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RECALL:

Dynamical evolution equation:

Ṙ2 − 8πGρR2

3
= 2E (Energy Form) =− c2

a2 (Curvature Form) =−kc2 (FRW Form)

FRW metric, R dimensions of length, k = 0,±1 :

−c2dτ2 =−c2d t 2 + R2dr 2

1−kr 2 +R2r 2 (
dθ2 + sin2θdφ2)

Curvature form, with R0 = 1 and R dimensionless, a2 positive or negative:

−c2dτ2 =−c2d t 2 + R2dr 2

1− r 2/a2 +R2r 2 (
dθ2 + sin2θdφ2)

Remark. I will try to use the Penrose abstract index notation throughout this problem sheet. In this convention, the latin let-
ters a,b,c,d ,e... are abstract indices; the latin letters i , j ,k,`,m... are specific indices which range from 1 to 3; the greek letters
µ,ν,ρ,σ,τ... are specific indices which range from 0 to 3.

Question 1. A big bang, but in empty space you say. Really?

a.) Show that the dynamical field equation for the scale factor R(t ) for an empty space ρ = 0 leads to an FRW metric of the
form

−dτ2 =−d t 2 + t 2dr 2

1+ r 2 + r 2t 2 (
dθ2 + sin2θdφ2)

Use c = 1 for this problem!

b.) Wait...Surely empty space must be Minkowski spacetime. Though this metric does not look static, there must be a
coordinate transformation that turns this metric into a static Minkowski form. In other words, we ought to be able to
find two functions, s and T ,

s = s(r, t ), T = T (r, t ) or equivalently r = r (s,T ), t = t (s,T )

that transform the metric of part (1a) into an old friend:

−dτ2 =−dT 2 +d s2 + s2 (
dθ2 + sin2θdφ2)

By inspection, we must have

s(r, t ) = r t

Why "by inspection?" Explain convincingly why it is as simple as this, in just one to two sentences.

c.) Using s = r t , and by then demanding that the coefficient of dT 2 be -1 after the coordinate change, show that T =
p

s2 + t 2

(up to an additive function of s which you may safely discard), and thereby derive the second coordinate transformation:

T = t
√

1+ r 2

Give the explicit functional forms for r (s,T ) and t (s,T ).

d.) Complete the full coordinate transformation for dτ2 and verify in detail that the Minkowski metric emerges. You may
find it to your advantage to express ∂t/∂s and ∂r /∂s in terms of r and t , and ∂r /∂T in terms of ∂t/∂T , before you begin.
This is a valuable lesson: it is easy to be fooled by coordinates.

Proof. a.) The Friedmann equation with ρ = 0 in the form of FRW metric is given by

Ṙ2 =−k



2

where R(t ) is the scale factor. It integrates to
R(t ) =

p
−kt +const

Since R is real-valued, we must have k = 0 or −1.

For k = 0, we can set R(0) = 1 so that the FRW metric is simply the Minkowski metric:

gab =−dt 2
ab +R(t )2

(
dr 2

ab

1−kr 2 + r 2dθ2
ab + r 2 sin2θdϕ2

ab

)
=−dt 2

ab +dr 2
ab + r 2dθ2

ab + r 2 sin2θdϕ2
ab

For k =−1, we can set R(0) = 0, so R(t ) = t . Substituting into the FRW metric:

gab =−dt 2
ab +R2(t )

(
dr 2

ab

1−kr 2 + r 2dθ2
ab + r 2 sin2θdϕ2

ab

)
=−dt 2

ab +
t 2dr 2

ab

1+ r 2 + r 2t 2dθ2
ab + r 2t 2 sin2θdϕ2

ab

b.) The metric tensor in two coordinate systems:

gab =−dt 2
ab +

t 2dr 2
ab

1+ r 2 + r 2t 2(dθ2
ab + sin2θdϕ2

ab) =−dT 2
ab +ds2

ab + s2 (
dθ2

ab + sin2θdφ2
ab

)
We can equate the coefficient of (dθ2

ab + sin2θdϕ2
ab) and obtain s2 = r 2t 2. We can set s = r t .

c.) The transition matrix from {t ,r,θ,ϕ} to {T, s,θ,ϕ} is given by

J =


∂T
∂t

∂T
∂r 0 0

∂s
∂t

∂s
∂r 0 0

0 0 1 0
0 0 0 1

=


∂T
∂t

∂T
∂r 0 0

r t 0 0
0 0 1 0
0 0 0 1


With respect to the bases {t ,r,θ,ϕ} and {T, s,θ,ϕ}, the metric tensor in matrix form is given by

−1
t 2

1+r 2

r 2t 2

r 2t 2 sin2θ

 and


−1

1
s2

s2 sin2θ


Therefore 

−1
t 2

1+r 2

r 2t 2

r 2t 2 sin2θ

=


∂T
∂t

∂T
∂r 0 0

r t 0 0
0 0 1 0
0 0 0 1


ᵀ

−1
1

s2

s2 sin2θ



∂T
∂t

∂T
∂r 0 0

r t 0 0
0 0 1 0
0 0 0 1


Computing the (1,1) entry on the RHS:

−1 =−
(
∂T

∂t

)2

+ r 2 =⇒ ∂T

∂t
=

√
1+ r 2 =⇒ T = t

√
1+ r 2 + f (t )

where f is some arbitrary function of t . We have the freedom to set f = 0. We obtain that T = t
p

1+ r 2.

Inverting the functions we have

t (s,T ) =
√

T 2 − s2, r (s,T ) = sp
T 2 − s2

d.) We don’t need to invert the transition matrix J . From (c) we know that

J =


p

1+ r 2 trp
1+ r 2

0 0

r t 0 0
0 0 1 0
0 0 0 1


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And then we complete the matrix multiplication in (c). Since all matrices involved are block-diagnoal, it suffices to
consider the 2×2 block on the upperleft.p1+ r 2 trp

1+ r 2

r t

ᵀ (−1 0
0 1

)p1+ r 2 trp
1+ r 2

r t

=
−1 0

0
t 2

1+ r 2


This verifies that our choice of coordinate transformation is valid. The metric is indeed flat Minkowski.

Question 2. A radiation/matter universe.

Repent now, or face a calculation for an Eternal, Infinite Universe of Fire and Brimstone! Well...radiation and matter, actually.
Much the same. Anyway, it’s too late to repent, the calculation begins. Solve the dynamical cosmological equation (Energy
form) for R(t ) for the case of an arbitrary mixture of radiation and nonrelativistic matter in a spatially flat universe (E = 0).
Assume a current energy density of ργ0 c2, and a matter density ρm0. In terms of the "inferno ratio" I = ργ0 /ρm0, you should
find

(R + I )3/2 −3I (R + I )1/2 +2I 3/2 = 3Ω1/2
m0 H0t

2

(Note: This cubic equation is simple enough that the analytic solution is useful. Here it is [no need to prove]:

R = 4I cos2
[

1

3
cos−1 Q

]
− I , Q = 3H0tΩ1/2

m0

4I 3/2
−1

This holds as long as −1 ÉQ < 1. When Q Ê 1, replace cos and cos−1 with cosh and cosh−1.)

Proof. The Friedmann equation in flat space:

H 2 = Ṙ2

R2 = 8πG

3
(ργ+ρm)

We recall from the notes the definition of theΩ0 parameter:

Ωm0 := 8πG

3H 2
0

ρm0

We know that ρm ∝ R−3 and ργ∝ R−4. For R0 = 1, we have ρm = ρm0 R−3 and ργ = ργ0 R−4. Substituting into the Friedmann
equation:

Ṙ2

R2 = 8πG

3

(
ρm0 R−3 +ργ0 R−4)= 1

R4

8πG

3
ρm0 (R + I ) = R + I

R4 H 2
0Ωm0

Rearranging and integrating the expression:

Rp
R + I

Ṙ = H0Ω
1/2
m0

=⇒
∫ R

1

Rp
R + I

dR =
∫ t

0
H0Ω

1/2
m0

dt =⇒ 2

3
(R + I )3/2 −2I (R + I )1/2 + 4

3
I 3/2 = H0Ω

1/2
m0

t

We deduce that

(R + I )3/2 −3I (R + I )1/2 +2I 3/2 = 3

2
H0Ω

1/2
m0

t

In addition, it is worth noting that, the Friedmann equation at current time is given by

H 2
0 = 8πG

3
(ρm0 +ργ0 ) = H 2

0Ωm0 (I +1)

which implies thatΩm0 = 1/(I +1).

Question 3. A bullet in an E-dS universe.

Shoot a bullet into an Einstein-de Sitter universe at start of time. Nothing is actually pushing or pulling the bullet, but each
comoving observer will see the bullet fly by at a different velocity as it passes. The question is, how far does the bullet get?
More precisely, what is the largest comoving coordinate distance r the bullet attains if it starts at r = 0,R = 0? The metric is
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standard E-dS:

−c2dτ2 =−c2d t 2 +R2dr 2 +R2r 2dΩ2

R(t ) is the usual scale factor. We will use d$= Rdr for the proper physical distance. Other standard notation and results for
reference: t0 is the current age of the universe, R = (t/t0)2/3 for E-dS, H0 ≡ Ṙ0.

a.) The quantity d$/d t measures the bullet’s velocity relative to expanding, comoving observers who are all moving away.
Show that if the bullet has a measured velocity V1 at some instant when it passes one such observer, then when the
bullet overtakes another observer, a tiny distance d $ farther away, the velocity V2 this observer measures is

V2 =V1 − Ṙd$

R

(
1− V 2

1

c2

)

to first order in d$. (You will need the special relativity velocity addition formula and Hubble’s law. Full special relativity
works locally because d$ is tiny, and in this tiny comoving frame special relativity holds. The relativity only matters
when V1 is comparable to c. ) From this equation, show that the rate at which the measured V = d$/d t is changing with
cosmic time is given by the differential equation

V̇

V
(
1−V 2/c2

) =− Ṙ

R

where V̇ = (V2 −V1)/d t = dV /d t . Solve this equation and show that with V =V0 at t = t0, the solution is

Vp
1−V 2/c2

= U0

R

where U0 is the spatial component of the bullet 4 -velocity corresponding to V0 at time t0. (N.B.: In this problem,
subscript 0 will always denote "current time," not the 4-vector time-like component.)

b.) The result of (3a.) shows that the product P R is constant, where P is the spatial component of the bullet 4-momentum.
Show that, in this form, this is equivalent to an adiabatic expansion, either of photons (extreme relativistic particles), or
classical particles (classical nonrelativistic gas). [Cosmic adiabatic expansion for photons correponds to the tempera-
ture T obeying T R ∼ constant, while for a classical gas, adiabatic behaviour is Tρ−2/3 ∼ constant, where ρ is the mass
(or in this case number) density. In other words, a gas of bullets would "cool" like an ordinary gas!

c.) Solve the equation d$/d t =V (R) for the comoving coordinate r in an E-dS universe to obtain for our problem:

r (R) = c

H0

∫ R

0

d x[
x + c2x3/U 2

0

]1/2

and show therefore that as R →∞, the comoving coordinate r → rmax, where

rmax = 3.708
p

U0c

H0

The numerical factor is

3.708 =
∫ ∞

0

d y(
y + y3

)1/2

Even after an infinite amount of time, and even though this universe is decelerating, a fired bullet only reaches a finite
value of comoving coordinate r for any finite U0. But the bullet can reach arbitrarily large r, if V0 approaches the speed
of light.

Proof. a.)

b.)
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Question 4. Schwarzschild and FRW geometries.

How long does it take a classical matter dominated closed universe to collapse, starting at its maximum extent? Express your
answer two ways: in terms of the current value of the density ρ0 andΩm0, and then in terms of the density at maximum extent
ρm . Now, suppose we take all the mass in a small sphere of radius r0 with density ρm (the sphere is small so that we don’t have
to worry about non-Euclidian curvature: the mass is just 4πr 3

0ρm/3
)
, and turn the matter into a Schwarzschild black hole.

Calculate the proper time for a test particle to fall into the hole from radial coordinate r0 in a Schwarzschild geometry. You
should find exactly the same answer for the universe as a whole. (Sections 6.5 and 10.5 in the notes will be useful.) Can you
account for this amazing agreement in a simple way?

Proof. 1. Recall from §10.5 in the notes that

R(η) = 1− sinη

2(1−Ω−1
M0)

, H0t (η) = η−cosη

2Ω1/2
M0(1−Ω−1

M0)3/2

where t = 0 represents the beginning of the universe (i.e. the big bang). The cosmological time in terms ofΩM0 and ρ0

is given by

t = η− sinη

2Ω1/2
M0(1−Ω−1

M0)3/2H0
= η− sinη

2(1−Ω−1
M0)3/2

√
3

8πGρ0

Since the scale factor R measures the extent of the universe, we note that the universe is at the largest when η= π, and
collapses into a singular point when η= 2π. Therefore the time to collapse is given by

tc = t (2π)− t (π) = 1

(1−Ω−1
M0)3/2

√
3π

32Gρ0

When ρ = ρm , Ṙ = 0 and hence the Hubble constant Hm = 0. We find that

Ω−1
Mm = 3H 2

m

8πGρm
= 0

Therefore

tc =
√

3π

32Gρm

2. Recall from Question 5 in Sheet 2 that the radial orbit equation in the Schwarzschild metric is given by

1

2
ṙ 2 + J 2

2r 2 −
(

GM

r
+ GM J 2

c2r 3

)
= E 2 − c4

2c2

As the test particle starts at rest at r = r0, the angular momentum J = 0. So

1

2
ṙ 2 − GM

r
=−GM

r0

Substituting M = 4

3
πr 3ρm into the equation:

ṙ 2 = 8πGρmr 3
0

3r
− 8πGρmr 2

0

3

Integration: ∫ r0

0

(
8πGρmr 3

0

3

(
1

r
− 1

r0

))−1/2

dr = tc

The integral is exactly the same as in §10.5. We shall use the formula∫
dxp

B/x − A
= B

2A3/2
(2θ− sin2θ)+const x = B

A
sin2θ
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We have

tc =
√

3

32πGρm
(2θ0 − sin2θ0), r0 = r0 sin2θ0

Taking θ0 =π/2 we obtain the same result as in (1):

tc =
√

3π

32Gρm

The universe collapses due to the gravity of ordinary matter. A particle feels the same gravity when the matter is uniformly
distributed in a maximally symmetric 3-space and when the matter is concentrated in a singular point.

Question 5. There and back again: a photon’s tale.

a.) For a closed, matter-dominated universe with current mass density ρ0, show that

H 2
0 (ΩM0 −1) = c2/a2

where

ΩM0 = 8πGρ0

3H 2
0

b.) Consider the path of a photon (null geodesic) through this universe. With η defined in §10.5 in the notes:

R = 1−cosη

2
(
1−Ω−1

M0

)
show that

η= sin−1(r /a)

where r follows the proper coordinate of the photon. In other words, r goes from zero to a and back again to zero (and
R goes from zero to a maximum), as η advances by π. How many times could a photon travel around such a universe?

Proof. a.) We start from the Friedmann equation

H 2 = Ṙ2

R2 = 8πGρM

3
− c2

a2

Then

H 2 (1−ΩM ) = H 2
(
1− 8πGρM

3H 2

)
=− c2

a2

Evaluating at current time t = t0 we have

H 2
0 (ΩM0 −1) = c2

a2

b.) The FRW metric:

gab =−dt 2
ab +R(t )2

(
dr 2

ab

1− r 2/a2 + r 2dθ2
ab + r 2 sin2θdϕ2

ab

)
Following a null geodesic parametrised by η in the FRW spacetime, we have

gab

(
dx

dη

)a (
dx

dη

)b

= 0

Assuming that the photon goes along the radial direction, we have

− c2
(

dt

dη

)2

+ R2

1− r 2/a2

(
dr

dη

)2

= 0 (∗)

First we shall derive that dt/dη= |a|R/c.
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Recall from §10.5 in the notes that

R(η) = 1− sinη

2(1−Ω−1
M0)

, H0t (η) = η−cosη

2Ω1/2
M0(1−Ω−1

M0)3/2

Differentiate the second equation by η:

H0
dt

dη
= 1− sinη

2Ω1/2
M0(1−Ω−1

M0)3/2
= R

2Ω1/2
M0(1−Ω−1

M0)1/2

Using 1−Ω−1
M0 =

c2

a2H 2
0ΩM0

, which is from part (a), we have

H0
dt

dη
= H0R|a|

c

Hence dt/dη= |a|R/c. Substituting into the equation (∗) we obtain(
dr

dη

)2

= a2 − r 2

By inverse function theorem and integration we obtain

η(r ) = arcsin(r /a)+const


