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For this sheet assume the Empty Set Axiom, the Axioms of Extensionality, Pairs, Unions and the Comprehension Scheme.
In question 1 only assume also the Power Set Axiom: if X is a set there is a set P(X) whose elements are precisely the
subsets of X (this set is called the power set of X).

I will try to write proofs as formal as possible. In particular I shall adopt the axioms and rules of inference of Deductive System
K, together with the available ZF axioms.

We use the first-order language L := {€,C; P,|J, P; @}, where € and C are binary predicates, P is a binary function, | J and P
are unary functions, and & is a constant.

The equality symbol = is used in £ which indicates that two terms have the same value under any model and assignment. The
equality symbol = is used in metalanguage which indicates that two strings are equal.

The ZF axioms we shall use in this sheet are listed below:
1. Extensionality: VaVy(Vz(z € x <> z € y) > . = y);
2. Pairs: VaVyVz(z € P(z,y) > (x =2z Vy = 2));
3. Unions: VaVy(y € Uz <> 3z(y € 2 Az € x));
4. Empty Set: Vx —x € &;
5. Power Sets: VzVy(y € P(z) <>y C x);
6. Comprehension Scheme: Let ¢ € Form(L) and z, w1, ..., wi, € Free(y). Then VaVw, - - - VwrIyWz(z € y <> (2 € 2 A 9)).

The predicate C is introduced for convenience. It satisfies VxVy(z Cy <> Vz(z € x — z € y)).

Question 1 oL~
For each statement give either a proof or a counterexample.
@ PUX) =
(i) UP(X) =X
(iii) If P(a) C P(b) thena C b.
Proof. We claim the following rule of inference of K: Let ¢, x € Form(£) and let ¢) be a sub-formula of ¢. Then from ¢ <+ x
and ¢ infer [x/4]. [Substitution]
It is trivially true by Godel’s Completeness Theorem.
(i) The sentence is inconsistent with ZF set theory.

Consider X := @. Let {@} := P(g, 9).

1: VaVyVz(z € P(z,y) <> (z=2zVy=2)) [Pairs]
2: ze{@}e(z=0Vz=0)) [A4+MP 3 Times]
3: z2=@Vz=0+2z2=0) [Tautology]
4: ze{0}e2=0 [Substitution 2,3]
5: VaVy(ye Uz < Jz(y € zNz€x)) [Unions]
6: (yelUg+ I(yeznzew)) [A4+MP Twice]
7: Vzozew [Empty Set]
8: (Vz—ze@—>-Jz(yezNz€D)) [Theorem in K]
9: —-Jz(yezNzeD) [MP 7,8]
10: ~yelUw [Tautology + MP 6,9]
11: Va(Vy—wy ez ax=0) [Uniqueness of Empty Set]
12: (welUo+Uo=9) [A4+MP Twice]
13: Yo=0 [MP]
14: VaVy(y € P(x) <y C x) [Power Sets]
15: yC @+ yeP(O) [A4+MP Twice]
16: VyVz(y Cax < Vz(z ey — z€x)) [Def of C]
17: yC@ e Vz(zey =z €9) [A4+MP Twice]
18: —z€© [A4+MP 7]
19: (z€e@—=((rey—2€0)—=z€y)) [Tautology]



20: ((zrey—ze@)—zey = Vz(z€y—2z€0) > Vzzey)) [Theorem in K]
21: (Vz(zey—z€e@) = Vzzey)) [MP 18,19,20]
22: (yCo—->Vz-zey) [Substitution 21,24]
23: (Vzzeyey=09) [A4+MP 11]
24: (YCo—-y=9)« You do not need this — you only need 25: & C &, so that [Substitution 22,23]
2%: ©oCo & € P(D), hence by extensionality — & = P(J) [Def of C + Tautology + MP]
26: (y=9—->©@Co—-yCo) [Substitution]
27 (y=2—-yCo@) [DT+MP 25 26]
28: (y=@+<yCo) [Def of <+ + MP 24, 27|
29: (yeP(@) y=9) [Substitution 15,28]
30: (yeP@)+<ye{o}) [Substitution 4,29]
31: VaVy(Vz(z ez zey)cra=y [Extensionality]
32: (yeP@) < ye{o}) —»Pw) ={o}) [A4+MP]
33: P(w)={o} [MP 31,32]
34: Pw)=PU2) [Substitution 13,33]
35: PUw) ={o} [Transitivity of =]
36: @c{o} [Substitution 4]
37: Vy-wye{g}o={o} [A4+MP 11]
38: (e{g}—-Iyye{og} [Theorem in K]
39: —o={o} ) ) ) ) [Tautology+MP 36,37,38]
40 - _‘P(U g) = QJ It is mentioned in question, so you cein :stop ata [Substitution]
41 Ve(P(Uz) = 2) counterexample (and assume it is a trivial EOPC [Premise]
12: PUo) =2 truth th.at count.erexal.nples prove the negation of [A4+MP]
the corresponding universal statements)
Note that Line 40 and 42 imply that Vz(P(|J z) = z) is inconsistent with ZF axioms.
(ii) The statement is provable from the ZF axioms:

1: VaVylye Uz < Jz(y € 2Nz € 1)) [Unions]

2: (yeUP)+ Jz(yezAnzeP(x))) [A4+MP Twice]

3: VaVy(y e P(z) &y C ) [Power Sets]

4: (z€P(z) < zCx) [A4+MP]

5: (yeUP(z) < Jz2(yezAzCa)) [Substitution 2,4]

6: VaVy(yCz o Vz(z €y — 2z € 1)) [Def of C]

7: (@CrxeoVz(zex—zern)) You can first simplify to [A4+MP Twice]

8: Vz(z€ax—z€x) (Fz(yEzAVwW(WEZ—>WEX) < YEX)  [Theorem in K]

9: zCua anq prove both sides (backward is trivia? with [MP 7,8]
10: (yex— (yexizCa) assignment z := X), so you do not need lines 7-12 [Tautology + 9]
11: (yexzhzCx)—Iz(yezAzCx)) [Theorem in K]
12: (yex—Jz(yeznzCua)) [HS 10,11]
13: (2Cz%uw(wez—wew)) [A4+MP 6]
14: ((yeznzCz) < (yezNBw(w €z — w e 1)) [Substitution 13]
15: (yezABw(wez—wern)) > ycEx) [Theorem in K]
16: (yezhzCzx)—>y€Ex) [Substitution 14,15]
17: (yezhzCzx)—yexr) > (Fz(yezAzCx) > y€)) [Theorem in K]
18: (Fz(yezAzCx)—y€Eux) [MP 16,17]
19: (yexz+Iz(yezAzCux)) [Def of +» + MP 12,18]
20: (yexeoyelUP(2) [Substitution 5,19]
21: VyVz(y =z < Vw(w €y < w € 2)) [Extensionality]
22: (yexzeoyelUP) —x=UP(z)) [A4+MP 3 Times]
23: z=UP(z) J [MP 21,22]

(iii) The statement is provable from the ZF axioms. By Deduction Theorem, it suffices to prove P(a) C P(b)  a C b:

1: VaVy(ly € P(z) <y Cx) *® Apply A4 by assigning {x = a, y == a} [Power Sets]
2: (yePla)<ryCa) and {x :=a, y := b}, and you’ll find [A4 + MP Twice]
3: (yeP()«<yCh) this surprisingly simple [A4 + MP Twice]
4: P(a) CP(b) [Premise]
5: (ye€ P(a) > ye PD) [Def of C+A4+MP 4]



6: (yCa—yCh) [Substitution 2,3,5]
T: (yCaoVizey—z€a) [Def of C+A4+MP]
8: (yCbeVz(zey—zed) [Def of C+A4+MP]
9: (Vz(zey—z€a)—=Vz(zey—>2z€b)) [Substitution 6,7,8]
10: (Vz(zey—z€a) o Vz(z€y—2€D) >Vz(z€a— 2z€D)) [Theorem in K]
11: Vz(z€a—z€b) [MP 9,10]
12: aCh s [Def of C+A4+MP 11]

Question 2 o~
(a) Prove that the unordered pair {z,y} of z and y is the unique set whose elements are precisely x and y.

(b) Let ¢(z,w, ..., wi) be a formula of £ and wy, ..., wg, = sets. Prove that the subset y of = afforded by the Compre-
hension Scheme is unique with the stated property.

Proof. (a) The formal formula to prove is Vw(Vz(z € w + (z = z2Vy = z) - w = {z,y}), where {z,y} should be
interpreted as P(z,y) in our language £. By Deduction Theorem and A4 Axiom, it suffices to prove that

Vz(zewe (x=2zVy=2)Fw={zy}
¥ Otherwise, your claim is “for any specific assignment to z & w, LHS implies
RHS” — this is false

1: VaVyVz(z € {z,y} & (z=2Vy=2)) [Pairs|

2: (ze{z,yte (z=2zVy=2) [A4+MP 3 Times]

3: zewe (x=2zVy=2) [Premise]

4: (zew<+ ze{x,y}) [Substitution 2,3]

5: Vz(ze w oz e {z,y}) . [V 4] ¥ Did you notice that this
6: Va¥bla =b<>Vz(z €a+ z€D)) [Extensionality] generalisation is invalid
7: (w={z,y} < Vz(z€a+ z€D)) [A4+MP Twice] given your claim with
8: w={zy} [MP 6,7]  free variable z?

(b) The formal formula to prove is VyVy' (Vz(z € y <> (z € 2 A P)) AV (2 € y & (2 € 2 N ¢))) = y =1y'). By
Deduction Theorem and A4 Axiom it suffices to prove that

{Vz(zey+ (z€xN9) Vi ey (Fexng)ry=y

1: Vz(zey+ (z€xng)) [Premise]
2: (zeye(zexng)) [A4+MP]
3: V(Z ey & (F exng)) [Premise]
4: (zey & (z€xnd)) [A4+MP]
5: (zeyozey) [Substitution 2,4]
6: Vz(zeyeozey) [V 5]
7: Vavb(la=b<>Vz(z €a+> z€b)) [Extensionality]
8: (y=y o Vz(zeyeozey)) [A4+MP Twice]
9: y= y’J [MP 6,8]

Question 3 o
Let a be a set. Prove that {a} x {a} = {{{a}}}-

Proof. In the metalanguage, the Cartesian product of two sets X and Y is the set of all ordered pairs (z, y) where z € X
and y € Y. The formal definition and existence of the Cartesian product relies on the Axiom of Power Sets, without
which we can only define the Cartesian product of finite sets (in the sense of metalanguage) by enumerating all its
elements. ¥ You can define any Cartesian product. You just cannot guarantee its existence without power sets;

. .and actually in this specific finite case, the existence itself can be proven formally
In this way, the Cartesian product of {a} and {a} is the unique singleton {{(a, a)}.



By definition, (a,a) = {{a},{a,a}} = {{a},{a}} = {{a}}. Hence {a} x {a} = {{{a}}}-‘/ -

Question 4 o

(a) Show that if we define an ordered triple (a, b, ¢) of sets to be ({(a, b} , ¢) then this definition "works": i.e. if (a, b, ¢) =
(a/ b ,c)thena=d,b=0Vand c=¢.

(b) For each of the following alternative possible definitions of an ordered triple, prove that the definition "works"
or give a counterexample.

(1) (a7 b7 C)l = {{a}7 {a7 b}, {a’7 b1 C}}

(ii) (a,b,¢)2 ={(0,a),(1,b),(2,¢)} (where 0 = @, 1 = {0}, 2 = {0,1})
(iii) (a,b,c)s = ({0,a},{1,0},{2,c}) where (., .,.) is as in part (a)
@iv) (a,b,¢)s = {{0,a},{1,b},{2,c}}.

Sketch of Proof. (a) (z,y) is defined to be {{z}, {z,y}} := P(P(z, ), P(z,y)). It has been proven in the lectures that

Vava'Vyvy' ((z,y) = (',y) < (=2 Ay =1y))

We shall prove that
({a,b) ey = {d', b)),y = (a=d Ab=V Ac=C))

1: VavVa'VyVy' ((z,y) = (&', y') < (e =2’ Ay =) [Ordered Pairs]
2: ((a,b),c) = ((a', V) ) <> ({a,b) = (a/,b) Ne =) [A4+MP]
3: ((a,b) =(a V) (a=d Ab= b/)) [A4+MP]
4: ({a,b),c)={{d,b),d) < (a=d ANb=V Ac=¢)) [Substitution 2,3]

v

(b) (i) The definition does not work. Before proceeding the proof we must first prove that for any sets z, y, z there
exists a unique set {z, y, z} which contains exactly x, y, z as elements. The formal statement is

VaVyVaVuVA(w e A (w=zVw=yVw=2)) < A={zy,z})
¥ Actually, instead of defining a new function “ordered triple”, we
We defer the proof to Question 7.(i). sometimes define finite extensional set expressions in general as:
{al,a2,a3,a4, ...} = ... U{U{{al, a2}, {a3}}, {ad}} ...
whose existence is guaranteed by pair and union axioms

(x =y = {z,y,2} = {,2})

Second, we claim the following proposition:

Third, consider the assignmenta + 0,6+ 0,c+— 1,a’ — 0, — 1 and ¢’ — 1. Note that

(0,0,1)1 := {{0},{0,0},{0,0,1}} = {{0}, {0}, {0, 1}} = {{0},{0,1}} = {1,2}
(07 1, 1)1 = {{O}v {07 1}7 {07 L, 1}} = {{0}7 {07 1}7 {05 1}} = {{0}7 {07 1}} = {17 2}
Hence (0,0,1); = (0,1,1);. Butitis clear that 0 # 1.

(ii) The definition works. Suppose that {(0,a), (1,b),(2,¢)} = {(0,a’), (1,V'),(2,¢') }. Then
(0,a) € {{0,a’),(1,V'),(2,c)}. In particular, (0,a) = (0,a’) V (0,a) = (1, by v {0,a) = ( c’). But it is clear
that 0 ;é land1 ;é 2.50(0,a) # (1,b') A {0,a) # (2,). Therefore (0,a) = (0,a) and a = «’. Similarly b = ¥/
and ¢ = ¢.

(iii) The definition works. Suppose that ({0,a}, {1,b},{2,¢}) = ({0,a’},{1,'},{2,¢'}). Then {0,a} = {0,a’} A
{1,b} = {1,0'} A {2,¢} ={2,¢'}. {0,a} = {0,a’} implies that a = o’. Similarly b = " and ¢ = ¢'.

(iv) The definition does not work. Consider the assignmenta — 2,0+ 0,c+— 1,0’ — 1, — 2 and ¢ — 0.

(27 0, 1)4 = {{07 2}7 {17 0}7 {27 1}} = {{07 1}5 {17 2}7 {27 0}}
(17270)4 = {{07 1}1 {172}7 {270}}

Hence (2,0,1)4 = (1,2,0)4. But it is clear that 0 # 1.‘/ O



Question 5 B
A set a is called transitive if | Ja C q, i.e. if, for all sets z, if € a then = C «a. Prove that

(i) @ istransitive

(ii) if a is transitive then so is a U {a} (this set is denoted a™)

(iii) ais transitive if and only if | J(a U {a}) = a

(iv) a is transitive if and only if, for all sets =, y, if x € y € athenz € a
(v) the intersection of any (non-empty) set of transitive sets is transitive

(vi) the union of any set of transitive sets is transitive

Write a formula in £ with a free variable x expressing "z is transitive".
Proof. The formal formula of z being transitive is
Vy(yex%Vz(zEy%zex))‘/
Let 7" be a unary predicate such that 7'(x) if and only if the set « is transitive. Hence we have
Va(T(z) < Vy(y € x >y C x))

(i) We shall prove that T'(2):

1: Yyweo [Empty Set]
2: Vy-yezd—yeL) [A4]
3: ey [MP 1,2]
4: (ye@—-(yew—-yCQ) [Tautology]
5: (yeo—yCo) [MP 3,4]
6: Yylye o >y C o) [V 5]
7: Y2(T(z) > Vylyer —yCua)) [Def of T
8 (Val(T(z) & Vyly € — y C 2)) > (T(2) + Vy(y € & — y € 2))) [A4]
9: T(@) < Vylyed—yC o) [MP 7,8]
10 : [MP 6,10]

T(@)‘/

Hence & is transitive.

(ii) We define a™ or a U {a} to be | J P(a, P(a,a)). First we shall prove the following lemma: [Lemma 1] Vy(y €

at < (y€aVy=a)).

1: Vy(y e JP(a,P(a,a)) < Jz(y € 2V z € P(a, P(a,a)))) [Unions]
2: (yeUP(a,P(a,a)) +» 3z(y € zA z € P(a, P(a,a)))) [A4+MP]
4: Vz(z € P(a,P(a,a)) < (z=aV z={a})) [Pairs|
5: (z € P(a,P(a,a)) < (z=aVz=/{a})) [A4+MP]
6: (yeUP(a,Pla,a)) < 3Fz(y€zN(z=aVz={a}))) [Substitution 3,5]
7:3yezn(z=aVz={a})) < (yeaVye{a})) [Theorem in K]‘Without 2, its
8: (yeUP(a,P(a,a)) «» Iz(y€aVy e {a})) [Substitution 6,7 not a theorem
9: (ye{a} oy=a) :Above is why you can drop 3z here [Theorem|
10: (yeUP(a,P(a,a)) < Iz(y€aVy=a)) [Substitution 8,9]
11: VYy(y € JP(a,P(a,a)) < Jz(y €aVy=a)) [V 10]

Next, we shall prove that (T'(a) — T'(a™)). By Deduction Theorem it suffices to prove T'(a) - T'(a™), which is

equivalentto T'(a) - (y € a™ = y C a™). Again by Deduction Theorem it suffices to prove {T'(a),y € a*} F y C
+
a’ .



1: Va(T(z) < Vy(lyezr —yCx))

2: (T(a) < Vy(y€a—yCa))

3: T(a)

4: Vy(ly€ea—yCa)

5: (yea—yCa)

6: Vylyeat < (yeaVvy=a))

7: (yeat+ (yeaVy=a))

8: yeat

9: (yeaVy=a)

10: aCat

11: (aCat = (y=a—yCah))

12: (y=a—yCah)

13: VavVyVz(z Cy— (yCz— 2 C 2))

14: (yCa—(aCa™ —yCah))

15: (y€a—(aCat —yCah))

16: (aCat—(y€ea—yCah))

17: (y€a—yCat)

18: (yea—=yCa)A(y=a—yCah)) = (y€aVy=a)—yCa'))
(yeavy=a)—yCat)

—_
e

8
<
N
%
<

In Line 13 of the proof of (ii), we claimed the following lemma: [Lemma 2] VaVyVz(z Cy — (y C z = 2 C 2)).

We only need to prove that {z C y,y C 2z} = C 2. The proof is as follows:

[Def of T
[A4+MP]
[Premise|

[MP 2,3]
[A4+MP]
[Lemma 1]
[A4+MP]
[Premise|

[MP 7,8]
[Corollary of Lemma 1]
[Theorem in K]
[MP 10,11]
[Lemma 2]
[A4+MP]

[HS 5,14]
[DT+MP 15]
[MP 10,16]
[Tautology]
[MP 12,17,18]
[MP 12,19]

*® 1t is simpler if you also expand x C z and prove: {xCy,yCz,wEX} FwWEz

1: VaVy(z Cy <> Vw(w ez —wey)) [Defof C]

2: (zCysVu(wer—wey)) [A4+MP]

3: (yCzeoVu(lwey—we z)) [A4+MP]

4: (zCzeVu(wer —we z)) [A4+MP]

5: zCy [Premise]

6: yCz [Premise]

7T Yw(wEx— weEY) [MP]

8: Yw(wey—we z) [MP]

9: (wez—wey) [A4+MP]

10: (wey—wez2) [A4+MP]

11! (wez—weEz) [HS]

12: Yw(w ez — w e 2) v

13: zCz2 [MP 4,12]

v
(iii) We shall prove that (T'(a) +> a = |Ja™). First we prove a = | Ja™ + T'(a):

1: (z€a— (yex— (Fz(y € zAz€a)))) [Theorem in K]
2: (z€a—=(yex— (yeaVIziy€zAzeEa)))) [Tautology+MP]
3: VWea—=(yex— (yeaVIz(y€zAz€a)))) V]
4: (3z(yezA(z€aVz=a))+< (y€aVvIz(yezAz€a))) [Theoremin K]
5: VWy(rxe€ea—(yex—=Iz(yezNn(z€aVz=a)))) [Substitution]
6: (z€a” < (2€aVz=a)) [Lemma 1]
7: Vy(r€a— (yex—Iz(y€zAzeah))) [Substitution]
8: Vylxeca— (yexz—yelJah)) [Unions]
9: (rea—azCa") ¥ To use Def. of C, you need Vy to be [Def of C]
10: Vz(z€a—zCJat) inside (the first arrow) instead; so you V]
11: a=a" should not use generalisation at step 3: [Premise]
12: Vz(r€a—2Ca) you take x € a as a promise, MP with [Substitution]
13: T(a) 8, use generalisation, and then DT to [Def of T

get the appropriate claim:
xEa—Vy(yEx—y€Eat))



Next we prove T'(a) - a = Ja™:

1: T(a) [Premise]
2¥yy€ea—yCa) [Def of T
3:V{(yca—yCa)— Fylreyry€a) =z €a)) [Theorem in K]
4: (Fy(reyAy€a) =z €a) [MP]
5: ((zeaVIy(reyhyeca)) > x€a) [Tautology+MP]
6: (zr€a—(x€aVIylzeyye€a))) [Theorem in K|
7: (z€a+ (v€aVIYy(reyAy€a))) [Def of «]
8: (Fylxreyn(yceaVy=a)) < (x€aVIylxeyAAyca)) [Theoremin K]
9: (zea+ylzeyn(yeaVy=a))) [Substitution]
10: (yeat < (yeaVy=a)) [Lemma 1]
11: (x€a+ ylreyAycat)) [Substitution]
12: (zelUat & y(zeynyeat)) [Unions]
13: (z€a+zeJat) [Substitution]
4: Vez(zea+rzeJah) V]
15 : [Extensionality]

a=\|J)at
Uey

Then by Deduction Theorem and definition of <+ we deduce that - (T'(a) > a = Ja™).

(iv) We shall prove that (T'(a) <> VaVy((z € y Ay € a) — = € a)). We first prove T'(a) - VaVy((r e y Ay €a) —» x €
a).
1: T(a) [Premise]
2: (yea—yCa) [Def of T
: C
3: ((zreynyea)— (zeyAyCa)) [Substitution] * More directly, this is
4: (zeynyCa)—z€a) [Theorem| .
just tautology + MP 2
5: (zreyAhy€a)—zc€a) [HS]
6: VxVy((a:Ey/\yEa)—)IEa)‘/ V]
Next we prove VaVy((z € yAy € a) = 2 € a) F T(a).
1: VaVy((zx eyAy €a) — x €a) [Premise]
2: (VaVy((x eyNhy€a) v x€a)+Vyly€a—Ve(x €y — x €a))) [Theoremin K|
3: Vyly€a—Ve(z€ey—x€a)) [MP]
4: Vylyea—yCa) [Defof C]
5: [Def of T

)

T(a)J

Then by Deduction Theorem and definition of +» we deduce that - (T'(a) <> VaVy((z € y Ay € a) = x € a)).

x Yy should be inside: ... V
We shall prove that VzVy ((ﬂx =oA(yex—T(y

defined via Axiom Scheme of Comprehension:

¥.(
§—> T( xﬁ where the intersection (unary) function is

Vz(zeﬂa:H(zeUm/\Vy(yex—wzey)))

or, informally,
ﬂx::{zeUm: Vy(yegc—>z€y)}

By Deduction Theorem, it suffices to prove that {-z = @, Vy (y € = — T'(y))} H(N 2. As T( z) if and only if
Vz(z € (N — z C () z), by Deduction Theorem, it suffices to prove that

,zeﬂ }}—zgﬂx

Note that z C (z if and only if Vw(w € z — w € (). By Deduction Theorem, it suffices to prove that

,zemx wez}}—weﬂx

{—w-@ Yy (y € x — T(y)

{ﬂx—g Vylyexz—T(y



1: Vylyeax—T(y)) [Premise]

2: (yex—-T(y)) [A4+MP]

3: T(y) < Vz(zey—2Cy) [Def of T

4: (T(y) > Vz(zey—2Cy)) = (T(y) > (z€y—2Cy))) [Theoremin K]

5: (T(y) > (:€y—2Cy)) MP]

6: (yex—(z€y—2Cy)) [HS]

7: zeNzx [Premise]

8: (yex—zey) [Def of )]

9: (yex—2Cy) [DT+MP] v More directly,
10: wez [Premise] i is just A2
11: (wez—=(z2Cy—wey)) [Theorem|] + Mpx2
12: (zCy—wey) [MP]

13: (y€x—weEy) Youalsoneed w € Ux to infer this. Did you [HS]
14: Vy(y € x = w € y) notice that you never used the condition —x = &? V]
15: w € [ «——— This is where you use it (to get Iy y € x and [Def of )]

hence Iy (yEX A WE YY)
(vi) We shall prove that VaVy ((y € x — T'(y)) — T(Uz)). Similar to (v), it suffices to prove
‘Again, Vy should be inside: ... Yy (y Ex — T(y)) ...
{Vy(yEz%T(y)), zEUx, wE 2z I—wEUx

1: Vy(yeax—T(y)) [Premise]
2: (yex—T(y)) [A4+MP]
3: T(y) < Vz(zey—2Cy) [Def ofT
4: (T(y) < Vz(zey—2Cy)) = (T(y) = (z€y—2Cy))) [Theorem in K]
5: (T(y) = (r€y—2Cy)) [MP]
6: (yex—(zey—2Cy) [HS]
7: (yex—(zey—2Cy)—((yexnzey) - (yeaAnzCy))) [Theoremin K]
8: (yezxhzey) = (ycaxnzCy)) [MP]
9: FylyexzAzey) [Unions]
10: FylyexzAzCy) [MP]
11: wez [Premise]
12: (wez—=(z2Cy—wey)) [Theorem|]
13: (zCy—wey) [MP]
14: FylyexNhwey) [Substitution]
15: weUx/ [Def of |J]
O
Question 6 Oo-

Prove the following
(i) If z is a set, there is no set whose elements are all the sets y with y ¢ z.
(i) There is no set of all one-element sets.

(iii) There is no set of all two-element sets.

Sketch of Proof. (i) We shall prove that -3zVy(y € z < -y € z). It suffices to prove that 3:Vy(y € z «+ -y € x) is
inconsistent with ZF axioms. Fix z as a constant symbol in £ that satisfies the existential statement. Then
x Uz :=J P(z, z) satisfies that Vy(y € z U z). In other words, x U z is the set of all sets. We will have Russell’s
Paradoxas (zUz €z Uz Uz ¢ aUz).

(ii) A set z is a singleton if and only if 32Vy(y € © — y = z). We shall prove that
No, empty set also satisfies this statement
p=-JwVrdVy((y ez > y=12) >z €w)
Inside next bracket Double-sided arrow? Otherwise w can contain other sets
It suffices to prove that —y is inconsistent with ZF axioms. Fix w as a constant symbol in £ that satisfies the
existential statement in —¢. Consider | Jw. Note that for all sets z, {} is a singleton. And we have ({z} € w —
x € [Jw). By modus ponens and generalization we deduce that Va(z €€ |Jw). In other words, | Jw is the set of



all sets. This is impossible by Russell’s Paradox.

(iii) A set z is a doubleton if and only if 3zFw(—z =w AVy(y € z — (y = 2V y = w))). We shall prove that

¥ Again, this applies to any set with no more than two elements
P =-JaVrIzTIw((-z=wAVy(yez — (y=2zVy=w))) >z €a)

Inside next bracket

Again, double-sided arrow?

Sketch of Proof. (a) (i) Wedefine {a,b,c} tobe|J P(P(a,b), P(c,

It suffices to prove that —) is inconsistent with ZF axioms. Fix a as a constant symbol in £ that satisfies the
existential statement in —). Consider | Ja. For any set z, there exists a set y such that = # y. This is because

there are at least two different sets:
0:=2, 1:={o}

Then {z, y} is a doubleton. Hence {z,y} € a and z € |Ja. We deduce that Vz(z € |Ja). In other words, | Ja is

the set of all sets. This is impossible by Russell’s Paradox. ‘/

Question 7 B
(a) Prove that
(i) if a, b, c are sets then {a, b, c} is a set.
(ii) if zy, ...,

x, are sets then {1, ..., z, } is a set (here n € N).

(iii) if X is a finite set then P(X) is a set.

(iv) if X is a finite set then the collection of all two-element subsets of X is a set.

O

(b) Suppose X is a set all of whose elements are finite sets. Prove that there is a set Y consisting of all the elements
of X that have an even number of elements. (Note that it is not sufficient that Y "is" a subset of X.)

¢)). We shall prove that this is the unique set that satisfies

Va(z € {a,b,c} <+ (x =aVx =bVax =c)). The uniqueness is trivial by the Axiom of Extensionality.

1: (zeJP(P(a,b),P(c,c)) <> Jy(zxeyrye P( (a,b), P(c,¢)))) [Unions|
2: (ye P(P(a,b),P(c,c)) « (y = P(a,b) Vy = P(c,c))) [Pairs]
3: (zelUP(P(a,b),P(c,c)) < Fy(z € yA(y = P(a,b) Vy = P(c,c)))) [Substitution]
4: (Fy(x ey (y=Pla,b)Vy=P(cc))) < (x € Pla,b) Va € P(c,c))) [Theorem in K]
5: (zeUP(P(a,b),P(c,c)) + (xz € Pla,b) V€ Plc, c))) [Substitution]
6: (ze€P(a, b) (x=aVz=0) [Pairs]
7: (x€Ple,e) e (x=cVr=c) [Pairs]
8: (zelyP(P (a7b , (c7c)) (zx=aVz=bVz=cVz=c) [Substitution]
9: ((z=cVz=c)ez=0c) [Tautology]
10: (z e JP(P(a,b), P [Substitution]

(c,0)) «» (mianibV:ric))J

(i) We use induction on n. The case n = 0, 1, 2, 3 is proven. Suppose that {z1, ...,

that there exists a unique set {z1, ...,

YV <x e{xy, ., zn}t \/ T = 7£1>
i=1

, Tn+1} such that

x,} such that

We shall prove that there exists a unique set {z1, ...

n+1
Vo (;I: e{r1, ..., Tpt1} & \/ T = 1:1>

i=1

We define {z1,...,2,+1} to be |J P({x1, ...

Z,,} is a set. Formally, suppose

2T}, P(Tnt1,2n+1)). The uniqueness is trivial by the Axiom of
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Extensionality.

1: (zeUP(x1,....zn}, P(Tni1,Tnt1))

< y(zeynye Pz, ....zn}, P(@nt1, Tnt1)))) [Unions]
2: (ye Pz, n}, P(Tnt1,Tns1)) © W ={x1, s 2n} VY = P(Tpt1,Tnt1))) [Pairs]
3: (xeUP{z1,-zn}, P(@ny1, Tnt1))
<y ey Ay ={21, ., T} VY= P(@Tnt1,Tn41)))) [Substitution]
4: (ylreyA(y={z1,....,en} VY =P(Tpt1,Tnt1)))
“ (xe{r1,...,zn} VT € P(®py1,Tnt1))) [Theorem in K]
5: (xeUP{z1,-xn}s P(@ny1,2n41)) < (2 € {x1, ..yzn} Vo € P(Tpt1,Tnt1))) [Substitution]
6: (z€{r1,....zn} < Vi 1x7a:z) [IH]
7: (x € P(Tpy1,Tnt1) & (T =Zpt1 VT =Tpy1)) [Pairs]
8: (x=zpt1VT=2p41) & T =2Tpy1) [Tautology]
9: (xeUP{z1, .zl P(@ng1, Tn1)) < (Vig 2 =2 V& = Tpy1)) [Substitution]
10: (Vi 2=z Ve =a,41) & V2 +11 T = a:l> [Tautology]
11: (2 € UP{z1, @0}t Pnit, mngn)) & Vil e = x) [Substitution]

v

(iii) Suppose that X is a finite set in the sense that there exists sets z1, ..., z,, such that X = {z;,...,z,}. Let
¢; € {zx = z;,0}. Thenif Y C X, then we have Vz(z € Y < \/._, ¢;). In particular, by the Axiom of
Extenswnallty there are 2" distinct subsets of X. The union of these subsets of X is the power set of X.

¥ Better if you give a way to explicitly list these sets (by induction, for example)
(iv) Suppose that X is a finite set in the sense that there exists sets z1, ..., z,, such that X = {z,...,2,}. Then
-1) ... . .
X has (;L) = n(n=1) distinct doubleton subsets. The union of these sets is a set.
¥ Again, better if you give a way to explicitly list these sets, or directly use (iii) and comprehension
(b) First we formalize the property that "a set has an even number of elements." Let

Xi,j = . . .
Ty =Ty 1=

For a set a, a has 2n elements if and only if it satisfies

2n 2n
Pp = 3dx1 - a0y /\/\Xw/\vx<xeaﬁ\/xﬂfz)

i=1j=1

a has an even number of elements if and only if it satisfies ¢ := \/, .y ¢n. However, ¢ ¢ Form(L£) so the Axiom

Scheme of Comprehension is not applicable. O
Given finite A, In (a)(iv) you already you already know that there exists a

unique set of all doubletons in A (expressible in FOPC). Define this as P2(A).

Question 8 o Then we know that A is even iff a subset of P2(A) (i.e. a set in P(P2(A)))
partitions A. So we can formulate:
Prove that there exist infinitely many sets. Y={xEX:y(yEPP2X)AUy=xAVzV2 zEYAZ EYyAr—z=27

=Mz, 7’} = D))}
Sketch of Proof. Suppose for contradiction that there are only finitely many sets in the sense that we can list them as
Z1,...,Tn. Then by Question 7.(a).(ii), {z1,...,z,} is a set. In particular it is the set of all sets. This is impossible
by Russell’s Paradox. ‘/ O



