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Question 1. Noether’s Theorem

The Lagrangian density for a complex scalar field is

L = ∂µϕ†∂µϕ−m2ϕ†ϕ+ LInt
(
ϕ†, ϕ

)
(a) Show that

LInt = −λ
4

(
ϕ†ϕ

)2
does not change the conserved current arising from the global phase symmetry in the free field case.

(b) Find the conserved current when

LInt = λ
(
ϕ†∂µϕ

)(
ϕ†∂µϕ

)†
(c) What is the symmetry of the Lagrangian if

LInt = λ
(
ϕ2 + ϕ†

2
)2

Is there a conserved current?

(d) Use the phase symmetry to find the conserved current for the Dirac Lagrangian

L = ψ (iγµ∂µ −m)ψ

Proof. Consider the U(1) symmetry:

ϕ(x, t) 7→ eiα(x) ϕ(x, t), ϕ(x, t)† 7→ e−iα(x) ϕ(x, t)†

where α(x) is a real-valued function.

(a) The variation in the interacting Lagrangian density is given by

δLint = −λ
4

(
ϕ† e−iα(x) eiα(x) ϕ

)2
−
(
−λ
4
(ϕ†ϕ)2

)
=

(
−λ
4
(ϕ†ϕ)2

)
−
(
−λ
4
(ϕ†ϕ)2

)
= 0

Hence the U(1) symmetry does not change the interacting Lagrangian, which implies that δS = δSfree.
Therefore we shall obtain the same conserved current as that in the free field.

(b) The variation in the interacting Lagrangian density is given by

δLint = λ
(
ϕ† e−iα ∂µ

(
eiα ϕ

))(
ϕ† e−iα ∂µ

(
eiα ϕ

))†
− λ

(
ϕ†∂µϕ

)(
ϕ†∂µϕ

)†
= λ

(
ϕ† e−iα i∂µα eiα ϕ

)(
ϕ†∂µϕ

)†
+ λ

(
ϕ†∂µϕ

)(
ϕ† e−iα i∂µα eiα ϕ

)†
+ λ

(
ϕ† e−iα i∂µα eiα ϕ

)(
ϕ† e−iα i∂µα eiα ϕ

)†
= iλ∂µαϕ†

(
ϕ∂µϕ

† − ∂µϕϕ
†
)
ϕ+O(α2)

From the lectures we know that the variation of the free field Lagrangian is given by

δL0 = i∂µα
(
∂µϕ

†ϕ− ϕ†∂µϕ
)
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Therefore

δS =

∫
M4

d4x (δL0 + δLint)

=

∫
M4

d4x i∂µα
(
λϕ†

(
ϕ∂µϕ

† − ∂µϕϕ
†
)
ϕ+

(
∂µϕ

†ϕ− ϕ†∂µϕ
))

=

∫
M4

d4x i∂µα
((

1 + λϕ†ϕ
)
∂µϕ

†ϕ− ϕ†∂µϕ
(
1 + λϕ†ϕ

))
= −i

∫
M4

d4xα∂µ
((

1 + λϕ†ϕ
)
∂µϕ

†ϕ− ϕ†∂µϕ
(
1 + λϕ†ϕ

))
Hence the Noether current is given by

jµ = −i
((

1 + λϕ†ϕ
)
∂µϕ†ϕ− ϕ†∂µϕ

(
1 + λϕ†ϕ

))
(c) Now we consider the global U(1) symmetry

ϕ(x, t) 7→ eiα ϕ(x, t), ϕ(x, t)† 7→ e−iα ϕ(x, t)†

where α ∈ R. Then under this transformation,

Lint[α] = λ
(
e2iα ϕ2 + e−2iα ϕ†2

)2
6= Lint

The Lagrangian does not exhibit global U(1) symmetry, so there is no corresponding conserved current.

(d) Under a global U(1) symmetry,

L[α] = e−iα ψ†γ0 (iγµ∂µ −m) eiα ψ = ψ (iγµ∂µ −m)ψ = L

Hence the spinor field has global U(1) symmetry. Under a local transformation,

δL = e−iα ψ (iγµ∂µ −m)
(
eiα ψ

)
− ψ (iγµ∂µ −m)ψ

= e−iα ψ · iγµ∂µ(eiα)ψ
= −∂µααψγµψ

Therefore
δS =

∫
M4

d4x ∂µα
(
−ψγµψ

)
=

∫
M4

d4xα∂µ
(
ψγµψ

)
The Noether current is given by

jµ = ψγµψ

Question 2. The Quantized Dirac Field

Here is some practice at manipulating anti-commutators. The quantized Dirac field and its Hamiltonian are
given by

ψ(t,x) =

∫
d3p

(2π)3
1√
2Ep

∑
s=±

(
e−ip·xaspu

s(p) + eip·xbs†p v
s(p)

)
H =

∫
d3p

(2π)3
Ep
∑
s=±

(
as†p a

s
p + bs†p b

s
p

)
where annihilation and creation operators now satisfy anti-commutation rules. The vacuum state satisfies

asp|0〉 = bsp|0〉 = 0
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(a) Check explicitly that
i
∂ψ

∂t
= [ψ,H ]

(b) Show that for a general eigenstate of the Hamiltonian, |ψ〉,

Has†p |ψ〉 = (Eψ + Ep) a
s†
p |ψ〉

and similarly for bs†p |ψ〉. Hence show that the spectrum of the Hamiltonian contains the states∣∣∣{{pi, si} , i = 1 . . . n} ,
{
{pi, si}, i = n+ 1 . . . n+m

}〉
with the constraint that no two particles / anti-

particles occupy the same state (here the overline denotes antiparticle states). Show that the eigenvalues
are

∑n+m
i=1 Epi .

(c) Find the three-particle wavefunction

〈0|ψ(x)ψ(y)ψ(z)| {p1, s1} , {p2, s2} , {p3, s3}〉

Show that it can be written as a determinant (this is an example of the Slater Determinant) and hence
is totally antisymmetric under exchange.

Proof. (a) The anti-commutation relations for the ladder operators are given by{
arp, a

s†
q

}
=
{
brp, b

s†
q

}
= (2π)3δrsδ(p− q)

To compute [ψ,H ], we compute [asp,H]. We need the following observation:

If A,B,C belong to a non-commutative algebra, then

[A,BC] = {A,B}C −B {A,C}

In particular, if {A,B} = {A,C} = 0, then [A,BC] = 0. Following the observation we have

[asp,H] =

∫
R3

d3q

(2π)3
Eq
∑
r=±

(
[asp, a

r†
q a

r
q] + [asp, b

r†
q b

r
q]
)

=

∫
R3

d3q

(2π)3
Eq

({
asp, a

s†
q

}
asq − as†q

{
asp, a

s
q

})
=

∫
R3

d3q

(2π)3
Eq(2π)

3δ(p− q)asq

= Epa
s
p

Similarly we have

[as†p ,H] = −Epas†p , [bsp,H] = Epb
s
p, [bs†p ,H] = −Epbs†p

Therefore

[ψ,H ] =

∫
R3

d3p

(2π)3
1√
2Ep

∑
s=±

(
e−ipµxµ us(p)[asp,H] + eipµx

µ
vs(p)[bs†p ,H]

)
=

∫
R3

d3p

(2π)3
1√
2Ep

∑
s=±

(
Ep e

−i(Ept−p·x) us(p)asp − Ep e
i(Ept−p·x) vs(p)bs†p

)
=

∫
R3

d3p

(2π)3
1√
2Ep

∑
s=±

(
i
∂

∂t
e−i(Ept−p·x) us(p)asp + i

∂

∂t
ei(Ept−p·x) vs(p)bs†p

)
= i

∂ψ

∂t
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(b) Using the result in (a), we have

Has†p |ψ〉 =
(
as†p H + [H, as†p ]

)
|ψ〉 = as†p (H + Ep) |ψ〉 = (Eψ + Ep) a

s†
p |ψ〉

Hbs†p |ψ〉 =
(
bs†p H + [H, bs†p ]

)
|ψ〉 = bs†p (H + Ep) |ψ〉 = (Eψ + Ep) b

s†
p |ψ〉

Let |Ω〉 be the vacuum state satisfying

asp |Ω〉 = bsp |Ω〉 = 0

A general eigenstate of the Hamiltonian is given by

∣∣∣(p1, s1), ..., (pn, sn), (pn+1, sn+1), ..., (pn+m, sn+m)
〉
=

k∏
i=1

√
2Epia

s†
p1

· · · as†pnb
s†
pn+1

· · · bs†pn+m
|Ω〉

Since the Hamiltonian commutes with all creation operators in the sense of the results in (a), we have

H
∣∣∣(p1, s1), ..., (pn, sn), (pn+1, sn+1), ..., (pn+m, sn+m)

〉
=

n+m∑
i=1

Epi

∣∣∣(p1, s1), ..., (pn, sn), (pn+1, sn+1), ..., (pn+m, sn+m)
〉

(c) We shall prove the following lemma:

Lemma 1. Slant Determinant

Let a1, ..., an, b1, ..., bn belong to a non-commutative unital algebra, with the anti-commutation
relations

{ai, aj} = {bi, bj} = 0, {ai, bj} = cij id

Moreover, suppose that there is a state |0〉 with ai |0〉 = 0 for all i. Then we have

a1 · · · anb1 · · · bn |0〉 = (−1)
n(n−1)

2 det(cij)
n
i,j=1 |0〉

We prove by induction on n. For n = 1 this is trivial. Suppose that the result holds for n − 1. We
have

a1 · · · anb1 · · · bn |0〉 = (−a1 · · · an−1b1anb2 · · · bn + c1na1 · · · an−1b2 · · · bn) |0〉

= −a1 · · · an−1b1anb2 · · · bn |0〉+ (−1)
(n−1)(n−2)

2 cn1 detCn1 |0〉

Here we used the induction hypothesis to a1 · · · an−1b2 · · · bn |0〉. C1n is the matrix (cij)
n
i,j=1 deleting

the first row and the n-th column. Repeating the process until we move an to the rightmost of the
product.

a1 · · · anb1 · · · bn |0〉 = (−1)na1 · · · an−1b1b2 · · · bnan |0〉+
n∑
i=1

(−1)
(n−1)(n−2)

2 (−1)i+1cni detCni |0〉

= (−1)
(n−1)(n−2)

2
+(n−1)

n∑
i=1

(−1)i+ncni detCni |0〉

= (−1)
n(n−1)

2 det(cij)
n
i,j=1 |0〉 (Laplace expansion of the determinant)

which completes the induction.

Return to the problem in (c). In the following derivation, we can just throw away all the bs†q because
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〈0| bs†q = 0.

The n-particle wave function is given by

〈0|ψ(x1) · · ·ψ(xn) |(p1, s1), ..., (pn, sn)〉

=
k∏
i=1

√
2Epi 〈0|ψ(x1) · · ·ψ(xn)a

s1†
p1

· · · asn†pn |0〉

= 〈0|
n∏
i=1

∫
R3

d3qi
(2π)3

1√
2Eqi

e−i(qi)µ(xi)
µ
∑
ri=±

uri(qi)a
ri
qi

n∏
j=1

√
2Epja

s†
pj

|0〉

= 〈0|
n∏
i=1

∫
R3

d3qi
(2π)3

1√
2Eqi

e−i(qi)µ(xi)
µ

n∏
j=1

√
2Epj

∑
ri=±

uri(qi)(−1)
n(n−1)

2 (2π)3n det(δrksℓδ(pk − qℓ))
n
k,ℓ=1 |0〉

= (−1)
n(n−1)

2 det
(
e−i(pi)µ(xj)

µ
)n
i,j=1

n∏
i=1

usi(pi)

Finally, we take n = 3 and obtain the 3-particle wave functon:

〈0|ψ(x1)ψ(y)ψ(z) |(p1, s1), (p2, s2), (p3, s3)〉

= −us1(p1)u
s2(p2)u

s3(p3) det

e−i(p1)µxµ e−i(p2)µxµ e−i(p3)µxµ

e−i(p1)µyµ e−i(p2)µyµ e−i(p3)µyµ

e−i(p1)µzµ e−i(p2)µzµ e−i(p3)µzµ


(Note that ψ(x) is a vector operator. So ψ(x)ψ(y)ψ(z) should be unterstood as component-wise
multiplication. Similarly for us1(p1)u

s2(p2)u
s3(p3).)

Question 3. Cancellation of vacuum bubble diagrams

Consider the real scalar field with interaction 1
4!λϕ

4 and the vacuum expectation value

GK =

〈
Ω

∣∣∣∣∣T
2K∏
i=1

ϕ (xi)

∣∣∣∣∣Ω
〉

=

〈
0

∣∣∣∣∣T
(

2K∏
i=1

ϕI (xi)

)
exp

(
−i

∫ ∞(1−iϵ)

−∞(1−iϵ)
dtHInt (ϕI)

)∣∣∣∣∣ 0
〉

〈
0

∣∣∣∣∣T exp

(
−i

∫ ∞(1−iϵ)

−∞(1−iϵ)
dtHInt (ϕI)

)∣∣∣∣∣ 0
〉

where K is an integer. Show that the contribution to GK at any order λL, L integer, in which all external
points are connected to a single cluster, contains no bubble diagrams.

Proof. The idea is that, the denominator contains the exponentials of all the contributions of bubble diagrams,
which cancels those in the numerator, leaving the contributions of connected diagrams1 only in the expres-
sion of GK .

The expension of 〈0| T
{

2K∏
i=1

ϕI (xi) exp

(
−i

∫ T (1−iϵ)

−T (1−iϵ)
dtHint(ϕI)

)}
|0〉 at order λL is given by

〈0| 1

L!

(
− iλ

4!

)L
T


2K∏
i=1

L∏
j=1

ϕI(xi)

∫
[−T (1−iε),T (1−iε)]×R3

d4zj ϕI(zj)
4

 |0〉 (∗)

In terms of the Feynman diagrams, the expression (∗) is a summation of all possible diagrams with external
points x1, ..., x2K and internal points z1, ..., zL. Let ΓL be the set of all such diagrams. Let ΛL be set of

1Here connectedness means that every internal point is path-connected to the external points.
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bubble diagrams arising as path-components of the digrams in ΓL. Let Λ :=
⋃
L∈N ΛL and Γ :=

⋃
L∈N ΓL.

It is clear that Λ is countable. Let {Vi}i∈N be an enumeration of Λ.

Consider a diagram γ ∈ ΓL. We decompose it into a disjoint union of path-connected sub-diagrams. For
each i, let ni be the number of copies of Vi as path-components of γ. Only finitely many of the ni is
non-zero. If v(Vi) denotes the value of the Wick’s contraction represented by the diagram Vi, then the ni
copies contribute 1

ni!
v(Vi)

ni to v(γ), where 1/ni! is a symmetry factor. We have

v(γ) =
∏
k

v(Aγ,k) ·
∏
i∈N

1

ni!
v(Vi)

ni

where {Aγ,k} is the set of non-bubble path-components of γ.

Now the value of expression (∗) is just the sum∑
γ∈ΓL

v(γ) =
∑
γ∈ΓL

∏
k

v(Aγ,k) ·
∏
i∈N

1

ni!
v(Vi)

ni

Following Peskin & Schroder we sum over all order L:∑
L∈N

∑
γ∈ΓL

∏
k

v(Aγ,k) ·
∏
i∈N

1

ni!
v(Vi)

ni

Peskin & Schroder p.97 (4,52) claims that the expression above equals to

𝒞(x1, ..., x2K) ·
∑
{ni}

∏
i∈N

1

ni!
v(Vi)

ni = 𝒞(x1, ..., x2K) · exp

(∑
i∈N

v(Vi)

)

where 𝒞(x1, ..., x2K) represents the contributions of the non-bubble diagrams, and the sum is over all finite
sequences {ni}i∈N. I am not convinced by this argument.

The similar argument claims that the denominator of GK is given by

lim
T→∞

〈0| T

{
exp

(
−i

∫ T (1−iϵ)

−T (1−iϵ)
dtHint(ϕI)

)}
|0〉 = exp

(∑
i∈N

v(Vi)

)

Therefore the contributions exp

(∑
i∈N

v(Vi)

)
cancels in the fraction. Only the connected diagrams have

contributions to GK .

Proof. (A better proof from the model solution.)

Let us focus first on the numerator of the vacuum expectation value GK

G̃K ≡ lim
T→∞(1−iϵ)

〈
0

∣∣∣∣∣T
{

2K∏
i=1

ϕi exp

(
−i
∫ T

−T
dt

∫
d3y

λ

4!
ϕ4(y)

)}∣∣∣∣∣ 0
〉

If we introduce the shorthand notation[
−i
∫
H (ϕj)

]
≡ −i

∫
dyj

λ

4!
ϕ4 (yj)
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the expansion in powers of λ, i.e. in powers of the Hamiltonian, reads

G̃K ≡

〈
0

∣∣∣∣∣∣T


2K∏
i=1

ϕi

∞∑
n=0

1

n!

n∏
j=1

[
−i
∫
H (ϕj)

]
∣∣∣∣∣∣ 0
〉

According to Wick’s theorem, for a fixed order in n, only the fully contracted diagrams with 2K external
points and n internal ones contribute. Therefore, for given n we will have a sum of diagrams which contain
either connected graphs only (i.e. no vacuum graphs) or connected and disconnected subgraphs. Thus〈

0

∣∣∣∣∣∣T


2K∏
i=1

ϕi

n∏
j=1

[
−i
∫
H (ϕj)

]
∣∣∣∣∣∣ 0
〉

=

n∑
m=0

(
n

m

)〈
0

∣∣∣∣∣∣T


2K∏
i=1

ϕi

m∏
j=1

[
−i
∫
H (ϕj)

]
∣∣∣∣∣∣ 0
〉
c

〈
0

∣∣∣∣∣∣T


n∏
j=m+1

[
−i
∫
H (ϕj)

]
∣∣∣∣∣∣ 0
〉

where with the subscript c we denote the connected subgraphs. The combinatorial factor comes from the
fact that there are

(
n
m

)
ways to choose m internal points out of n to fully contract with the external fields.

If we now sum over all n, the numerator takes the form

∞∑
n=0

n∑
m=0

1

m!

〈
0

∣∣∣∣∣∣T


2K∏
i=1

ϕi

m∏
j=1

[
−i
∫
H (ϕj)

]
∣∣∣∣∣∣ 0
〉
c

〈
0

∣∣∣∣∣∣T
 1

(n−m)!

n∏
j=m+1

[
−i
∫
H (ϕj)

]
∣∣∣∣∣∣ 0
〉

=
∞∑
n=0

n∑
m=0

1

m!

〈
0

∣∣∣∣∣∣T


2K∏
i=1

ϕi

m∏
j=1

[
−i
∫
H (ϕj)

]
∣∣∣∣∣∣ 0
〉
c

〈
0

∣∣∣∣∣∣T
 1

(n−m)!

n−m∏
j=1

[
−i
∫
H (ϕj)

]
∣∣∣∣∣∣ 0
〉

which can be factorised as ∞∑
m=0

1

m!

〈
0

∣∣∣∣∣∣T


2K∏
i=1

ϕi

m∏
j=1

[
−i
∫
H (ϕj)

]
∣∣∣∣∣∣ 0
〉
c

 ∞∑
n=0

〈
0

∣∣∣∣∣∣T
 1

n!

n∏
j=1

[
−i
∫
H (ϕj)

]
∣∣∣∣∣∣ 0
〉

The last term on the right hand side exponentiates ∞∑
m=0

1

m!

〈
0

∣∣∣∣∣∣T


2K∏
i=1

ϕi

m∏
j=1

[
−i
∫
H (ϕj)

]
∣∣∣∣∣∣ 0
〉
c

〈0 ∣∣∣∣exp(−i ∫ dtH(ϕ(y))

)∣∣∣∣ 0〉

and this exactly cancels the denominator in the vacuum expectation value. Hence, if we expand to any
O
(
λL
)

we can discard all diagrams containing vacuum subgraphs.

Question 4. Feynman Diagrams

This is practice using the Feynman rules for scalar fields.

(a) Find expressions, including the combinatorial factors, corresponding to the following quantum cor-
rections to the two-point function for a single (real) scalar field. Do not try to do the momentum
integrals.
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(b) Now consider the case of a complex scalar field with Lagrangian density

L = ∂µϕ†∂µϕ−m2ϕ†ϕ− λ

4

(
ϕ†ϕ

)2
Do any of your answers in part a) change?

(c) Find all the distinct amputated diagrams at O
(
λ3
)

for the quantum corrections to the connected four-
point function of the real scalar field. Try to organise your answer in an efficient manner, making full
use of the structure of the graphs.

Proof. (a) We use the Feynman rules in the momentum space.

• For the first diagram, we label the external line with momentum p, and the internal line with
momentum k. The combinatorial factor is 1/2. By Feynman’s rule, we have

1

2
(−iλ)

(
i

p2 −m2 − iϵ

)2 ∫ d4k

(2π)4
i

k2 −m2 − iϵ

• For the second diagram, we label the edges with momenta as follows

• •p p

p− k1 − k2

k1

k2

The combinatorial factor is 1/3!. By Feynman’s rule, we have

1

6
(−iλ)2

(
i

p2 −m2 − iϵ

)2 ∫ d4k1
(2π)4

∫
d4k2
(2π)4

i

k1
2 −m2 − iϵ

· i

k2
2 −m2 − iϵ

· i

(p− k1 − k2)
2 −m2 − iϵ

• For the third diagram, we label the edges with momenta as follows

• • •p p− k1 − k3p− k1 − k2

k2 k3

k1

p

The combinatorial factor is 1/2! · 1/2! = 1/4. By Feynman’s rule, we have

1

4
(−iλ)3

(
i

p2 −m2 − iϵ

)2

·
∫

d4k1
(2π)4

∫
d4k2
(2π)4

∫
d4k3
(2π)4

i

k1
2 −m2 − iϵ

· i

k2
2 −m2 − iϵ

· i

k3
2 −m2 − iϵ

· i

(p− k1 − k2)
2 −m2 − iϵ

· i

(p− k1 − k3)
2 −m2 − iϵ

(b) The momentum integrals remain unchanged. The combinatorial factors are changed due to the new
requirement of charge conservation. For the Feynman diagrams, this means that we need to assign
each edge with a direction such that each internal vertex has two in-coming and two out-going edges.
The new combinatorial factors for the diagrams in (a) are given by

• 1;

• 1/2;
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• (1/4, 1) (The diagram for real scalar field splits into two non-homeomorphic diagrams for complex
scalar field, each with a different combinatorial factor.)

(c) I cannot give a rigorous definition for the amputated graph. So I will be hand-waving in this part.

Let n be the number of internal vertices after amputation. We note that n ∈ {1, 2, 3}. If n > 1, each
internal vertex in the amputated graph cannot be directly connected to more than 2 external edges,
for otherwise the rest of the internal vertices will be amputated. Let ai be the number of external
edges that are directly connected to the internal vertex i. Then each ai ∈ {1, 2}, and

∑
i ai = 4. We

can list all non-homeomorphic graphs as follows:

• n = 1:

• n = 2, (a1, a2) = (2, 2):

• n = 3, (a1, a2, a3) = (2, 0, 0):

• n = 3, (a1, a2, a3) = (2, 1, 1):


