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Question 1

Let V be a finite dimensional CG-module and let g ∈G . Prove that

χS2V (g ) = 1

2

(
χV (g )2 +χV

(
g 2)) and χΛ2V (g ) = 1

2

(
χV (g )2 −χV

(
g 2))

Proof. Since V is a C[G]-module, for each g ∈G , let gV ∈ GL(V ) given by the left multiplication by g . By Question 1 in Sheet 1, gV is
diagonalisable. V has a basis {v1, .., vn} consisting of the eigenvectors of gV with corresponding eigenvalues λ1, ...,λn . That
is,

gV (vi ) =λi vi , i ∈ {1, ...,n}{
1

2
(vi ⊗ v j + v j ⊗ vi ) : 1 É j É i É n

}
is a basis of S2V by Lemma 4.13. g induces gS2V ∈ GL(S2V ) such that

gS2V

(
1

2
(vi ⊗ v j + v j ⊗ vi )

)
= 1

2

(
gV (vi )⊗ gV (v j )+ gV (v j )⊗ gV (vi )

)= 1

2
λiλ j (vi ⊗ v j + v j ⊗ vi ), 1 É j É i É n

Hence
1

2
(vi ⊗v j +v j ⊗vi ) is an eigenvector of gS2V with eigenvalue λiλ j . Since the eigenvectors span a basis of S2V , we have:

χS2V (g ) = tr gS2V =
n∑

i=1

i∑
j=1

λiλ j = 1

2

(
n∑

i=1

n∑
j=1

λiλ j +
n∑

i=1
λ2

i

)
= 1

2

(
tr gV

)2 + tr g 2
V = 1

2

(
χV (g )2 +χV

(
g 2))

{vi ∧ v j : 1 É j < i É n} is a basis of
∧2 V by Lemma 4.13. g induces g∧2 V ∈ GL(

∧2 V ) such that

g∧2 V (vi ∧ v j ) = 1

2

(
gV (vi )⊗ gV (v j )− gV (v j )⊗ gV (vi )

)= 1

2
λiλ j (vi ⊗ v j − v j ⊗ vi ) =λiλ j vi ∧ v j , 1 É j < i É n

Hence vi ∧ v j is an eigenvector of g∧2 V with eigenvalue λiλ j . Since the eigenvectors span a basis of
∧2 V , we have:

χ∧2 V (g ) =
n∑

i=2

i−1∑
j=1

λiλ j = 1

2

(
n∑

i=1

n∑
j=1

λiλ j −
n∑

i=1
λ2

i

)
= 1

2

(
χV (g )2 −χV

(
g 2))

Question 2

Show that every group homomorphism from G to an abelian group A is trivial on the commutator subgroup G ′ and hence
factors through G/G ′. Show that if N is a normal subgroup of G with G/N abelian, then G ′ É N .

Proof. For g ,h ∈ N , since G/N is Abelian, we have

(g N )(hN ) = (hN )(g N ) =⇒ h−1g−1hg N = N =⇒ [h, g ] = h−1g−1hg ∈ N

Hence G ′ É N .

Suppose that ϕ : G → A is a group homomorphism. Then by First Isomorphism Theorem we have

G/kerϕ∼= imϕÉ A

Then G/kerϕ is Abelian. We have G ′ É kerϕ. That is, ϕ|G ′ = 0. Hence ϕ : G → A induces ϕ̃ : G/G ′ → A via ϕ̃(gG ′) :=ϕ(g ) for
g ∈G .

Question 3

Let k be an algebraicaly closed field.

(a) Suppose that G is abelian. Prove that every simple kG-module is one-dimensional.

(b) Prove that the converse holds provided that |G| 6= 0 in k.

(c) Deduce from (a) that G has precisely
∣∣G : G ′∣∣ complex linear characters.
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Proof. (a) Suppose that V is a simple k[G]-module. For g ∈G , gV is a k-linear map. Since G is Abelian, for h ∈G and v ∈V ,

gV (h · v) = g h · v = hg · v = h · gV (v)

By extending the equation linearly, gV is a k[G]-module endomorphism. By Schur’s Lemma, there exists λ ∈ k such that
gV = λ1V . In particular, 〈v〉 is a sub-k[G]-module of V for any v ∈ V \ {0}, If dimk V > 1 then this contradicts that V is
simple. Hence dimk V = 1.

(b) For chark 6 | |G|, by Corollary 3.20 of Artin-Wedderburn Theorem, we have the k[G]-module isomorphism:

k[G] ∼=V dimk V1
1 ⊕·· ·⊕V dimk Vr

r

where V1, ...,Vr is a complete list of simple k[G]-modules up to isomorphism. By assumption we have dimk V1 = ·· · =
dimk Vr = 1. Then |G| = dimk k[G] = r . By Corollary 3.16, r is exactly the number of conjugacy classes of G . Therefore
every conjugacy class of G is a singleton. Hence G is Abelian.

(c) k =C is assumed for this part.

Note that G/G ′ is Abelian (by Question 2 or Part A Group Theory). By (a) every simpleC[G/G ′]-module is one-dimensional
over C. Let V1, ...,Vr be a list of such modules. By Artin-Wedderburn Theorem we have

C[G/G ′] ∼=V1 ⊕·· ·⊕Vr

Each irreducible representation ρi : G/G ′ → GL(Vi ) lifts to a representation ρ̇i : G → GL(Vi ) via ρ̇i (g ) := ρi (gG ′). Since
ρ1, ...,ρn are non-isomorphic, neither are ρ̇1, ..., ρ̇n . Then G has at least dimk C[G/G ′] = [G : G ′] non-isomorphic one-
dimensional irreducible representations.

On the other hand, suppose that ϕ : G → GL(V ) is a one-dimensional irreducible representation of G over C. Note
that dimCV = 1 implies that GL(V ) ∼= C×, which is Abelian. Then by Question 2, ϕ induces a group homomorphism
ϕ̃ : G/G ′ → GL(V ). Then V ∼=Vi as C[G/G ′]-modules for some i ∈ {1, ...,r }.

We conclude that G has exactly [G : G ′] non-isomorphic one-dimensional irreducible representations. By row orthogo-
nality theorem, the characters and the isomorphism classes of finite-dimensional C[G]-modules are in bijective corre-
spondence. Hence G has [G : G ′] complex linear characters.

Question 4

Calculate the character of the representation ρ : S4 → GL3(R) from Example 1.3(d). Let V =C3 be the CS4-module obtained by
viewing ρ as a complex representation S4 → GL3(C). Decompose V ⊗V as a direct sum of irreducible representations.

Proof. Note that in a permutation group, two elements are conjugate if and only if they have the same cycle type. S4 has 5 conjugacy
classes with representatives:

e, (12), (123), (12)(34), (1234)

For ρ(g ) ∈ SO3(R) É GL3(R), ρg is a planar rotation, so with a suitable choice of basis it has matrix

Mg =

1 0 0
0 cosθg −sinθg

0 sinθg cosθg


In particular, θg = 2π

n
if g has order n. Hence χρ(g ) = tr Mg = 2cosθg = 1+2cos

2π

o(g )
.

• χρ(e) = dimRR
3 = 3.

• Since (12) has order 2, χρ(12) = 1+cos
2π

2
=−1.

• Since (12)(34) has order 2, χρ((12)(34)) = 1+cos
2π

2
=−1.

• Since (123) has order 3, χρ(123) = 1+cos
2π

3
= 1+2 ·

(
−1

2

)
= 0.
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• Since (1234) has order 4, χρ(1234) = 1+cos
2π

4
= 1.

For the C[S4]-module V ⊗V , by Lemma 4.13 we have the initial decomposition V ⊗V = S2V ⊕∧2 V , where dimCS2V = 6 and
dimC

∧2 V = 3. For the decomposition of S2V and
∧2 V , we use the character table of S4 from Example 5.24:

e (12) (12)(34) (123) (1234)∣∣g G
∣∣ 1 3 8 6 6∣∣CG (g )

∣∣ 24 8 3 4 4

1̃ 1 1 1 1 1
ε̃ 1 -1 1 1 -1
χ̃W 2 0 2 -1 0
χ4 3 1 -1 0 -1
χV 3 -1 -1 0 1

By row orthogonality theorem we have

χS2V = 〈
χS2V , 1̃

〉
1̃+〈

χS2V , ε̃
〉
ε̃+〈

χS2V , χ̃W
〉
χ̃W +〈

χS2V ,χ4
〉
χ4 +

〈
χS2V ,χV

〉
χV

χ∧2 V = 〈
χ∧2 V , 1̃

〉
1̃+〈

χ∧2 V , ε̃
〉
ε̃+〈

χ∧2 V , χ̃W
〉
χ̃W +〈

χ∧2 V ,χ4
〉
χ4 +

〈
χ∧2 V ,χV

〉
χV

with the inner product defined in Definition 5.12. Using the formula proven in Question 1, we have

e (12) (12)(34) (123) (1234)

χS2V 6 2 2 0 0
χ∧2 V 3 -1 -1 0 1

By performing explicit calculations we obtain

χS2V = 1̃+ χ̃W +χ4

χ∧2 V =χV

We still need to find the C[S4]-module corresponding to χ4, which is a 3-dimensional subspace of C4 invariant under the
action S4 which is not isomorphic to C3 as C[S4]-modules. The only such subspace is

U :=
{

(x1, x2, x3, x4) ∈C4 :
4∑

i=1
xi = 0

}

The row orthogonality theorem implies that the character uniquely determines the representation. We have

S2V ∼=C⊕W ⊕U , ∧2V ∼=V

Hence
V ⊗V ∼=C⊕W ⊕U ⊕V

as C[S4]-modules. The corresponding decomposition of representation is

ρV ⊗V = ρC⊕ρW ⊕ρU ⊕ρV

Question 5

(a) Let χ be a character of G . Show that {g ∈G :χ(g ) =χ(1)} is a normal subgroup of G .

(b) Prove that G is simple if and only if χ(g ) 6=χ(1) for every g 6= 1 and χ 6= 1.

Proof. The notation is confusing. I shall use e to denote the identity in G. The underlying field k =C.

(a) Let H := {g ∈ G : χ(g ) = χ(e)}. Let ρ : G → GL(V ) be the representation associated with the character χ. We claim that
H = kerρ. For g ∈ kerρ,

χ(g ) = trρ(g ) = tr1V = trρ(e) =χ(e)

Hence g ∈ H and kerρ ⊆ H .
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On the other hand, suppose that g ∈ H . Suppose that ρ(g ) has eigenvalues λ1, ...,λn (counting multiplicities). Then

χ(g ) =
n∑

i=1
λi = n =χ(e)

Since |G| <∞, by Lagrange’s Theorem o(g ) <∞. ρ(g )o(g ) = ρ(e) = 1V has the unique eigenvalue 1. Then we have

λ
o(g )
1 = ·· · =λo(g )

n = 1

So the eigenvalues of ρ(g ) are roots of unity. Moreover,∣∣∣∣∣ n∑
i=1

λi

∣∣∣∣∣É n∑
i=1

|λi | =
n∑

i=1
1 = n

with equality holds if and only if λ1 = ·· · =λn . Hence

λ1 = ·· · =λn ∧
n∑

i=1
λi = n =⇒ λ1 = ·· · =λn = 1 =⇒ ρ(g ) = 1V =⇒ g ∈ kerρ

Hence kerρ ⊆ H . We deduce that H = kerρ/G .

(b) Suppose that G is simple. Then H /G is either {e} or G . If H =G , then by (a) kerρ =G . The representation is trivial and
χ= 1. If H = {e}, then χ(g ) 6=χ(1) for g 6= e.

Conversely, suppose that G is not simple. G has a proper non-trivial normal subgroup N . Then G/N is non-trivial and
has at least one irreducible representation ϕ : G/N → GL(V ). ϕ can be lifted to a non-trivial representation ϕ̇ : G →
GL(V ) via ϕ̇(g ) :=ϕ(g N ). Then the inflated character χ̃(g ) =χ(g N ). We have χ̃(g ) = χ̃(e) for g ∈ N \ {e}.

Question 6

Let G act on a finite set X and consider the permutation module V :=CX .

(a) Let g ∈G . Prove that χV (g ) = ∣∣FixX (g )
∣∣ where FixX (g ) := {x ∈ X : g · x = x}

(b) Prove that
∑

g∈G χV (g ) = r |G|, where r is the number of G-orbits on X .

(c) Suppose now that the action of G on X is 2-transitive, that is G has two orbits acting on X × X in the action defined by
g · (x1, x2) = (

g · x1, g · x2
)

. Show that
∑

g∈G χV (g )2 = 2|G| and deduce that V = 1⊕W for some simple submodule W of V .

Proof. CX or C⊕X are better notions for free C-vector spaces on X .

(a) Suppose that X = {x1, ..., xn}. Let G acts on X by ρ : G → Sym(X ), which extends linearly to ρ : G → GL(V ). With respect
to the basis {x1, ..., xn}, the matrix Mg of ρ(g ) is given by

(
Mg

)
i j =

{
1, g · xi = x j

0, otherwise

Hence

χV (g ) = tr Mg =
n∑

i=1
1{g ·xi=xi } = |FixX (g )|

(b) This is the orbit counting formula in Prelim Group Theory:∑
g∈G

χV (g ) = ∑
g∈G

|FixX (g )| = r |G|

The proof is to count |G ×X | in two ways and apply the orbit-stabliser theorem. I omit the details here.

(c) The group action ρ̃ : G → X × X extends linearly to the representation ρ̃ : G → GL(C⊕(X×X )), where C⊕(X×X ) ∼= V ⊗V
canonically as C[G]-modules. Then by Proposition 5.21.(c), we have

χV ⊗V (g ) =χV (g )2

finnwiersig
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for each g ∈G . By (b) we have ∑
g∈G

χV (g )2 = ∑
g∈G

χV ⊗V (g ) = 2|G|

The action ρ̃ : G → Sym(X × X ) is 2-transitive. Suppose that ρ : G → Sym(X ) is not transitive. Then for any two distinct
orbits A and B of X , A × A, A ×B , B × A and B ×B are distinct orbits of X × X , which is a contradiction. Hence ρ is
transitive. We have

∑
g∈G

χV (g ) = |G|.

Consider the subspace

U :=
〈

n∑
i=1

xi

〉
ÉV

The subspace is G-stable and hence is a sub-C[G]-module of V . By Maschke’s Theorem, there exists another sub-C[G]-
module W of V such that V =U ⊕W . Passing to characters we have χV =χU +χW .

Note that for g ∈G ,

g ·
n∑

i=1
xi =

n∑
i=1

g · xi =
n∑

i=1
xi

Hence the sub-representation of ρ on U is trivial. χU = 1.

Now we consider the decomposition of W into irreducible simple C[G]-modules:

W ∼=
r⊕

i=1
V αi

i , χW =
r∑

i=1
αiχVi

Then by row orthogonality theorem we have
〈
χW ,χW

〉= r∑
i=1

α2
i , where

〈
χW ,χW

〉= 〈
χV ,χV

〉−2
〈
χV ,χU

〉+〈
χU ,χU

〉= 1

|G|

( ∑
g∈G

χV (g )2 −2
∑

g∈G
χV (g )+|G|

)
= 1

|G| (2|G|−2|G|+ |G|) = 1

Since α1, ...,αr are non-negative integers, we must have αi = δi j for some j ∈ {1, ...,r }. Hence W ∼= V j is a simple C[G]-
module. We have decomposed the representation

ρV = 1⊕ρW

into two irreducible sub-representations.

Question 7

Find the character tables of the quaternion group Q8 and the dihedral group D8 of order 8. Does the character table determine
the group up to isomorphism?

Proof. The quaternion group Q8 = {±1,±i,±j,±k} has 5 conjugacy classes:

{1}, {−1}, {i,−i}, {j,−j}, {k,−k}

Note that {1,−1}/Q8 and Q8/{1,−1} ∼=V4. We first find the character table of V4.

Note that V4 has a trivial centre so V ′
4 = {e}. By Question 3.(c), all 4 characters of V4 are linear. χ(g ) is a fourth root of unity for

each character χ and g ∈V4. With row and column orthogonality theorem, we can easily write down the whole table:

V4 1 i j k

1 1 1 1 1
χ2 1 1 -1 -1
χ3 1 -1 1 -1
χ4 1 -1 -1 1

The characters of V4 inflate to characters of Q8. We have the table

finnwiersig
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Q8 {1} {−1} {i,−i} {j,−j} {k,−k}

1̃ 1 1 1 1 1
χ̃2 1 1 1 -1 -1
χ̃3 1 1 -1 1 -1
χ̃4 1 1 -1 -1 1
χ5 a b c d e

where a ∈N and b,c,d ∈C are to be determined. By column orthogonality theorem we have

12 +12 +12 +12 +|a|2 = |CG (1)| = 8

12 +12 +12 +12 +|b|2 = |CG (−1)| = 8

12 +12 + (−1)2 + (−1)2 +|c|2 = |CG (i)| = 4

12 + (−1)2 +12 + (−1)2 +|d |2 = |CG (j)| = 4

12 + (−1)2 + (−1)2 +12 +|e|2 = |CG (k)| = 4

Hence a = 2, b =±2, c = d = e = 0. By row orthogonality theorem,

8
〈

1̃,χ5
〉= a +b + c +d +e = 0 =⇒ b =−2

Hence the character table of Q8 is given by

Q8 {1} {−1} {i,−i} {j,−j} {k,−k}

1̃ 1 1 1 1 1
χ̃2 1 1 1 -1 -1
χ̃3 1 1 -1 1 -1
χ̃4 1 1 -1 -1 1
χ5 2 -2 0 0 0

Next, we consider the dihedral group D8 =
〈

r, s | r 2, s4,r sr s
〉

. It has 5 conjugacy classes:

{e}, {s2}, {s, s3}, {r,r s2}, {r s,r s3}

D8 and Q8 have the same number of conjugacy classes and the same sizes for each class. Note that {e, s2}/D8 and D8/{e, s2} ∼=
V4. Then D8

∼=C2 oV4.

Note that when we solve the character table of Q8, we use no information of Q8 more than the size of conjugacy classes and
that Q8

∼= C2 oV4. This forces D8 to have the same character table as Q8. But Q8 6∼= D8. Hence the character table cannot
determine the group up to isomorphism.

Question 8

Let H be another finite group whose character table is equal to the character table of G . Prove that
∣∣G ′∣∣ = ∣∣H ′∣∣ and that

|Z (G)| = |Z (H)|.

Proof. Let χ1, ...,χr be a complete list of characters of G and χ′1, ...,χ′s be a complete list of characters of H . Let C1, ...,Cr be the
conjugacy classes of G and C ′

1, ...,C ′
s be the conjugacy classes of H . G and H has the same character table implies that r = s,

and χi (g ) =χ′i (h) for g ∈C j , h ∈C ′
j , i , j ∈ {1, ...,r }.

Take g ∈C j and h ∈C ′
j . By column orthogonality theorem, we have

|G|
|C j |

= |CG (g )| =
r∑

i=1
|χi (g )|2 =

r∑
i=1

|χ′i (h)|2 = |CH (h)| = |H |
|C ′

j |

Without loss of generality we assume that |G| Ê |H |. Take C j = {eG }. Then we have |G| = |H |/|C ′
j | É |H |. Hence we must have

|C ′
j | = 1 and |G| = |H |. Therefore |C j | = |C ′

j | for all conjugacy classes.

Note that g ∈ Z (G) if and only if the conjugacy class of g is the singleton {g }. Therefore Z (G) = Z (H) are the number of
singleton conjugacy classes in G (and in H).
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Question 9

(a) Let χ be a character of G . Show that χ
(
g−1

)=χ(g ) for all g ∈G .

(b) Show that g ∈G is conjugate to g−1 if and only if χ(g ) ∈R for every character χ of G .

Proof. The underlying field k =C.

(a) Let ρ : G → GL(V ) be the representation associated with χ. Suppose that ρ(g ) has eigenvalues λ1, ...,λn (counting
multiplicities). Then ρ(g−1) = ρ(g )−1 has eigenvaluesλ−1

1 , ...,λ−1
n . In Question 6.(a) we have proven that the eigenvalues

are roots of unity. Then
λiλ

−1
i = 1 = |λi |2 =λiλi =⇒ λi =λ−1

i

for i ∈ {1, ...,n}. Hence

χ(g−1) = trρ(g−1) =
n∑

i=1
λ−1

i =
n∑

i=1
λi =

n∑
i=1

λi =χ(g )

(b) Suppose that g is conjugate to g−1 in G . Since χ is a class function, we have

χ(g ) =χ(g−1) =χ(g ) =⇒ χ(g ) ∈R

Conversely, suppose that χ(g ) ∈ R for every character χ. Suppose that g is not conjugate to g−1. Let χ1, ...,χr be a
complete list of irreducible characters of G . By column orthogonality theorem, we have

0 =
r∑

i=1
χi (g−1)χi (g ) =

r∑
i=1

χi (g )2

Then χ1(g ) = ·· · =χr (g ) = 0. But for the trivial representation 1, we have χ1(g ) = 1, which is a contradiction. Hence g is
conjugate to g−1.
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