
Peize Liu
St. Peter’s College

University of Oxford

Problem Sheet 4

C3.11: Riemannian Geometry

3 March, 2022

Andrea



1

Section A: Introductory

Question 1

Let f : (M, g)→ (N,h) be a surjective local isometry between connected Riemannian manifolds.

(a) Show that if (M, g) is complete then (N,h) is complete.

(b) If (N,h) is complete, is (M, g) complete? Give a proof or a counterexample.

Let (M̃, g̃) be the universal cover of (M, g) with the covering metric.

(c) Show that (M̃, g̃) is complete if and only if (M, g) is complete.

Question 2

Let Bn be the unit ball in Rn and let

g =
4
∑n

i=1 dx2i(
1−

∑n
i=1 x

2
i

)2
By considering normalized geodesics in (Bn, g) through 0, show that (Bn, g) is complete.

Question 3

Let (N, g) be an oriented (n + 1)-dimensional Riemannian manifold. Let f : N → R be a smooth function
and let h = e2fg.

(a) Let ∇g and ∇h be the Levi-Civita connections of g and h. Show that

∇hXY = ∇gXY +X(f)Y + Y (f)X − g(X,Y )∇gf

for all vector fields X,Y on N .

(b) Let M be a connected oriented hypersurface in (N, g) with unit normal vector field ν so that the shape
operator satisfies

Sν = λ id

for a smooth function λ :M → R. Show that the shape operator of M in (N,h) satisfies

Se−fν = µid

for a smooth function µ :M → R which should be identified in terms of λ and f .

Now let R > 0, let

M =

{
(x1, . . . , xn+1) ∈ Hn+1 :

n+1∑
i=1

x2i = R2

}

with its standard orientation and let h be the hyperbolic metric on Hn+1.

(c) Calculate the mean curvature and sectional curvatures of M in
(
Hn+1, h

)
with its induced metric.
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Section B: Core

Question 4

(a) Let (M.g) be a complete Riemannian manifold with non-positive sectional curvature, let p, q be points
in M and let α be a curve in M from p to q.

Show that there is a unique geodesic γ in (M, g) from p to q which is homotopic to α.

(b) Let (M, g) be an oriented even-dimensional manifold with positive sectional curvature and let γ : S1 →
(M, g) be a closed geodesic.

Show that there is a closed curve α : S1 → (M, g) homotopic to γ such that L(α) < L(γ).

Proof. (a) By taking the path component of p, we may assume that M is connected. Let M̃ be the universal
cover of M . Then M̃ is connected, simply-connected, complete, with non-positive sectional curvature.
By Cartan-Hadamard Theorem, M̃ is diffeomorphic to Rn. As the universal cover is defined up to
homeomorphism, we can actually take M̃ = Rn. Moreover, the covering map is expp : TpM ∼= Rn →
M . Hence the lift of geodesics in M are straight lines in Rn.

Let π : (Rn, p̃) → (M,p) be the covering map. By path lifting property, α : [0, 1] → M uniquely lifts
to α̃ : [0, 1] → Rn such that α̃(0) = p̃. Let q̃ := α̃(1). Now let γ̃ : [0, 1] → Rn be the unique geodesic
(i.e. straight line) connecting p̃ and q̃. Since Rn is simply-connected, α̃ ' γ̃ and hence α ' γ := π ◦ γ̃.
To show that γ is unique, suppose γ′ is another geodesic connecting p and q such that γ ' γ′. By
homotopy lifting property, the homotopy H from γ to γ′ lifts to a homotopy H̃ from γ̃ to γ̃′. But then
we must have γ̃ = γ̃′ by uniqueness of geodesic in Rn. Hence γ is unique.

(b) First we need to prove the following lemma (hint from Exercise 9.4 of do Carmo):

There exists a parallel vector field V along γ such that V (1) = V (0).

For t ∈ [0, 1], let (Tγ(t)γ)
⊥ be the orthonormal complement of γ̇ in Tγ(t)M . Let τt : (Tγ(0)γ)⊥ →

(Tγ(t)γ)
⊥ be the parallel transport of vector fields from γ(0) to γ(t) along γ. It is clear that {τt}t∈[0,1]

is a one-parameter family of orientation preserving isometries of Rn. Since M is even-dimensional, by
Synge–Weinstein Theorem, τt has a fixed vector for each t. In particular, when we take t = 1, we
obtain a parallel vector field V (t) along γ such that V (0) = V (1).

Suppose that for all closed curve α with α ' γ, we have L(α) > L(γ). We construct a variation of γ as
follows. Let V be a normalised parallel vector field along γ constructed as above. So V is orthogonal
to γ̇ and V (0) = V (1). Let

f(s, t) := expγ(t)(sV (t))

Then Vf (t) =
∂fi
∂s

(0, t) = V (t). In particular V̇ (t) = 0. Substituting into the second variation formula,
we obtain

1

2
Ëf (0) = −L(γ)2

∫ 1

0
K(V, γ̇) dt− g

(
D

Ds

∂fi
∂s

(0, t), γ̇(t)

)∣∣∣∣t=1

t=0

Since V (0) = V (1) and γ̇(0) = γ̇(1), then we have

1

2
Ëf (0) = −L(γ)2

∫ 1

0
K(V, γ̇) dt < 0

On the other hand, αs(t) := f(s, t) defines a family of closed curves homotopy to α0 = γ. By
assumption, L(αs) > L(γ) for all s. Then Ef (s) > Ef (0) for all s. It means that Ėf (0) = 0 and
Ëf (0) > 0. This is a contradiction. We conclude that γ has a homotopic curve with smaller length.
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Question 5

(a) Let n,m ∈ N. Show that Sn × Sm admits a Riemannian metric of positive Ricci curvature if and only
if n > 2 and m > 2.

(b) Let G be a connected Lie group with identity e which admits a bi-invariant Riemannian metric. Suppose
that the centre of the Lie algebra g = TeG is trivial.

Show that G and its universal cover are compact, and hence that SL(n,R) does not admit a bi-invariant
metric for n > 2.

[ You may assume that the results of Problem sheet 3 Question 4 extend to any Lie group with a bi-
invariant Riemannian metric. ]

(c) Show that RP2 × RP2 does not admit a Riemannian metric of positive sectional curvature.

[ Hint: You may want to think about the orientable double cover. ]

Proof. (a) First we show that for (n,m) ∈ {(1, 1), (1, 2), (2, 1)}, Sn×Sm does not admit positive Ricci curvature.
Note that Sn×Sm is compact and hence geodesically complete by Hopf–Rinow Theorem. If it admits
positive Ricci curvature, then by a Corollary Bonnet–Myers Theorem, π1(Sn × Sm) is finite. But we
know that

π1(S
n × Sm) ∼= π1(S

n)× π1(Sm) ∼=


Z2, (n,m) = (1, 1)

Z, (n,m) = (1, 2), (2, 1)

0, n,m > 2

So we have a contradiction.

Now suppose that n,m > 2. We equip Sn and Sm with the round metric, and equip Sn × Sm with
the product metric. We know that Sn has constant sectional curvature K = 1. So Sn × Sm has
non-negative sectional curvature. Let (X1, X2) ∈ T(p1,p2)(S

n × Sm). We may assume that X1 6= 0.
Since n > 2, we can find normalised Y1 ∈ Tp1S

n orthogonal to X1 in Sn. So

Ric((X1, X2), (X1, X2)) > R((Y1, 0), (X1, X2), (X1, X2), (Y1, 0))

= RS
n
(Y1, X1, X1, Y1) = gS

n
(X1, X1)K

Sn
(X1, Y1)

= gS
n
(X1, X1) > 0

Hence the Ricci curvature is positive.

(b) By Question 4 of Sheet 3, the Riemann curvature for X,Y, Z ∈ g is given by

R(X,Y )Z = −1

4
[[X,Y ], Z] =

1

4
adZ ◦ adX(Y )

For X,Y ∈ g, the Ricci curvature is given by

Ric(X,Y ) =
n∑
i=1

g(R(Ei, X, Y ), Ei) = −
1

4

n∑
i=1

g([[Ei, X], Y ], Ei)

= −1

4

n∑
i=1

g(adX ◦ adY (Ei), Ei) = −
1

4
tr(adX ◦ adY )

= −1

4
κ(X,Y )

where κ is the Killing form on g. Since z(g) = {0}, κ is non-degenerate. The fact that the sectional
curvature is non-negative implies that Ric(X,X) > 0 for normalised X ∈ g. Since the unit ball in g
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is compact, Ric(X,X) > c > 0 for some constant c. Using the bi-invariance of the metric we have
Ric(X,X) > c > 0 for all normalised vector field X in G.

Since G is connected, expe : g→ G is surjective, and hence G is geodesically complete by Hpof–Rinow
Theorem. Now by Bonnet–Myers Theorem, G is compact. The universal cover G̃ of G is also complete
with positive Ricci curvature. So G̃ is also compact.

Note that SL(2,R) is unbounded, because for Mα := diag(α, α−1) ∈ SL(2,R),

‖Mα‖ 2 = α2 + α−2 →∞ as α→∞

So SL(2,R) is not compact. By the above proof we deduce that SL(2,R) does not admit a bi-invariant
metric. Since SL(2,R) embeds into SL(n,R) for n > 2, we conclude that SL(n,R) does not admit a
bi-invariant metric.

(c) Suppose that RP2 × RP2 admits positive sectional curvature. By Künneth’s Theorem, the highest
homology group

H4(RP2 × RP2) ∼= H2(RP2)⊗H2(RP2) = 0

Then RP2 × RP2 is non-orientable. It has a connected oriented double cover M . Since RP2 × RP2

is compact with positive sectional curvature, so is M . In particular M is geodesically complete. By
Synge’s Theorem, M is simply-connected.

On the other hand, note that π1(RP2 × RP2) ∼= π1(RP2)× π1(RP2) ∼= (Z/2)2. π1(M) is an index two
subgroup of π1(RP2×RP2). So π1(M) ∼= Z/2. In particularM is not simply-connected. Contradiction.
Therefore RP2 × RP2 does not admit positive sectional curvature.

Section C: Optional

Question 6

Determine whether each of the following statements is true or false, and give a proof or counterexample as
appropriate.

(a) The unitary group U(m) admits a Riemannian metric with strictly positive Ricci curvature for some
m > 1.

(b) The manifold Sn×Sm admits a Riemannian metric with non-positive sectional curvature if and only if
n = m = 1.

(c) Euclidean space Rn admits a constant curvature 1 Riemannian metric for any n > 1.

(d) If K is the Klein bottle then K ×Sn admits a Riemannian metric with positive sectional curvature for
any n > 1.

(e) Complex projective space CPn admits a constant curvature 1 Riemannian metric if and only if n = 1.

[ Hint: You may assume that π1 (CPn) = {1} and H2 (CPn) 6= 0 for all n. ]
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