) = (1,2), (2,1) \\
0, & n,m \geqslant 2
\end{cases}$$

So we have a contradiction.

Now suppose that $n, m \ge 2$. We equip S^n and S^m with the round metric, and equip $S^n \times S^m$ with the product metric. We know that S^n has constant sectional curvature K = 1. So $S^n \times S^m$ has non-negative sectional curvature. Let $(X_1, X_2) \in T_{(p_1, p_2)}(S^n \times S^m)$. We may assume that $X_1 \ne 0$. Since $n \ge 2$, we can find normalised $Y_1 \in T_{p_1}S^n$ orthogonal to X_1 in S^n . So

$$Ric((X_1, X_2), (X_1, X_2)) \ge R((Y_1, 0), (X_1, X_2), (X_1, X_2), (Y_1, 0))$$

$$= R^{S^n}(Y_1, X_1, X_1, Y_1) = g^{S^n}(X_1, X_1)K^{S^n}(X_1, Y_1)$$

$$= g^{S^n}(X_1, X_1) > 0$$

Hence the Ricci curvature is positive.

(b) By Question 4 of Sheet 3, the Riemann curvature for $X, Y, Z \in \mathfrak{g}$ is given by

$$R(X,Y)Z = -\frac{1}{4}[[X,Y],Z] = \frac{1}{4}\operatorname{ad}_Z \circ \operatorname{ad}_X(Y)$$

For $X, Y \in \mathfrak{g}$, the Ricci curvature is given by

$$\operatorname{Ric}(X,Y) = \sum_{i=1}^{n} g(R(E_{i}, X, Y), E_{i}) = -\frac{1}{4} \sum_{i=1}^{n} g([E_{i}, X], Y], E_{i})$$

$$= -\frac{1}{4} \sum_{i=1}^{n} g(\operatorname{ad}_{X} \circ \operatorname{ad}_{Y}(E_{i}), E_{i}) = -\frac{1}{4} \operatorname{tr}(\operatorname{ad}_{X} \circ \operatorname{ad}_{Y})$$

$$= -\frac{1}{4} \kappa(X, Y)$$

where κ is the Killing form on \mathfrak{g} . Since $\mathfrak{z}(\mathfrak{g}) = \{0\}$, κ is non-degenerate. The fact that the sectional curvature is non-negative implies that Ric(X,X) > 0 for normalised $X \in \mathfrak{g}$. Since the unit ball in \mathfrak{g}

is compact, Ric(X,X) > c > 0 for some constant c. Using the bi-invariance of the metric we have Ric(X,X) > c > 0 for all normalised vector field X in G.

Since G is connected, $\exp_e : \mathfrak{g} \to G$ is surjective, and hence G is geodesically complete by Hpof–Rinow Theorem. Now by Bonnet–Myers Theorem, G is compact. The universal cover \widetilde{G} of G is also complete with positive Ricci curvature. So \widetilde{G} is also compact.

Note that $SL(2,\mathbb{R})$ is unbounded, because for $M_{\alpha} := diag(\alpha,\alpha^{-1}) \in SL(2,\mathbb{R})$,

$$||M_{\alpha}||^2 = \alpha^2 + \alpha^{-2} \to \infty$$
 as $\alpha \to \infty$

So $SL(2,\mathbb{R})$ is not compact. By the above proof we deduce that $SL(2,\mathbb{R})$ does not admit a bi-invariant metric. Since $SL(2,\mathbb{R})$ embeds into $SL(n,\mathbb{R})$ for $n \ge 2$, we conclude that $SL(n,\mathbb{R})$ does not admit a bi-invariant metric.

(c) Suppose that $\mathbb{RP}^2 \times \mathbb{RP}^2$ admits positive sectional curvature. By Künneth's Theorem, the highest homology group

$$H_4(\mathbb{RP}^2 \times \mathbb{RP}^2) \cong H_2(\mathbb{RP}^2) \otimes H_2(\mathbb{RP}^2) = 0$$

Then $\mathbb{RP}^2 \times \mathbb{RP}^2$ is non-orientable. It has a connected oriented double cover M. Since $\mathbb{RP}^2 \times \mathbb{RP}^2$ is compact with positive sectional curvature, so is M. In particular M is geodesically complete. By Synge's Theorem, M is simply-connected.

On the other hand, note that $\pi_1(\mathbb{RP}^2 \times \mathbb{RP}^2) \cong \pi_1(\mathbb{RP}^2) \times \pi_1(\mathbb{RP}^2) \cong (\mathbb{Z}/2)^2$. $\pi_1(M)$ is an index two subgroup of $\pi_1(\mathbb{RP}^2 \times \mathbb{RP}^2)$. So $\pi_1(M) \cong \mathbb{Z}/2$. In particular M is not simply-connected. Contradiction. Therefore $\mathbb{RP}^2 \times \mathbb{RP}^2$ does not admit positive sectional curvature.

Section C: Optional

Question 6

Determine whether each of the following statements is true or false, and give a proof or counterexample as appropriate.

- (a) The unitary group U(m) admits a Riemannian metric with strictly positive Ricci curvature for some m > 1.
- (b) The manifold $S^n \times S^m$ admits a Riemannian metric with non-positive sectional curvature if and only if n = m = 1.
- (c) Euclidean space \mathbb{R}^n admits a constant curvature 1 Riemannian metric for any n > 1.
- (d) If K is the Klein bottle then $K \times S^n$ admits a Riemannian metric with positive sectional curvature for any n > 1.
- (e) Complex projective space \mathbb{CP}^n admits a constant curvature 1 Riemannian metric if and only if n=1.

[Hint: You may assume that $\pi_1(\mathbb{CP}^n) = \{1\}$ and $H^2(\mathbb{CP}^n) \neq 0$ for all n.]