Peize Liu St. Peter's College University of Oxford

Problem Sheet 4

C3.1: Algebraic Topology

Convention: All spaces are topological spaces. Maps of spaces are always continuous.

Question 1

- a) For M an oriented closed connected n-manifold, prove that
 - $H^n(M) \cong \mathbb{Z}$;
 - $H_{n-1}(M)$ has no torsion;
 - There exists a generator $\omega_M \in H^n(M)$ with $\omega_M([M]) = 1$.

(You may use Poincaré duality and universal coefficients theorems.)

b) For M, N oriented closed connected n-manifolds, and $f: M \to N$, prove that

$$f^*: H^n(N) \longrightarrow H^n(M)$$

$$\omega_N \longmapsto \deg f \cdot \omega_M$$

c) Let $f: S^n \to T^n$, $n \ge 2$. Prove that deg f = 0. Construct a map $T^n \to S^n$ of non-zero degree.

a) Since *M* is an oriented compact connected *n*-manifold, by Poincaré duality, $H^k(M) \cong H_{n-k}(M)$ for $0 \le k \le n$. Proof.

- $H^n(M) \cong H_0(M) \cong \mathbb{Z}$;
- $H_{n-1}(M) \cong H^1(M)$. By universal coefficient theorem for cohomology, we have a split short exact sequence

$$0 \longrightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}(H_{0}(M), \mathbb{Z}) \longrightarrow H^{1}(M) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(H_{1}(M), \mathbb{Z}) \longrightarrow 0$$

Note that $\operatorname{Ext}^1_{\mathbb{Z}}(H_0(M),\mathbb{Z}) \cong \operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z}) = 0$. We have $H^1(M) \cong \operatorname{Hom}_{\mathbb{Z}}(H_1(M),\mathbb{Z})$. We know that dualisation kills torsion. More specifically, suppose that $n \in \mathbb{Z} \setminus \{0\}$ and $\varphi \in \text{Hom}_{\mathbb{Z}}(H_1(M), \mathbb{Z}) \setminus \{0\}$ are such that $n\varphi = 0$. We take $x \in H_1(M) \setminus \{0\}$ such that $\varphi(x) \neq 0$. Then $n\varphi(x) \not\models 0$ since \mathbb{Z} is an integral domain. This is a contradiction. We conclude that $H_{n-1}(M) \cong H^1(M)$ is torsion-free.

By universal coefficient theorem for cohomology, we have a split short exact sequence

$$0 \longrightarrow \operatorname{Ext}^1_{\mathbb{Z}}(H_{n-1}(M),\mathbb{Z}) \longrightarrow H^n(M) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(H_n(M),\mathbb{Z}) \longrightarrow 0$$

Since M is compact, the homology group $H_{n-1}(M)$ is finitely generated. We have proven that it is torsion-free. Then by the structure theorem for finitely generated Abelian groups, $H_{n-1}(M) \cong \mathbb{Z}^k$ for some k. In particular $H_{n-1}(M)$ is free. Hence $\operatorname{Ext}^1_{\mathbb{Z}}(H_{n-1}(M),\mathbb{Z})=0$. We have $H^n(M)\cong \operatorname{Hom}_{\mathbb{Z}}(H_n(M),\mathbb{Z})$. Since [M] generates $H_n(M)$, there exists $\omega_M \in H^n(M)$ such that $\omega_M([M]) = 1.$

- b) We have $H_n(M)^{\vee} \cong H^n(M)$, and ω_M is a dual basis of [M]. Then $f^*: H^n(N) \to H^n(M)$ is the dual map of $f_*: H_n(M) \to H_n(N), [M] \mapsto \deg f \cdot [N].$ Then by linear algebra we have $f^*: \omega_N \mapsto \deg f \cdot \omega_M.$ c) Since $T^n = S^1 \times \cdots \times S^1$, By Künneth Theorem, we have the following group isomorphism, which is also a
- ring homorphism into $H^{\bullet}(T^n)$.

$$\bigotimes_{i=1}^n H^1(S^1) \xrightarrow{\cong} H^n(T^n)$$

$$e_1 \otimes \cdots \otimes e_n \longmapsto p_1^*(e_1) \smile \cdots \smile p_n^*(e_n)$$

 $e_1\otimes \cdots \otimes e_n \longmapsto p_1^*(e_1) \smile \cdots \smile p_n^*(e_n)$ where $p_i^*: H^1(S^1) \to H^1(T^n)$ is the pull-back of the projection $p_i: T^n \to S^1$.

Consider $f: S^n \to T^n$. The pull-back $f^*: H^{\bullet}(T^n) \to H^{\bullet}(S^n)$ is a ring homomorphism. Then

$$f^*(p_1^*(e_1) \smile \cdots \smile p_n^*(e_n)) = f^*p_1^*(e_1) \smile \cdots \smile f^*p_n^*(e_n)$$

Note that each $f^*p_i^*(e_i) \in H^1(S^n) = 0$. So we must have $f^*(p_1^*(e_1) \smile \cdots \smile p_n^*(e_n)) = 0$. Since $p_1^*(e_1) \smile \cdots \smile p_n^*(e_n)$ generates $H^n(T^n)$, we conclude that $\deg f = 0$.

Finally we construct a map $f: T^n \to S^n$ with non-zero degree. Choose $p \in T^n$. Since T^n is a manifold, there exists a neighbourhood $U \subseteq T^n$ of p such that $U \cong \mathbb{D}^n$. Consider the quotient map

$$f: T^n \to T^n/(T^n \setminus U) \cong S^n$$

We claim that $f_*: H_n(T^n) \to H_n(S^n)$ is a isomorphism, and hence have degree 1. Consider the long exact sequence of relative homology

$$0 \longrightarrow H_n(T^n \setminus U) \longrightarrow H_n(T^n) \xrightarrow{p_n} H_n(T^n, T^n \setminus U) \xrightarrow{\delta_n} H_{n-1}(T^n \setminus U) \longrightarrow \cdots$$

Note that $T^n \setminus U \simeq S^1 \vee \cdots \vee S^1$ (view T^n as I^n with edge identifications, and retract $T^n \setminus U$ onto the edges). So $H_n(T^n \setminus U) = 0$ and $H_{n-1}(T^n \setminus U) = 0$ ($n \ge 3$). Then $p_n \colon H_n(T^n) \to H_n(T^n, T^n \setminus U)$ is an isomorphism. Since $(T^n, T^n \setminus U)$ is a good pair, we have another isomorphism $\varphi \colon H_n(T^n, T^n \setminus U) \to H_n(T^n/(T^n \setminus U)) \cong H_n(S^n)$. The composite $p_n \circ \varphi = f_*$. This proves that f_* is an isomorphism.

Question 2

Show that any matrix $A \in M_{n \times n}(\mathbb{Z})$ defines a map $f: T^n \to T^n$ on the *n*-torus $T^n = \mathbb{R}^n / \mathbb{Z}^n \cong S^1 \times \cdots \times S^1$.

Describe $f_*: H_1(T) \to H_1(T)$ in terms of explicit generators. Show that $\deg f = \det A \in \mathbb{Z}$.

<u>Cutural Remark.</u> Any Lie group homomorphism $\varphi: T^n \to T^n$ gives rise to such a Lie algebra homomorphism $D_1\varphi: \mathbb{R}^n \to \mathbb{R}^n$ such that $D_1\varphi|_{\mathbb{Z}^n} = A$.

Proof. Let $q: \mathbb{R}^n \to (\mathbb{R}/\mathbb{Z})^n \cong \mathbb{R}^n/\mathbb{Z}^n$ be the quotient map. Then $q \circ A: \mathbb{R}^n \to \mathbb{R}^n/\mathbb{Z}^n$. For any $v \in \mathbb{Z}^n$, as $Av \in \mathbb{Z}^n$, then $q \circ Av = 0$. Hence $q \circ A$ induces a map $\widetilde{A}: \mathbb{R}^n/\mathbb{Z}^n \to \mathbb{R}^n/\mathbb{Z}^n$. \widetilde{A} can be viewed as an endomorphism on the n-torus T^n .

Here we proof. Let $q: \mathbb{R}^n \to \mathbb{R}^n/\mathbb{Z}^n$ be the quotient map. Then $q \circ A: \mathbb{R}^n \to \mathbb{R}^n/\mathbb{Z}^n$. For any $v \in \mathbb{Z}^n$, as $Av \in \mathbb{Z}^n$, then $q \circ Av = 0$. Hence $q \circ A$ induces a map $\widetilde{A}: \mathbb{R}^n/\mathbb{Z}^n \to \mathbb{R}^n/\mathbb{Z}^n$. \widetilde{A} can be viewed as an endomorphism on the n-torus T^n .

Let $e_1,...,e_n$ be the generators of each S^1 . Their representatives in \mathbb{R}^n form a basis of \mathbb{R}^n . We know that $H_1(T^n) \cong \mathbb{R}^n$ by Künneth's Theorem. $e_1,...,e_n \in H_1(T^n)$ in fact form a basis of $H_1(T^n)$. The map $f_*: H_1(T^n) \to H_1(T^n)$ is given by $e_i \mapsto Ae_i \in H_1(T^n)$.

From the lectures, we know that $H^n(T^n)$ is generated by $p_1^*(e_1) \wedge \cdots \wedge p_n^*(e_n)$. Then $f^*: H^n(T^n) \to H^n(T^n)$ is given by $p_1^*(e_1) \wedge \cdots \wedge p_n^*(e_n) \mapsto p_1^*(Ae_1) \wedge \cdots \wedge p_n^*(Ae_n)$. By the definition of determinant,

 $\det A = \frac{Ae_1 \wedge \dots \wedge Ae_n}{e_1 \wedge \dots \wedge e_n} = \frac{p_1^*(Ae_1) \wedge \dots \wedge p_n^*(Ae_n)}{p_1^*(e_1) \wedge \dots \wedge p_n^*(e_n)} = \deg f$ $\downarrow \text{Localization}$

Question 3

a) For M,N compact connected orientable n-manifolds, prove that M # N is also a compact connected orientable n-manifold, and that

$$H_{\bullet}(M \# N) \cong H_{\bullet}(M) \oplus H_{\bullet}(N)$$
 for $1 \leq \bullet \leq n-1$

- b) Formulate and prove such an isomorphism on cohomology, as a ring isomorphism.
- c) What can you say about the case $\bullet = n$, and cup products of $H^{\bullet}(M)$, $H^{\bullet}(N)$ classes that land in $H^{n}(M \# N)$?
- d) Deduce what $H_{\bullet}(\Sigma_g)$, $\chi(\Sigma_g)$ and the ring $\dot{H}^{\bullet}(\Sigma_g)$ are, for the genus g surface Σ_g .

Proof.

a) The connected sum can be defined in the following way. Choose $x \in M$ and $y \in N$. Let $U \in M$ and $V \in N$ be charts containing x and y respectively. We can identify ∂U and ∂V via $\partial U \cong S^{n-1} \cong \partial V$. Then we define the connected sum to be $M \# N := ((M \setminus U) \cup (N \setminus V))/(\partial U \sim \partial V)$.

It is clear from definition that M#N is connected and compact (being the quotient of a compact space). M#N is orientable, as we can pick an isomorphism $\partial U\cong\partial V$ such that the local orientations on them agree. Also that M#N is a neighbourhood of \overline{U} in M and V' be a neighbourhood of \overline{V} in N. Consider $A:=(M\setminus U)\cup(V'\setminus V)$ and $B=(N\setminus V)\cup(U'\setminus U)$ as subspaces of M#N. Then $M\#N=A^\circ\cup B^\circ$. The Mayor-Vietoris sequence is given by

$$\cdots \longrightarrow \widetilde{H}_k(A \cap B) \longrightarrow \widetilde{H}_k(A) \oplus \widetilde{H}_k(B) \longrightarrow \widetilde{H}_k(M \# N) \longrightarrow \widetilde{H}_{k-1}(A \cap B) \longrightarrow \cdots$$

Note that $A \cap B \simeq S^{n-1}$. Then $\widetilde{H}_k(A \cap B) = 0$ for $k \le n-2$. In such case, we have $\widetilde{H}_k(M \# N) \cong \widetilde{H}_k(A) \oplus \widetilde{H}_k(B)$ from the long exact sequence.

We have $M \simeq A \cup_{\varphi} \mathbb{D}^n$, where φ identifies $\partial \mathbb{D}^n \cong S^{n-1}$ with $\partial V'$. From Question 6 of Sheet 3, we have $H_k(A) \cong H_k(M)$ for $k \leq n-2$. Similarly $H_k(B) \cong H_k(N)$. Hence $H_k(M\#N) \cong H_k(M) \oplus H_k(N)$ for $1 \leq k \leq n-2$.

For k = n - 1, since M and N are orientable, we use Poincaré duality: $H_{n-1}(M \# N) \cong H^1(M \# N)$, $H_{n-1}(M) \cong H^1(M)$, and $H_{n-1}(N) \cong H^1(N)$. Using the cohomology version of Mayer-Vietoris sequence we can prove that $H^1(M \# N) \cong H^1(M) \oplus H^1(N)$. Hence $H_{n-1}(M \# N) \cong H_{n-1}(N)$. This concludes the proof.

b) We have a group isomorphism at each grading of the cohomology ring:

 $H^k(M \# N) \cong H^k(M) \oplus H^k(N), \qquad 1 \le k \le n-1$

component-wise

which is proven by the same Mayer-Vietoris technique. The cup product is computed component-wise for $1 \le k + \ell \le n - 1$. That is, for $(\alpha_k, \beta_k) \in H^k(M) \oplus H^k(N) \cong H^k(M \# N)$ and $(\alpha_\ell, \beta_\ell) \in H^\ell(M) \oplus H^\ell(N) \cong H^k(M \# N)$,

$$(\alpha_k, \beta_k) \smile (\alpha_\ell, \beta_\ell) = (\alpha_k \smile \alpha_\ell, \beta_k \smile \beta_\ell) \in H^{k+\ell}(M) \oplus H^{k+\ell}(N) \cong H^{k+\ell}(M \# N)$$

c) At degree n, the good pair $(M \# N, S^{n-1})$ gives the long exact sequence

$$\cdots \longrightarrow H^{n-1}(S^{n-1}) \longrightarrow H^n(M\#N, S^{n-1}) \longrightarrow H^n(M\#N) \longrightarrow 0$$

Note that $H^n(M\#N,S^{n-1})\cong H^n(M\#N/S^{n-1})\cong H^n(M\vee N)\cong H^n(M)\oplus H^n(N).$

Since $H^n(M) \oplus H^n(N) \cong \mathbb{Z}^2$, $H^n(M\#N) \cong \mathbb{Z}$, the map $H^n(M) \oplus H^n(N) \to H^n(M\#N)$ is given by $(\omega_M, 0) \mapsto \omega_{M\#N}$ and $(0, \omega_N) \mapsto \omega_{M\#N}$. Therefore, for $k + \ell = n$, $(\alpha_k, \beta_k) \in H^k(M\#N)$ and $(\alpha_\ell, \beta_\ell) \in H^\ell(M\#N)$, we have

$$(\alpha_k, \beta_k) \smile (\alpha_\ell, \beta_\ell) = \alpha_k \smile \alpha_\ell + \beta_k \smile \beta_\ell \in H^n(M \# N)$$

The rings $H^{\bullet}(M \# N)$ and $H^{\bullet}(M) \times H^{\bullet}(N)$ are certainly not isomorphic.

d) From the lectures and previous problem sheets, we know that for $\Sigma_1 = T^2$,

$$H_n(T^2) \cong \begin{cases} \mathbb{Z}, & n=0 \\ \mathbb{Z}^2, & n=1 \\ \mathbb{Z}, & n=2 \\ 0, & \text{otherwise} \end{cases}$$
 $H^n(T^2) \cong \begin{cases} \mathbb{Z}, & n=0 \\ \mathbb{Z}^2, & n=1 \\ \mathbb{Z}, & n=2 \\ 0, & \text{otherwise} \end{cases}$

Since $\Sigma_g = T^2 \# \cdots \# T^2$, inductively we have

$$H_n(\Sigma_g) \cong egin{cases} \mathbb{Z}, & n=0 \\ \mathbb{Z}^{2g}, & n=1 \\ \mathbb{Z}, & n=2 \\ 0, & \text{otherwise} \end{cases}, \qquad H^n(\Sigma_g) \cong egin{cases} \mathbb{Z}, & n=0 \\ \mathbb{Z}^{2g}, & n=1 \\ \mathbb{Z}, & n=2 \\ 0, & \text{otherwise} \end{cases}$$

The Euler characteristic

$$\chi(\Sigma_g) = \sum_{n=0}^{\infty} (-1)^n \operatorname{rank} H_n(\Sigma_g) = 2 - 2g$$

Let a_i, b_i be the generators of $H^1(T^2)$ for i = 1, ..., g. Then $H^1(\Sigma_g)$ is generated by $a_1, b_1, ..., a_g, b_g$, with the cup product structure

$$a_i \smile a_j = 0$$
, $b_i \smile b_j = 0$, $a_i \smile b_j = 0$, $a_1 \smile b_1 = \cdots = a_g \smile b_g$ generates $H^2(\Sigma_g) \cong \mathbb{Z}$
This completely describes the ring structure of $H^{\bullet}(\Sigma_g)$.

Question 4

- a) Verify that $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z};G)=0$ and $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/d;G)\cong G/dG$ for any Abelian group G.
- b) Use the universal coefficients theorem to compute $H^{\bullet}(\mathbb{R}P^3; \mathbb{Q}/\mathbb{Z})$.
- c) Compute $H^{\text{CW}}_{\bullet}(\mathbb{R}P^3;\mathbb{Q}/\mathbb{Z})$ and $H^{\bullet}_{\text{CW}}(\mathbb{R}P^3;\mathbb{Q}/\mathbb{Z})$ directly.
- d) We typically expect the torsion of H_{\bullet} to move up by 1 in H^{\bullet} . How come that failed in (c)?

a) Since $\mathbb Z$ is free, it is projective, and the functor $\text{Hom}_{\mathbb Z}(\mathbb Z,-)$ is exact. Then the right derived functors Proof. $\operatorname{Ext}^k_{\mathbb{Z}}(\mathbb{Z},-):=\mathsf{R}^k\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},-)=0$ for $k\geqslant 1$. In particular $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z},G)=0$.

The following exact sequence is a free resolution of \mathbb{Z}/d :

$$0 \longrightarrow \mathbb{Z} \xrightarrow{d} \mathbb{Z} \longrightarrow \mathbb{Z}/d \longrightarrow 0 \quad \checkmark$$

Applying the functor $\operatorname{Hom}_{\mathbb{Z}}(-,G)$ to the unaugmented chain:

$$0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, G) \xrightarrow{d} \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, G) \longrightarrow 0$$

As $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},G) \cong G$, after taking cohomology we obtain that

$$\operatorname{Ext}_{\mathbb{Z}}^{k}(\mathbb{Z}/d,G) = \begin{cases} \{g \in G \colon dg = 0\}, & k = 0 \\ G/dG, & k = 1 \\ 0, & \text{otherwise} \end{cases}$$

b) The universal coefficient theorem for cohomology:

$$0 \longrightarrow \operatorname{Ext}^{1}_{\mathbb{Z}}(H_{n-1}(\mathbb{R}P^{3}); \mathbb{Q}/\mathbb{Z}) \longrightarrow H^{n}(\mathbb{R}P^{3}; \mathbb{Q}/\mathbb{Z}) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(H_{n}(\mathbb{R}P^{3}), \mathbb{Q}/\mathbb{Z}) \longrightarrow 0$$

Note that \mathbb{Q}/\mathbb{Z} is an injective \mathbb{Z} -module (since it is divisible), and hence is an acyclic object with respect to the left exact functor $\mathrm{Hom}_{\mathbb{Z}}(H_{n-1}(\mathbb{R}P^3),-)$. The extension module $\mathrm{Ext}^1_{\mathbb{Z}}(H_{n-1}(\mathbb{R}P^3);\mathbb{Q}/\mathbb{Z})=0$. Hence we have

$$H^n(\mathbb{R}P^3; \mathbb{Q}/\mathbb{Z}) \cong \operatorname{Hom}_{\mathbb{Z}}(H_n(\mathbb{R}P^3), \mathbb{Q}/\mathbb{Z})$$

It remains to compute the homology groups $H_n(\mathbb{R}P^3)$. From the computation in Question 5 of Sheet 3, we know that the cellcular chain complex of $\mathbb{R}P^3$ is given by

$$0 \longrightarrow \mathbb{Z} \stackrel{0}{\longrightarrow} \mathbb{Z} \stackrel{2}{\longrightarrow} \mathbb{Z} \stackrel{0}{\longrightarrow} \mathbb{Z}$$

Taking homology we have

$$H_n(\mathbb{R}P^3) = \begin{cases} \mathbb{Z}, & n = 0, 3\\ \mathbb{Z}/2, & n = 1\\ 0, & \text{otherwise} \end{cases}$$

It is clear that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},\mathbb{Q}/\mathbb{Z}) \cong \mathbb{Z}$. To compute $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2,\mathbb{Q}/\mathbb{Z})$, we note that for $\varphi \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2,\mathbb{Q}/\mathbb{Z})$, we must have $2\varphi(1) = 0 \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2, \mathbb{Q}/\mathbb{Z})$. Hence $\varphi(1) = 0$ or 1/2. We deduce that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2, \mathbb{Q}/\mathbb{Z}) \cong \mathbb{Z}/2$. In summary, the cohomology groups are given by

$$H^{n}(\mathbb{R}P^{3}; \mathbb{Q}/\mathbb{Z}) = \begin{cases} \mathbb{Q}/\mathbb{Z}, & n = 0,3\\ \mathbb{Z}/2, & n = 1\\ 0, & \text{otherwise} \end{cases}$$

c) The cellcular chain complex of $\mathbb{R}P^3$ with coefficients in \mathbb{Q}/\mathbb{Z} is given by

$$0 \longrightarrow \mathbb{Q}/\mathbb{Z} \xrightarrow{0} \mathbb{Q}/\mathbb{Z} \xrightarrow{2} \mathbb{Q}/\mathbb{Z} \xrightarrow{0} \mathbb{Q}/\mathbb{Z}$$

Taking the homology we obtain

$$H_n^{\text{CW}}(\mathbb{R}P^3; \mathbb{Q}/\mathbb{Z}) = \begin{cases} \mathbb{Q}/\mathbb{Z}, & n = 0, 3\\ \mathbb{Z}/2, & n = 2\\ 0, & \text{otherwise} \end{cases}$$

Dualising the chain complex and taking the cohomology, we have

This Mows coly you can't

This shows why you can't $H^n_{\text{CW}}(\mathbb{R}P^3;\mathbb{Q}/\mathbb{Z}) = \begin{cases} \mathbb{Q}/\mathbb{Z}, & n=0,3\\ \mathbb{Z}/2, & n=1 \end{cases}$ because of \mathbb{Z} has two the Heren's adoptation on young. Here \mathbb{Z} is \mathbb{Z} —made in the proof is actually slightly showed needs adoptation on young, Here \mathbb{Z} is \mathbb{Z} —made in the proof is actually slightly showed a finitely generated \mathbb{Z} -module for all $n \in \mathbb{N}$. But for n=0, $H_0(\mathbb{R}P^3;\mathbb{Q}/\mathbb{Z})\cong\mathbb{Q}/\mathbb{Z}$ is not finitely generated as a \mathbb{Z} -module. High this special special sections with the could be a Technically be too with shift only ones about High Hirt. So a polori there still could be a Let me prove this. Suppose that \mathbb{Q}/\mathbb{Z} is finitely generated. Since it is divisible, we have $\langle 2 \rangle_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}$. Then shift by Nakayama Lemma, there exists $n \in \mathbb{Z}$ odd, such that $n\mathbb{Q}/\mathbb{Z} = 0$, which is impossible. There is ut because to the

Question 5

Let *X* be the **Moore space** $M(\mathbb{Z}/m, n) = S^n \cup_{\varphi} \mathbb{D}^{n+1}$, where the attaching map $\varphi : \partial \mathbb{D}^{n+1} = S^n \to S^n$ has degree *m*.

- a) Show that the quotient map $X \to X/S^n \cong S^{n+1}$ is zero on \widetilde{H}_{\bullet} but non-zero on \widetilde{H}^{\bullet} .
- b) Deduce that in the universal coefficient theorem the splitting cannot be natural.

a) The good pair (X, S^n) induces the long exact sequence of the reduced homology Proof.

$$\cdots \longrightarrow \widetilde{H}_k(S^n) \xrightarrow{i_k} \widetilde{H}_k(X) \xrightarrow{q_k} \widetilde{H}_k(S^{n+1}) \xrightarrow{\delta_k} \widetilde{H}_{k-1}(S^n) \longrightarrow \cdots$$

Since $\widetilde{H}_k(S^{n+1}) = 0$ for $k \neq n+1$, then $q_k = 0$ for $k \neq n+1$. But, for k = n+1, $\widetilde{H}_{n+1}(X) = 0$ (Question 2 and 8) of Sheet 3) and hence $q_{n+1} = 0$. This implies that the push-outs of the quotient map $q: X \to S^{n+1}$ are zero 26 rows show a on the homology groups.

Similarly, we have the long exact sequence of the relative cohomology

$$\cdots \longrightarrow \widetilde{H}^{k-1}(S^n) \xrightarrow{\delta^{k-1}} \widetilde{H}^k(S^{n+1}) \xrightarrow{q^k} \widetilde{H}^k(X) \xrightarrow{i^k} \widetilde{H}^k(S^n) \longrightarrow \cdots$$

For $k \neq n+1$, $\widetilde{H}^k(S^{n+1}) = 0$ and hence $q^k = 0$. For k = n+1, from Question 8 of Sheet 3 we know that $\widetilde{H}^{n+1}(X) \cong \mathbb{Z}/m$.

Furthermore, since $\widetilde{H}^{n+1}(S^n) = 0$, then $i^k = 0$. By exactness at $\widetilde{H}^{n+1}(X)$, im $q^k = \ker i^k = \widetilde{H}^{n+1}(X)$. In particular $q^k \neq 0$. This implies that the pull-back of the quotient map q is non-zero on \widetilde{H}^{n+1} .

b) The universal coefficient theorems for cohomology for X and S^{n+1} give split short exact sequences

$$0 \longrightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}(\widetilde{H}_{n}(X), \mathbb{Z}) \longrightarrow \widetilde{H}^{n+1}(X) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(\widetilde{H}_{n+1}(X), \mathbb{Z}) \longrightarrow 0$$

$$\downarrow q^{n+1}$$

$$0 \longrightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}(\widetilde{H}_{n}(S^{n+1}), \mathbb{Z}) \longrightarrow \widetilde{H}^{n+1}(S^{n+1}) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(\widetilde{H}_{n+1}(S^{n+1}), \mathbb{Z}) \longrightarrow 0$$

Suppose that the splitting is functorial. Since $\widetilde{H}_{n+1}(X) = 0$ and $\widetilde{H}_n(S^{n+1}) = 0$, we have the commutative diagram

$$0 \longrightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}(\widetilde{H}_{n}(X), \mathbb{Z}) \xrightarrow{\cong} \widetilde{H}^{n+1}(X) \longrightarrow 0 \longrightarrow 0$$

$$\downarrow \alpha \qquad \qquad \downarrow q^{n+1} \qquad \qquad \downarrow \beta$$

$$0 \longrightarrow 0 \longrightarrow \widetilde{H}^{n+1}(S^{n+1}) \xrightarrow{\cong} \operatorname{Hom}_{\mathbb{Z}}(\widetilde{H}_{n+1}(S^{n+1}), \mathbb{Z}) \longrightarrow 0$$

Then $\alpha = 0$ and $\beta = 0$. Since $q^{n+1} \neq 0$, it is impossible that the diagram is commutative. Hence the splitting

in the universal coefficient theorems is not functorial. The SESs are functorial. The SPIHING isn't!

Question 6

State and prove a locality theorem for cohomology when viewed as a ring.

(Hint. Naturality of the universal coefficient SES.)

Proof. Let $\mathcal{U} \subseteq \mathcal{P}(X)$ such that $X = \bigcup_{U \in \mathcal{U}} U^{\circ}$. Let $C^{\mathcal{U}}_{\bullet}(X)$ be the chain of \mathcal{U} -small simplicies. That is, $C^{\mathcal{U}}_{n}(X)$ is the free Abelian group generated by the *n*-simplicies σ for which $\sigma \subseteq U$ for some $U \in \mathcal{U}$. The **locality theorem for** homology states that

$$H_n(C_{\bullet}^{\mathcal{U}}(X)) \cong H_n(C_{\bullet}(X)) =: H_n(X)$$

Let $C^{\bullet}_{\mathcal{U}}(X)$ be the cochain complex of $C^{\mathcal{U}}_{\bullet}(X)$. We claim that the **locality theorem for cohomology** gives the following ring isomorphism

$$H^{\bullet}(C^{\bullet}_{\mathcal{V}}(X)) \cong H^{\bullet}(C^{\bullet}(X)) =: H^{\bullet}(X)$$

The universal coefficient theorem for cohomology for the cochain $C^{\bullet}_{\mathcal{Y}}(X)$ gives the split short exact sequence

$$0 \longrightarrow \operatorname{Ext}^1_{\mathbb{Z}}(H_{n-1}(C^{\mathcal{U}}_{\bullet}(X)),\mathbb{Z}) \longrightarrow H^n(C^{\bullet}_{\mathcal{U}}(X)) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(H_n(C^{\mathcal{U}}_{\bullet}(X)),\mathbb{Z}) \longrightarrow 0$$

Using the locality theorem $H_k(C^{\mathcal{U}}_{\bullet}(X)) \cong H_k(X)$ and 5-lemma, we have the group isomorphism $H^n(C^{\bullet}_{\mathcal{U}}(X)) \cong H_k(X)$ needs commutativity, which belows from notivality of $H^n(X)$ for each $n \in \mathbb{N}$.

Next we consider the cup product structure on $H^{\bullet}(C_{\mathcal{Y}}^{\bullet}(X))$. From the universal coefficient theorem, the inclusion of $C^{\mathcal{U}}_{\bullet}(X)$ into $C_{\bullet}(X)$ induces the isomorphism $\varphi: H^n(C^{\bullet}_{\mathcal{U}}(X)) \cong H^n(X)$. So by the functoriality of the cup product,

 $\varphi(\alpha \smile \beta) = \varphi(\alpha) \smile \varphi(\beta)$ for any $\alpha \in H^i(C^{\bullet}_{\mathcal{U}}(X))$ and $\beta \in H^j(C^{\bullet}_{\mathcal{U}}(X))$. Hence the group isomorphism $H^{\bullet}(C^{\bullet}_{\mathcal{U}}(X)) \cong H^{\bullet}(X)$ is indeed a ring isomorphism.

Last rest impraise.

Question 7

Show that $S^2 \times S^2$ and $\mathbb{C}P^2 \# \overline{\mathbb{C}P^2}$ have the same homology but have a different cup product on cohomology, where $\overline{\mathbb{C}P^2}$ is $\mathbb{C}P^2$ with opposite orientation.

(Hint. Compare quadratic forms associated to the symmetric bilinear form $H^2 \times H^2 \to H^4$.)

Explain why this argument does not work if we use \mathbb{R} -coefficients.

Proof. The homology groups for S^2 are given by

$$H_n(S^2) \cong \begin{cases} \mathbb{Z}, & n = 0, 2 \\ 0, & \text{otherwise} \end{cases}$$

By Künneth's Theorem, $H_n(S^2 \times S^2) \cong \bigoplus_{i+j=n} (H_i(S^2) \otimes H_j(S^2))$. Hence the homology groups for $S^2 \times S^2$ are given by

$$H_n(S^2 \times S^2) \cong \begin{cases} \mathbb{Z}, & n = 0, 4 \\ \mathbb{Z}^2, & n = 2 \\ 0, & \text{otherwise} \end{cases}$$

Since $\mathbb{C}P^2$ is compact connected orientable 4-manifolds, By Question 3, we have

$$H_n(\mathbb{C}P^2 \# \overline{\mathbb{C}P^2}) \cong \begin{cases} \mathbb{Z}, & n = 0,4\\ H_n(\mathbb{C}P^2) \oplus H_n(\overline{\mathbb{C}P^2}), & 1 \leq n \leq 3\\ 0, & \text{otherwise} \end{cases}$$

By Question 5 of Sheet 3, we know that

$$H_n(\mathbb{C}P^2) = \begin{cases} \mathbb{Z}, & n = 0, 2, 4 \\ 0, & \text{otherwise} \end{cases}$$

Hence

$$H_n(\mathbb{C}P^2 \# \overline{\mathbb{C}P^2}) \cong \begin{cases} \mathbb{Z}, & n = 0, 4 \\ \mathbb{Z}^2, & n = 2 \\ 0, & \text{otherwise} \end{cases}$$

The two spaces have the same homology groups.

Next we compute the **intersection forms** on these 4-manifolds. Since the homology groups above are all free, Poincaré duality gives non-degenerate symmetric bilinear forms

$$I: H^{2}(X) \times H^{2}(X) \longrightarrow \mathbb{Z}$$
$$(\alpha, \beta) \longmapsto \langle [X], \alpha \smile \beta \rangle$$

For simplicity we write $X := S^2 \times S^2$ and $Y := \mathbb{C}P^2 \# \overline{\mathbb{C}P^2}$.

For $X = S^2 \times S^2$, $H^2(S^2 \times S^2) \cong H_2(S^2 \times S^2)^{\vee}$ be universal coefficient theorem. We note that $H_2(S^2 \times S^2)$ is generated

by $\alpha := [S^2] \otimes 1$ and $\beta := 1 \otimes [S^2]$. Then $H_2(S^2 \times S^2)^{\vee} = \mathbb{Z}\alpha^{\vee} \oplus \mathbb{Z}\beta^{\vee}$. We have $[X] = [S^2] \otimes [S^2] = \alpha \times \beta \in H_4(X)$. Then

$$[X] \cap \alpha^{\vee} = (\alpha \times \beta) \cap \alpha^{\vee} = \beta, \qquad [X] \cap \beta^{\vee} = \alpha$$

Hence the intersection form on X

$$I(\alpha^{\vee}, \alpha^{\vee}) = \langle [X] \smallfrown \alpha^{\vee}, \alpha^{\vee} \rangle = \langle \beta, \alpha^{\vee} \rangle = 0, \qquad I(\beta^{\vee}, \beta^{\vee}) = \langle \alpha, \beta^{\vee} \rangle = 0, \qquad I(\alpha^{\vee}, \beta^{\vee}) = \langle \beta, \beta^{\vee} \rangle = 1$$

It has Gram matrix M_X with respect to the basis $\{\alpha^{\vee}, \beta^{\vee}\}\$ of $H^2(X)$:

$$M_X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \checkmark$$

For $Y = \mathbb{C}P^2 \# \overline{\mathbb{C}P^2}$, from Question 3 we know that $H^2(Y) \cong H^2(\mathbb{C}P^2) \oplus H^2(\mathbb{C}P^2) =: \mathbb{Z}\underline{\mu} \oplus \mathbb{Z}v$ and that $\mu \smile \nu = 0 \in H^4(Y)$. From the cup product structure on $\mathbb{C}P^2$, we know that $\mu \smile \mu = [\mathbb{C}P^2] = -[\overline{\mathbb{C}P^2}] = -\nu \smile \nu$. Hence the intersection form on Y has Gram matrix

$$M_Y = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \checkmark$$

We note that M_X and M_Y are not congruent in $M_{2\times 2}(\mathbb{Z})$. We can verify this by brute computation. Suppose that $P^\top M_Y P = M_X$ for some $P \in M_{2\times 2}(\mathbb{Z})$. Then

$$P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies a^2 + c^2 = 0 \text{ and } b^2 + d^2 = 0 \implies P = 0$$

which is impossible. In particular, the intersection forms on X and Y are distinct. Therefore $H^{\bullet}(S^2 \times S^2)$ and $H^{\bullet}(\mathbb{C}P^2 \# \overline{\mathbb{C}P^2})$ are not isomorphic as cohomology rings.

The argument fails for \mathbb{R} -coefficients, because M_X and M_Y are congruent in $M_{2\times 2}(\mathbb{R})$. By Sylvester's law of inertia, the congruent classes in $M_{2\times 2}(\mathbb{R})$ can be classified by the signature. Both M_X and M_Y have eigenvalues ± 1 , and hence the signature $\sigma(X) = \sigma(Y) = 0$.

Question 8

- a) Let *W* be a compact oriented (n+1)-manifold with boundary $M = \partial W$. Prove that $\chi(M) = 2\chi(W)$ if *n* is even.
- b) Can $\mathbb{R}P^2$ arise as the boundary of a compact 3-manifold?

Proof. a) The pair (W, M) induces the long exact sequence of relative homology

$$\cdots \longrightarrow H_k(M) \longrightarrow H_k(W) \longrightarrow H_k(W,M) \longrightarrow H_{k-1}(M) \longrightarrow \cdots$$

Since W is compact oriented with boundary M, by Poincaré-Lefschetz duality, $H_k(W, M) \cong H^{n+1-k}(W)$. We can take the alternating sum of the rank of the groups in the long exact sequence:

$$\sum_{k=0}^{n+1} (-1)^k \operatorname{rank} H_k(M) - \sum_{k=0}^{n+1} (-1)^k \operatorname{rank} H_k(W) + \sum_{k=0}^{n+1} (-1)^k \operatorname{rank} H^{n+1-k}(W) = 0$$

By universal coefficient theorem, rank $H^{n+1-k}(W) = \operatorname{rank} H_{n+1-k}(W)$. Since n is even, we obtain that

$$\sum_{k=0}^{n+1} (-1)^k \operatorname{rank} H_k(M) - 2 \sum_{k=0}^{n+1} (-1)^k \operatorname{rank} H_k(W) = 0$$

By definition of Euler characteristic, we have $\chi(M) = 2\chi(W)$ as required.

b) The homology groups of $\mathbb{R}P^2$ are given by

$$H_n(\mathbb{R}P^2) = \begin{cases} \mathbb{Z}, & n = 0 \\ \mathbb{Z}/2, & n = 1 \\ 0, & \text{otherwise} \end{cases}$$

Hence $\chi(\mathbb{R}P^2) = \sum_{n=0}^{\infty} (-1)^n \operatorname{rank} H_n(\mathbb{R}P^2) = 1$. If $\mathbb{R}P^2 = \partial X$, then by (a) $\chi(X) = 1/2$, which is impossible. Hence $\mathbb{R}P^2$ is not the boundary of a compact oriented 3-manifold.

Question 9. Borsuk-Ulam Theorem

Prove that if $f: S^n \to S^n$ is an odd map (f(-x) = -f(x)) then deg f is odd. Deduce that if $g: S^n \to \mathbb{R}^n$ then there exists $x \in S^n$ with g(x) = g(-x).

Hints: f induces a map $\overline{f}: \mathbb{R}P^n \to \mathbb{R}P^n$. Show that $\overline{f}: H_1(\mathbb{R}P^n) \to H_1(\mathbb{R}P^n)$ is an isomorphism (recall that $H_1(\mathbb{R}P^n) \cong \mathbb{Z}/2$ is generated by any path in S^n from a point x to -x), deduce that \overline{f}^* is an isomorphism on $H^{\bullet}(\mathbb{R}P^n; \mathbb{Z}/2)$.

To show that deg f is odd, it suffices to show $H_n(S^n; \mathbb{Z}/2) \to H_n(S^n; \mathbb{Z}/2)$ sends $[S^n] \mapsto [S^n]$ (hint. universal coefficient theorem). Consider "transfer map" $C_{\bullet}(\mathbb{R}P^n; \mathbb{Z}/2) \to C_{\bullet}(S^n; \mathbb{Z}/2)$: simgular simplex $(\sigma : \Delta^n \to \mathbb{R}P^n) \mapsto \widetilde{\sigma} + a \circ \widetilde{\sigma} =$ (sum of possible "lifts" of σ to S^n). Show that it is functorial with respect to f and then consider the fundamental class $[\mathbb{R}P^n]$ over $\mathbb{Z}/2$.

<u>Application:</u> show that there are two antipodal points on the Earth's surface with the same temperature and barometric pressure.

Proof. • An odd map $f: S^n \to S^n$ has odd degree.

 $f: S^n \to S^n$ induces the map $\overline{f}: \mathbb{R}P^n \to \mathbb{R}P^n$. Let $\sigma \in H_1(\mathbb{R}P^n)$ be a 1-simplex which is a path from x to f(x). The push-out $\overline{f}_*: H_1(\mathbb{R}P^n) \to \mathbb{R}P^n$ sends a 1-simplex σ to $\overline{f}_*(\sigma)$, which is non-zero in $H_1(\mathbb{R}P^n)$, as it is a path from f(x) to -f(x). Hence \overline{f}_* is an isomorphism on $H_1(\mathbb{R}P^n)$. The same argument shows that \overline{f}_* is an isomorphism on $H_1(\mathbb{R}P^n; \mathbb{Z}/2)$.

Let $\tau: C_{\bullet}(\mathbb{R}P^n; \mathbb{Z}/2) \to C_{\bullet}(S^n; \mathbb{Z}/2)$ be the transfer map, which sends a simplex to the sum of its two distinct lifts in S^n . We have a short exact sequence of chain complexes:

$$0 \longrightarrow C_{\bullet}(\mathbb{R}P^n; \mathbb{Z}/2) \stackrel{\tau}{\longrightarrow} C_{\bullet}(S^n; \mathbb{Z}/2) \stackrel{\pi}{\longrightarrow} C_{\bullet}(\mathbb{R}P^n; \mathbb{Z}/2) \longrightarrow 0$$

This induces a long exact sequence of homology groups

$$\cdots \longrightarrow H_k(S^n; \mathbb{Z}/2) \xrightarrow{\pi_k} H_k(\mathbb{R}P^n; \mathbb{Z}/2) \xrightarrow{\delta_k} H_{k-1}(\mathbb{R}P^n; \mathbb{Z}/2) \xrightarrow{\tau_{k-1}} H_{k-1}(S^n; \mathbb{Z}/2) \longrightarrow \cdots$$

It is easy to check that f and \overline{f} induce a morphism from the short exact sequence to itself:

$$0 \longrightarrow C_{\bullet}(\mathbb{R}P^{n}; \mathbb{Z}/2) \xrightarrow{\tau} C_{\bullet}(S^{n}; \mathbb{Z}/2) \xrightarrow{\pi} C_{\bullet}(\mathbb{R}P^{n}; \mathbb{Z}/2) \longrightarrow 0$$

$$\downarrow \overline{f}_{\star} \qquad \qquad \downarrow f_{\star} \qquad \qquad \downarrow \overline{f}_{\star}$$

$$0 \longrightarrow C_{\bullet}(\mathbb{R}P^{n}; \mathbb{Z}/2) \xrightarrow{\tau} C_{\bullet}(S^{n}; \mathbb{Z}/2) \xrightarrow{\pi} C_{\bullet}(\mathbb{R}P^{n}; \mathbb{Z}/2) \longrightarrow 0$$

By functoriality of the long exact sequence, we have

$$\cdots \longrightarrow H_{k}(S^{n}; \mathbb{Z}/2) \xrightarrow{\pi_{k}} H_{k}(\mathbb{R}P^{n}; \mathbb{Z}/2) \xrightarrow{\delta_{k}} H_{k-1}(\mathbb{R}P^{n}; \mathbb{Z}/2) \xrightarrow{\tau_{k-1}} H_{k-1}(S^{n}; \mathbb{Z}/2) \longrightarrow \cdots$$

$$\downarrow f_{*} \qquad \qquad \downarrow \overline{f}_{*} \qquad \qquad \downarrow \overline{f}_{*} \qquad \qquad \downarrow f_{*}$$

$$\cdots \longrightarrow H_{k}(S^{n}; \mathbb{Z}/2) \xrightarrow{\pi_{k}} H_{k}(\mathbb{R}P^{n}; \mathbb{Z}/2) \xrightarrow{\delta_{k}} H_{k-1}(\mathbb{R}P^{n}; \mathbb{Z}/2) \xrightarrow{\tau_{k-1}} H_{k-1}(S^{n}; \mathbb{Z}/2) \longrightarrow \cdots$$

For $1 \le k \le n-1$, we have $H_k(S^n; \mathbb{Z}/2) = 0$. Then δ_k is an isomorphism. In each commutative square:

$$\begin{array}{ccc} H_k(\mathbb{R}P^n;\mathbb{Z}/2) & \stackrel{\cong}{\longrightarrow} & H_{k-1}(\mathbb{R}P^n;\mathbb{Z}/2) \\ \hline \overline{f}_* & & & & \downarrow \overline{f}_* \\ H_k(\mathbb{R}P^n;\mathbb{Z}/2) & \stackrel{\cong}{\longrightarrow} & H_{k-1}(\mathbb{R}P^n;\mathbb{Z}/2) \end{array}$$

We can use induction to prove that $\overline{f}_*: H_k(\mathbb{R}P^n; \mathbb{Z}/2) \to H_k(\mathbb{R}P^n; \mathbb{Z}/2)$ is an isomorphism for $1 \le k \le n-1$.

For k = n, we have

$$0 \longrightarrow H_{n}(\mathbb{R}P^{n}; \mathbb{Z}/2) \xrightarrow{\tau_{n}} H_{n}(S^{n}; \mathbb{Z}/2) \xrightarrow{\pi_{n}} H_{n}(\mathbb{R}P^{n}; \mathbb{Z}/2) \xrightarrow{\delta_{n}} H_{n-1}(\mathbb{R}P^{n}; \mathbb{Z}/2) \longrightarrow 0$$

$$\downarrow \overline{f}_{*} \qquad \qquad \downarrow f_{*} \qquad \qquad \downarrow \underline{f}_{*} \qquad \qquad \downarrow \underline{f}_{*}$$

$$0 \longrightarrow H_{n}(\mathbb{R}P^{n}; \mathbb{Z}/2) \xrightarrow{\tau_{n}} H_{n}(S^{n}; \mathbb{Z}/2) \xrightarrow{\pi_{n}} H_{n}(\mathbb{R}P^{n}; \mathbb{Z}/2) \xrightarrow{\delta_{n}} H_{n-1}(\mathbb{R}P^{n}; \mathbb{Z}/2) \longrightarrow 0$$

We note that $\pi: S^n \to \mathbb{R}P^2$ is a 2-fold covering map. Hence the induced map $\pi_n: H_n(S^n; \mathbb{Z}/2) \to H_n(\mathbb{R}P^2; \mathbb{Z}/2)$ is zero. We can split the diagram above into two commutative squares:

$$H_{n}(\mathbb{R}P^{n}; \mathbb{Z}/2) \xrightarrow{\cong} H_{n}(S^{n}; \mathbb{Z}/2) \qquad H_{n}(\mathbb{R}P^{n}; \mathbb{Z}/2) \xrightarrow{\cong} H_{n-1}(\mathbb{R}P^{n}; \mathbb{Z}/2)$$

$$\downarrow \overline{f}_{*} \qquad \qquad \downarrow f_{*} \qquad \qquad \downarrow \overline{f}_{*} \qquad \qquad \downarrow \cong$$

$$H_{n}(\mathbb{R}P^{n}; \mathbb{Z}/2) \xrightarrow{\cong} H_{n}(S^{n}; \mathbb{Z}/2) \qquad H_{n}(\mathbb{R}P^{n}; \mathbb{Z}/2) \xrightarrow{\cong} H_{n-1}(\mathbb{R}P^{n}; \mathbb{Z}/2)$$

Then $\overline{f}_*: H_n(\mathbb{R}P^n; \mathbb{Z}/2) \to H_n(\mathbb{R}P^n; \mathbb{Z}/2)$ and $f_*: H_n(S^n; \mathbb{Z}/2) \to H_n(S^n; \mathbb{Z}/2)$ are isomorphisms.

Finally, by universal coefficient theorem for homology, we have the short exact sequence

$$0 \longrightarrow H_n(S^n) \otimes_{\mathbb{Z}} \mathbb{Z}/2 \longrightarrow H_n(S^n; \mathbb{Z}/2) \longrightarrow \operatorname{Tor}_1^{\mathbb{Z}}(H_{n-1}(S^n); \mathbb{Z}/2) \longrightarrow 0$$

It is clear that $\operatorname{Tor}_1^{\mathbb{Z}}(H_{n-1}(S^n))=0$. Then we have the natural isomorphism $H_n(S^n;\mathbb{Z}/2)\cong H_n(S^n)\otimes_{\mathbb{Z}}\mathbb{Z}/2$. By functoriality, we have a commutative diagram

$$H_n(S^n) \otimes_{\mathbb{Z}} \mathbb{Z}/2 \longrightarrow H_n(S^n; \mathbb{Z}/2)$$

$$\deg f \otimes \operatorname{id} \qquad \qquad \downarrow f_*$$

$$H_n(S^n) \otimes_{\mathbb{Z}} \mathbb{Z}/2 \longrightarrow H_n(S^n; \mathbb{Z}/2)$$

The map $H_n(S^n) \otimes_{\mathbb{Z}} \mathbb{Z}/2 \to H_n(S^n) \otimes_{\mathbb{Z}} \mathbb{Z}/2$ given by multiplication by deg f is non-zero. Hence we conclude that deg f is odd.

• Proof of Borsuk-Ulam Theorem.

Let f(x) = g(x) - g(-x). Suppose that for all $x \in S^n$, $f(x) \neq 0$. Then $h(x) := f(x)/\|f(x)\|$ is a odd map from S^n to $S^{n-1} \subseteq S^n$. The restriction $h|_{S^{n-1}}: S^{n-1} \to S^{n-1}$ has odd degree by the previous result. But $h|_{S^{n-1}}$ is null-homotopic. This is a contradiction. Hence there exists $x \in S^n$ such that g(x) = g(-x).

• There are two antipodal points on the Earth's surface with the same temperature and barometric pressure.

Let $(p, T): S^2 \to \mathbb{R}^2$ represents the temperature and pressure (as scalar fields) on the Earth's surface. By Borsuk-Ulam Theorem, there exists $x \in S^2$ such that (p(x), T(x)) = (p(-x), T(-x)). So x and -x are a pair of antipodal points on the Earth's surface that have the same T and p.

Question 10

A **good cover** of a manifold is an open cover $\{U_i\}$ such that $U_i \cong \mathbb{R}^n$ and $U_{i_1} \cap \cdots \cap U_{i_k} \cong \mathbb{R}^n$ or \emptyset for all $i_1, ..., i_k, k$.

Fact/Example: Smooth manifolds always admit a good cover.

Prove that any manifold *M* which admits a finite good cover has finitely generated homology groups.

Proof. We use induction on k.

- Base case: Suppose that $M \cong \mathbb{R}^n$. Then M is contractible, with zero homology groups.
- Induction case: Suppose that for any manifold M that admits a good cover of cardinality at most k-1, $H_m(M)$ is finitely generated for each $m \in \mathbb{N}$.

Now suppose that M admits a good cover $\{U_1,...,U_k\}$. Let $N:=U_1\cup\cdots\cup U_{k-1}$. By induction hypothesis, N and $N\cap U_k=(U_1\cap U_k)\cup\cdots\cup(U_{k-1}\cap U_k)$ have finitely generated homology groups. The Mayor-Vietoris sequence for homology is given by

$$\cdots \longrightarrow H_m(N \cap U_k) \longrightarrow H_m(N) \oplus H_m(U_k) \longrightarrow H_m(M) \longrightarrow H_{m-1}(N \cap U_k) \longrightarrow \cdots$$

 U_m is contractible and has zero homology groups for m > 0. Then by the following lemma we know that $H_m(M)$ is finitely generated. This completes the induction.

Lemma 1

Let *R* be a principal ideal domain. Suppose that the sequence of *R*-modules $A \xrightarrow{f} B \xrightarrow{g} C$ is exact at *B*. If *A* and *C* are finitely generated, then so is *B*.

Proof. Let $\{a_1,...,a_n\} \subseteq A$ generates A. Then $\{f(a_1),...,f(a_n)\}$ generates im f. By exactness and the first isomorphism theorem, we have

$$\frac{B}{\langle f(a_1), ..., f(a_n) \rangle} \cong \operatorname{im} g$$

Since C is finitely generated and im g is a submodule of C, im g is also finitely generated (Question 6 of Sheet 3 of C2.2 Homological Algebra). Suppose that im g ir generated by $\{c_1, ..., c_m\} \subseteq C$. Then B is generated by $\{f(a_1), ..., f(a_n), b_1, ..., b_m\}$, where $b_i \in h^{-1}(c_i)$ and h is the composite map $B \longrightarrow B/\operatorname{im} f \longrightarrow \operatorname{im} g$.

We conclude that every manifold that admits a finite good cover has finitely generated homology groups.

perfect