Peize Liu St. Peter's College University of Oxford

Problem Sheet 3 B2.1: Introduction to Representation Theory

Question 1

Let *V* be a finite dimensional $\mathbb{C}G$ -module and let $g \in G$. Prove that

$$\chi_{S^2V}(g) = \frac{1}{2} \left(\chi_V(g)^2 + \chi_V(g^2) \right) \quad \text{and} \quad \chi_{\Lambda^2V}(g) = \frac{1}{2} \left(\chi_V(g)^2 - \chi_V(g^2) \right)$$

Proof. Since V is a $\mathbb{C}[G]$ -module, for each $g \in G$, let $g_V \in GL(V)$ given by the left multiplication by g. By Question 1 in Sheet 1, g_V is diagonalisable. V has a basis $\{v_1,...,v_n\}$ consisting of the eigenvectors of g_V with corresponding eigenvalues $\lambda_1,...,\lambda_n$. That is,

$$g_V(v_i) = \lambda_i v_i, \quad i \in \{1, ..., n\}$$

 $\left\{\frac{1}{2}(v_i \otimes v_j + v_j \otimes v_i) : 1 \leq j \leq i \leq n\right\} \text{ is a basis of } S^2V \text{ by Lemma 4.13. } g \text{ induces } g_{S^2V} \in GL(S^2V) \text{ such that } g \in GL(S^2V) \text{ such th$

$$g_{S^2V}\left(\frac{1}{2}(v_i\otimes v_j+v_j\otimes v_i)\right)=\frac{1}{2}\left(g_V(v_i)\otimes g_V(v_j)+g_V(v_j)\otimes g_V(v_i)\right)=\frac{1}{2}\lambda_i\lambda_j(v_i\otimes v_j+v_j\otimes v_i), \qquad 1\leqslant j\leqslant i\leqslant n$$

Hence $\frac{1}{2}(v_i \otimes v_j + v_j \otimes v_i)$ is an eigenvector of g_{S^2V} with eigenvalue $\lambda_i \lambda_j$. Since the eigenvectors span a basis of S^2V , we have:

$$\chi_{S^{2}V}(g) = \operatorname{tr} g_{S^{2}V} = \sum_{i=1}^{n} \sum_{j=1}^{i} \lambda_{i} \lambda_{j} = \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} + \sum_{i=1}^{n} \lambda_{i}^{2} \right) = \frac{1}{2} \left(\operatorname{tr} g_{V} \right)^{2} + \operatorname{tr} g_{V}^{2} = \frac{1}{2} \left(\chi_{V}(g)^{2} + \chi_{V}(g^{2}) \right)$$

 $\{v_i \land v_j : 1 \le j < i \le n\}$ is a basis of $\bigwedge^2 V$ by Lemma 4.13. g induces $g_{\bigwedge^2 V} \in GL(\bigwedge^2 V)$ such that

$$g_{\bigwedge^2 V}(v_i \wedge v_j) = \frac{1}{2} \left(g_V(v_i) \otimes g_V(v_j) - g_V(v_j) \otimes g_V(v_i) \right) = \frac{1}{2} \lambda_i \lambda_j (v_i \otimes v_j - v_j \otimes v_i) = \lambda_i \lambda_j v_i \wedge v_j, \qquad 1 \leq j < i \leq n$$

Hence $v_i \wedge v_j$ is an eigenvector of $g_{\wedge^2 V}$ with eigenvalue $\lambda_i \lambda_j$. Since the eigenvectors span a basis of $\wedge^2 V$, we have:

$$\chi_{\bigwedge^2 V}(g) = \sum_{i=2}^n \sum_{j=1}^{i-1} \lambda_i \lambda_j = \frac{1}{2} \left(\sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j - \sum_{i=1}^n \lambda_i^2 \right) = \frac{1}{2} \left(\chi_V(g)^2 - \chi_V(g^2) \right)$$

Question 2

Show that every group homomorphism from G to an abelian group A is trivial on the commutator subgroup G' and hence factors through G/G'. Show that if N is a normal subgroup of G with G/N abelian, then $G' \leq N$.

Proof. For $g, h \in N$, since G/N is Abelian, we have

$$(gN)(hN) = (hN)(gN) \implies h^{-1}g^{-1}hgN = N \implies [h,g] = h^{-1}g^{-1}hg \in N$$

Hence $G' \leq N$.

Suppose that $\varphi: G \to A$ is a group homomorphism. Then by First Isomorphism Theorem we have

$$G/\ker\varphi\cong\operatorname{im}\varphi\leqslant A$$

Then $G/\ker \varphi$ is Abelian. We have $G' \leq \ker \varphi$. That is, $\varphi|_{G'} = 0$. Hence $\varphi : G \to A$ induces $\widetilde{\varphi} : G/G' \to A$ via $\widetilde{\varphi}(gG') := \varphi(g)$ for $g \in G$.

Question 3

Let *k* be an algebraicaly closed field.

- (a) Suppose that *G* is abelian. Prove that every simple *kG*-module is one-dimensional.
- (b) Prove that the converse holds provided that $|G| \neq 0$ in k.
- (c) Deduce from (a) that G has precisely |G:G'| complex linear characters.

Proof. (a) Suppose that *V* is a simple k[G]-module. For $g \in G$, g_V is a *k*-linear map. Since *G* is Abelian, for $h \in G$ and $v \in V$,

$$g_V(h \cdot v) = gh \cdot v = hg \cdot v = h \cdot g_V(v)$$

By extending the equation linearly, g_V is a k[G]-module endomorphism. By Schur's Lemma, there exists $\lambda \in k$ such that $g_V = \lambda 1_V$. In particular, $\langle v \rangle$ is a sub-k[G]-module of V for any $v \in V \setminus \{0\}$, If $\dim_k V > 1$ then this contradicts that V is simple. Hence $\dim_k V = 1$.

(b) For char $k \not\mid |G|$, by Corollary 3.20 of Artin-Wedderburn Theorem, we have the k[G]-module isomorphism:

$$k[G] \cong V_1^{\dim_k V_1} \oplus \cdots \oplus V_r^{\dim_k V_r}$$

where $V_1, ..., V_r$ is a complete list of simple k[G]-modules up to isomorphism. By assumption we have $\dim_k V_1 = \cdots = \dim_k V_r = 1$. Then $|G| = \dim_k k[G] = r$. By Corollary 3.16, r is exactly the number of conjugacy classes of G. Therefore every conjugacy class of G is a singleton. Hence G is Abelian.

(c) $k = \mathbb{C}$ is assumed for this part.

Note that G/G' is Abelian (by Question 2 or Part A Group Theory). By (a) every simple $\mathbb{C}[G/G']$ -module is one-dimensional over \mathbb{C} . Let $V_1, ..., V_r$ be a list of such modules. By Artin-Wedderburn Theorem we have

$$\mathbb{C}[G/G'] \cong V_1 \oplus \cdots \oplus V_r$$

Each irreducible representation $\rho_i: G/G' \to GL(V_i)$ lifts to a representation $\dot{\rho}_i: G \to GL(V_i)$ via $\dot{\rho}_i(g) := \rho_i(gG')$. Since $\rho_1,...,\rho_n$ are non-isomorphic, neither are $\dot{\rho}_1,...,\dot{\rho}_n$. Then G has at least $\dim_k \mathbb{C}[G/G'] = [G:G']$ non-isomorphic one-dimensional irreducible representations.

On the other hand, suppose that $\varphi: G \to GL(V)$ is a one-dimensional irreducible representation of G over \mathbb{C} . Note that $\dim_{\mathbb{C}} V = 1$ implies that $GL(V) \cong \mathbb{C}^{\times}$, which is Abelian. Then by Question 2, φ induces a group homomorphism $\widetilde{\varphi}: G/G' \to GL(V)$. Then $V \cong V_i$ as $\mathbb{C}[G/G']$ -modules for some $i \in \{1, ..., r\}$.

We conclude that G has exactly [G:G'] non-isomorphic one-dimensional irreducible representations. By row orthogonality theorem, the characters and the isomorphism classes of finite-dimensional $\mathbb{C}[G]$ -modules are in bijective correspondence. Hence G has [G:G'] complex linear characters.

Question 4

Calculate the character of the representation $\rho: S_4 \to \operatorname{GL}_3(\mathbb{R})$ from Example 1.3(d). Let $V = \mathbb{C}^3$ be the $\mathbb{C}S_4$ -module obtained by viewing ρ as a complex representation $S_4 \to \operatorname{GL}_3(\mathbb{C})$. Decompose $V \otimes V$ as a direct sum of irreducible representations.

Proof. Note that in a permutation group, two elements are conjugate if and only if they have the same cycle type. S_4 has 5 conjugacy classes with representatives:

For $\rho(g) \in SO_3(\mathbb{R}) \leq GL_3(\mathbb{R})$, ρ_g is a planar rotation, so with a suitable choice of basis it has matrix

$$M_g = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_g & -\sin \theta_g \\ 0 & \sin \theta_g & \cos \theta_g \end{pmatrix}$$

In particular, $\theta_g = \frac{2\pi}{n}$ if g has order n. Hence $\chi_\rho(g) = \operatorname{tr} M_g = 2\cos\theta_g = 1 + 2\cos\frac{2\pi}{o(g)}$

- $\chi_{\rho}(e) = \dim_{\mathbb{R}} \mathbb{R}^3 = 3$.
- Since (12) has order 2, $\chi_{\rho}(12) = 1 + \cos \frac{2\pi}{2} = -1$.
- Since (12)(34) has order 2, $\chi_{\rho}((12)(34)) = 1 + \cos \frac{2\pi}{2} = -1$.
- Since (123) has order 3, $\chi_{\rho}(123) = 1 + \cos \frac{2\pi}{3} = 1 + 2 \cdot \left(-\frac{1}{2}\right) = 0$.

• Since (1234) has order 4, $\chi_{\rho}(1234) = 1 + \cos \frac{2\pi}{4} = 1$.

For the $\mathbb{C}[S_4]$ -module $V \otimes V$, by Lemma 4.13 we have the initial decomposition $V \otimes V = S^2 V \oplus \bigwedge^2 V$, where $\dim_{\mathbb{C}} S^2 V = 6$ and $\dim_{\mathbb{C}} \bigwedge^2 V = 3$. For the decomposition of $S^2 V$ and $\bigwedge^2 V$, we use the character table of S_4 from Example 5.24:

	e	(12)	(12)(34)	(123)	(1234)
$ g^G $	1	3	8	6	6
$ C_G(g) $	24	8	3	4	4
ĩ	1	1	1	1	1
$\widetilde{\epsilon}$	1	-1	1	1	-1
$\widetilde{\chi_W}$	2	0	2	-1	0
χ_4	3	1	-1	0	-1
χ_V	3	-1	-1	0	1

By row orthogonality theorem we have

$$\chi_{S^{2}V} = \langle \chi_{S^{2}V}, \widetilde{\mathbf{1}} \rangle \widetilde{\mathbf{1}} + \langle \chi_{S^{2}V}, \widetilde{\epsilon} \rangle \widetilde{\epsilon} + \langle \chi_{S^{2}V}, \widetilde{\chi_{W}} \rangle \widetilde{\chi_{W}} + \langle \chi_{S^{2}V}, \chi_{4} \rangle \chi_{4} + \langle \chi_{S^{2}V}, \chi_{V} \rangle \chi_{V}$$

$$\chi_{\wedge^{2}V} = \langle \chi_{\wedge^{2}V}, \widetilde{\mathbf{1}} \rangle \widetilde{\mathbf{1}} + \langle \chi_{\wedge^{2}V}, \widetilde{\epsilon} \rangle \widetilde{\epsilon} + \langle \chi_{\wedge^{2}V}, \widetilde{\chi_{W}} \rangle \widetilde{\chi_{W}} + \langle \chi_{\wedge^{2}V}, \chi_{4} \rangle \chi_{4} + \langle \chi_{\wedge^{2}V}, \chi_{V} \rangle \chi_{V}$$

with the inner product defined in Definition 5.12. Using the formula proven in Question 1, we have

By performing explicit calculations we obtain

$$\chi_{S^2V} = \widetilde{\mathbf{1}} + \widetilde{\chi_W} + \chi_4$$
$$\chi_{\wedge^2V} = \chi_V$$

We still need to find the $\mathbb{C}[S_4]$ -module corresponding to χ_4 , which is a 3-dimensional subspace of \mathbb{C}^4 invariant under the action S_4 which is not isomorphic to \mathbb{C}^3 as $\mathbb{C}[S_4]$ -modules. The only such subspace is

$$U := \left\{ (x^1, x^2, x^3, x^4) \in \mathbb{C}^4 : \sum_{i=1}^4 x^i = 0 \right\}$$

The row orthogonality theorem implies that the character uniquely determines the representation. We have

$$S^2 V \cong \mathbb{C} \oplus W \oplus U, \qquad \wedge^2 V \cong V$$

Hence

$$V \otimes V \cong \mathbb{C} \oplus W \oplus U \oplus V$$

as $\mathbb{C}[S_4]$ -modules. The corresponding decomposition of representation is

$$\rho_{V \otimes V} = \rho_{\mathbb{C}} \oplus \rho_W \oplus \rho_U \oplus \rho_V$$

Question 5

- (a) Let χ be a character of G. Show that $\{g \in G : \chi(g) = \chi(1)\}$ is a normal subgroup of G.
- (b) Prove that *G* is simple if and only if $\chi(g) \neq \chi(1)$ for every $g \neq 1$ and $\chi \neq 1$.

Proof. The notation is confusing. I shall use e to denote the identity in G. The underlying field $k = \mathbb{C}$.

(a) Let $H := \{g \in G : \chi(g) = \chi(e)\}$. Let $\rho : G \to GL(V)$ be the representation associated with the character χ . We claim that $H = \ker \rho$. For $g \in \ker \rho$,

$$\chi(g) = \operatorname{tr} \rho(g) = \operatorname{tr} 1_V = \operatorname{tr} \rho(e) = \chi(e)$$

Hence $g \in H$ and $\ker \rho \subseteq H$.

On the other hand, suppose that $g \in H$. Suppose that $\rho(g)$ has eigenvalues $\lambda_1, ..., \lambda_n$ (counting multiplicities). Then

$$\chi(g) = \sum_{i=1}^{n} \lambda_i = n = \chi(e)$$

Since $|G| < \infty$, by Lagrange's Theorem $o(g) < \infty$. $\rho(g)^{o(g)} = \rho(e) = 1_V$ has the unique eigenvalue 1. Then we have

$$\lambda_1^{\mathrm{o}(g)} = \dots = \lambda_n^{\mathrm{o}(g)} = 1$$

So the eigenvalues of $\rho(g)$ are roots of unity. Moreover,

$$\left| \sum_{i=1}^{n} \lambda_i \right| \leq \sum_{i=1}^{n} |\lambda_i| = \sum_{i=1}^{n} 1 = n$$

with equality holds if and only if $\lambda_1 = \cdots = \lambda_n$. Hence

$$\lambda_1 = \dots = \lambda_n \wedge \sum_{i=1}^n \lambda_i = n \Longrightarrow \lambda_1 = \dots = \lambda_n = 1 \Longrightarrow \rho(g) = 1_V \Longrightarrow g \in \ker \rho$$

Hence $\ker \rho \subseteq H$. We deduce that $H = \ker \rho \triangleleft G$.

(b) Suppose that *G* is simple. Then $H \triangleleft G$ is either $\{e\}$ or *G*. If H = G, then by (a) $\ker \rho = G$. The representation is trivial and $\chi = 1$. If $H = \{e\}$, then $\chi(g) \neq \chi(1)$ for $g \neq e$.

Conversely, suppose that G is not simple. G has a proper non-trivial normal subgroup N. Then G/N is non-trivial and has at least one irreducible representation $\varphi: G/N \to \operatorname{GL}(V)$. φ can be lifted to a non-trivial representation $\dot{\varphi}: G \to \operatorname{GL}(V)$ via $\dot{\varphi}(g) := \varphi(gN)$. Then the inflated character $\widetilde{\chi}(g) = \chi(gN)$. We have $\widetilde{\chi}(g) = \widetilde{\chi}(e)$ for $g \in N \setminus \{e\}$.

孠

Question 6

Let *G* act on a finite set *X* and consider the permutation module $V := \mathbb{C}X$.

- (a) Let $g \in G$. Prove that $\chi_V(g) = |\operatorname{Fix}_X(g)|$ where $\operatorname{Fix}_X(g) := \{x \in X : g \cdot x = x\}$
- (b) Prove that $\sum_{g \in G} \chi_V(g) = r|G|$, where r is the number of G-orbits on X.
- (c) Suppose now that the action of G on X is 2-transitive, that is G has two orbits acting on $X \times X$ in the action defined by $g \cdot (x_1, x_2) = (g \cdot x_1, g \cdot x_2)$. Show that $\sum_{g \in G} \chi_V(g)^2 = 2|G|$ and deduce that $V = \mathbb{1} \oplus W$ for some simple submodule W of V.

Proof. \mathbb{C}^X or $\mathbb{C}^{\oplus X}$ are better notions for free \mathbb{C} -vector spaces on X.

(a) Suppose that $X = \{x_1, ..., x_n\}$. Let G acts on X by $\rho : G \to \operatorname{Sym}(X)$, which extends linearly to $\rho : G \to \operatorname{GL}(V)$. With respect to the basis $\{x_1, ..., x_n\}$, the matrix M_g of $\rho(g)$ is given by

$$(M_g)_{ij} = \begin{cases} 1, & g \cdot x_i = x_j \\ 0, & \text{otherwise} \end{cases}$$

Hence

$$\chi_V(g) = \operatorname{tr} M_g = \sum_{i=1}^n \mathbf{1}_{\{g \cdot x_i = x_i\}} = |\operatorname{Fix}_X(g)|$$

(b) This is the orbit counting formula in Prelim Group Theory:

$$\sum_{g \in G} \chi_V(g) = \sum_{g \in G} |\operatorname{Fix}_X(g)| = r|G|$$

The proof is to count $|G \times X|$ in two ways and apply the orbit-stabliser theorem. I omit the details here.

(c) The group action $\widetilde{\rho}: G \to X \times X$ extends linearly to the representation $\widetilde{\rho}: G \to \operatorname{GL}(\mathbb{C}^{\oplus (X \times X)})$, where $\mathbb{C}^{\oplus (X \times X)} \cong V \otimes V$ canonically as $\mathbb{C}[G]$ -modules. Then by Proposition 5.21.(c), we have

$$\chi_{V\otimes V}(g) = \chi_V(g)^2$$

for each $g \in G$. By (b) we have

$$\sum_{g \in G} \chi_V(g)^2 = \sum_{g \in G} \chi_{V \otimes V}(g) = 2|G|$$

The action $\widetilde{\rho}: G \to \operatorname{Sym}(X \times X)$ is 2-transitive. Suppose that $\rho: G \to \operatorname{Sym}(X)$ is not transitive. Then for any two distinct orbits A and B of X, $A \times A$, $A \times B$, $B \times A$ and $B \times B$ are distinct orbits of $X \times X$, which is a contradiction. Hence ρ is transitive. We have $\sum_{x \in C} \chi_V(g) = |G|$.

Consider the subspace

$$U := \left\langle \sum_{i=1}^{n} x_i \right\rangle \leqslant V$$

The subspace is G-stable and hence is a sub- $\mathbb{C}[G]$ -module of V. By Maschke's Theorem, there exists another sub- $\mathbb{C}[G]$ -module W of V such that $V = U \oplus W$. Passing to characters we have $\chi_V = \chi_U + \chi_W$.

Note that for $g \in G$,

$$g \cdot \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} g \cdot x_i = \sum_{i=1}^{n} x_i$$

Hence the sub-representation of ρ on U is trivial. $\chi_U = 1$.

Now we consider the decomposition of W into irreducible simple $\mathbb{C}[G]$ -modules:

$$W \cong \bigoplus_{i=1}^r V_i^{\alpha_i}, \qquad \chi_W = \sum_{i=1}^r \alpha_i \chi_{V_i}$$

Then by row orthogonality theorem we have $\langle \chi_W, \chi_W \rangle = \sum_{i=1}^r \alpha_i^2$, where

$$\left\langle \chi_W, \chi_W \right\rangle = \left\langle \chi_V, \chi_V \right\rangle - 2 \left\langle \chi_V, \chi_U \right\rangle + \left\langle \chi_U, \chi_U \right\rangle = \frac{1}{|G|} \left(\sum_{g \in G} \chi_V(g)^2 - 2 \sum_{g \in G} \chi_V(g) + |G| \right) = \frac{1}{|G|} (2|G| - 2|G| + |G|) = 1$$

Since $\alpha_1,...,\alpha_r$ are non-negative integers, we must have $\alpha_i = \delta_{ij}$ for some $j \in \{1,...,r\}$. Hence $W \cong V_j$ is a simple $\mathbb{C}[G]$ -module. We have decomposed the representation

$$\rho_V = \mathbf{1} \oplus \rho_W$$

into two irreducible sub-representations.

Question 7

Find the character tables of the quaternion group Q_8 and the dihedral group D_8 of order 8. Does the character table determine the group up to isomorphism?

Proof. The quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ has 5 conjugacy classes:

$$\{1\}, \{-1\}, \{i, -i\}, \{j, -j\}, \{k, -k\}$$

Note that $\{1, -1\} \triangleleft Q_8$ and $Q_8/\{1, -1\} \cong V_4$. We first find the character table of V_4 .

Note that V_4 has a trivial centre so $V_4' = \{e\}$. By Question 3.(c), all 4 characters of V_4 are linear. $\chi(g)$ is a fourth root of unity for each character χ and $g \in V_4$. With row and column orthogonality theorem, we can easily write down the whole table:

The characters of V_4 inflate to characters of Q_8 . We have the table

Q_8	{1}	$\{-1\}$	$\{i,-i\}$	$\{j,-j\}$	$\{k, -k\}$
ĩ	1	1	1	1	1
$\widetilde{\chi}_2$	1	1	1 1 -1 -1	-1	-1
$\widetilde{\chi}$ з	1	1	-1	1	-1
$\widetilde{\chi}_4$	1	1	-1	-1	1
X 5	a	b	c	d	e

where $a \in \mathbb{N}$ and $b, c, d \in \mathbb{C}$ are to be determined. By column orthogonality theorem we have

$$1^{2} + 1^{2} + 1^{2} + 1^{2} + |a|^{2} = |C_{G}(1)| = 8$$

$$1^{2} + 1^{2} + 1^{2} + 1^{2} + |b|^{2} = |C_{G}(-1)| = 8$$

$$1^{2} + 1^{2} + (-1)^{2} + (-1)^{2} + |c|^{2} = |C_{G}(i)| = 4$$

$$1^{2} + (-1)^{2} + 1^{2} + (-1)^{2} + |d|^{2} = |C_{G}(j)| = 4$$

$$1^{2} + (-1)^{2} + (-1)^{2} + 1^{2} + |e|^{2} = |C_{G}(k)| = 4$$

Hence a = 2, $b = \pm 2$, c = d = e = 0. By row orthogonality theorem,

$$8\langle \widetilde{\mathbf{1}}, \chi_5 \rangle = a + b + c + d + e = 0 \implies b = -2$$

Hence the character table of Q_8 is given by

Q_8	{1}	$\{-1\}$	$\{i,-i\}$	$\{j,-j\}$	$\{k, -k\}$
ĩ	1	1	1	1	1
$\widetilde{\chi}_2$	1	1	1	1 -1 1 -1 0	-1
$\widetilde{\chi}_3$	1	1	-1	1	-1
$\widetilde{\chi}_4$	1	1	-1	-1	1
χ 5	2	-2	0	0	0

Next, we consider the dihedral group $D_8 = \langle r, s \mid r^2, s^4, rsrs \rangle$. It has 5 conjugacy classes:

$$\{e\}, \{s^2\}, \{s, s^3\}, \{r, rs^2\}, \{rs, rs^3\}$$

 D_8 and Q_8 have the same number of conjugacy classes and the same sizes for each class. Note that $\{e, s^2\} \triangleleft D_8$ and $D_8/\{e, s^2\} \cong V_4$. Then $D_8 \cong C_2 \rtimes V_4$.

Note that when we solve the character table of Q_8 , we use no information of Q_8 more than the size of conjugacy classes and that $Q_8 \cong C_2 \rtimes V_4$. This forces D_8 to have the same character table as Q_8 . But $Q_8 \ncong D_8$. Hence the character table cannot determine the group up to isomorphism.

Question 8

Let H be another finite group whose character table is equal to the character table of G. Prove that |G'| = |H'| and that |Z(G)| = |Z(H)|.

Proof. Let $\chi_1,...,\chi_r$ be a complete list of characters of G and $\chi'_1,...,\chi'_s$ be a complete list of characters of H. Let $C_1,...,C_r$ be the conjugacy classes of G and $C'_1,...,C'_s$ be the conjugacy classes of H. G and H has the same character table implies that r = s, and $\chi_i(g) = \chi'_i(h)$ for $g \in C_j$, $h \in C'_i$, $i, j \in \{1,...,r\}$.

Take $g \in C_j$ and $h \in C'_j$. By column orthogonality theorem, we have

$$\frac{|G|}{|C_i|} = |C_G(g)| = \sum_{i=1}^r |\chi_i(g)|^2 = \sum_{i=1}^r |\chi_i'(h)|^2 = |C_H(h)| = \frac{|H|}{|C_i'|}$$

Without loss of generality we assume that $|G| \ge |H|$. Take $C_j = \{e_G\}$. Then we have $|G| = |H|/|C'_j| \le |H|$. Hence we must have $|C'_j| = 1$ and |G| = |H|. Therefore $|C_j| = |C'_j|$ for all conjugacy classes.

Note that $g \in Z(G)$ if and only if the conjugacy class of g is the singleton $\{g\}$. Therefore Z(G) = Z(H) are the number of singleton conjugacy classes in G (and in H).

Question 9

- (a) Let χ be a character of G. Show that $\chi(g^{-1}) = \overline{\chi(g)}$ for all $g \in G$.
- (b) Show that $g \in G$ is conjugate to g^{-1} if and only if $\chi(g) \in \mathbb{R}$ for every character χ of G.

Proof. The underlying field $k = \mathbb{C}$.

(a) Let $\rho: G \to \operatorname{GL}(V)$ be the representation associated with χ . Suppose that $\rho(g)$ has eigenvalues $\lambda_1, ..., \lambda_n$ (counting multiplicities). Then $\rho(g^{-1}) = \rho(g)^{-1}$ has eigenvalues $\lambda_1^{-1}, ..., \lambda_n^{-1}$. In Question 6.(a) we have proven that the eigenvalues are roots of unity. Then

$$\lambda_i \lambda_i^{-1} = 1 = |\lambda_i|^2 = \lambda_i \overline{\lambda}_i \implies \overline{\lambda}_i = \lambda_i^{-1}$$

for $i \in \{1, ..., n\}$. Hence

$$\chi(g^{-1}) = \operatorname{tr} \rho(g^{-1}) = \sum_{i=1}^{n} \lambda_i^{-1} = \sum_{i=1}^{n} \overline{\lambda}_i = \overline{\sum_{i=1}^{n} \lambda_i} = \overline{\chi(g)}$$

(b) Suppose that g is conjugate to g^{-1} in G. Since χ is a class function, we have

$$\chi(g) = \chi(g^{-1}) = \overline{\chi(g)} \implies \chi(g) \in \mathbb{R}$$

Conversely, suppose that $\chi(g) \in \mathbb{R}$ for every character χ . Suppose that g is not conjugate to g^{-1} . Let $\chi_1, ..., \chi_r$ be a complete list of irreducible characters of G. By column orthogonality theorem, we have

$$0 = \sum_{i=1}^{r} \overline{\chi_i(g^{-1})} \chi_i(g) = \sum_{i=1}^{r} \chi_i(g)^2$$

Then $\chi_1(g) = \cdots = \chi_r(g) = 0$. But for the trivial representation 1, we have $\chi_1(g) = 1$, which is a contradiction. Hence g is conjugate to g^{-1} .

