Peize Liu
St. Peter’s College
University of Oxford

Problem Sheet 4

C3.1: Algebraic Topology

25 December, 2020



Convention: All spaces are topological spaces. Maps of spaces are always continuous.

Question 1
a) For M an oriented closed connected n-manifold, prove that
* H'(M)= Z;
e H,_1(M) has no torsion;
* There exists a generator wy € H" (M) with @y ([M]) = 1.
(You may use Poincaré duality and universal coefficients theorems.)
b) For M, N oriented closed connected n-manifolds, and f : M — N, prove that
fre H"(N) —— H"(M)
wy+H———>degf -wy

c) Let f:S8" — T", n=2. Prove that deg f = 0. Construct a map 7" — S” of non-zero degree.

Proof. a) Since M is an oriented compact connected n-manifold, by Poincaré duality, H kv = H, i (M)for0< k<n.
* H"(M) = Hy(M) = Z; \/

e H,_;(M) = H'(M). By universal coefficient theorem for cohomology, we have a split short exact se-
queye
/ 0 — Ext}(Ho(M),Z) — H'(M) — Homgz(H;(M),Z) — 0
Note that Ext}, (Ho(M),Z) = Ext},(Z,Z) = 0. We have H' (M) = Homz (H, (M), Z). We know that dualisa-
tion kills torsion. More specifically, suppose that n € Z\ {0} and ¢ € Homz(H; (M), Z) \ {0} are such that

ng = 0. We take x € H; (M) \ {0} such that ¢(x) # 0. Then n(p(x)bﬁo sin(i% is an integral domain. This
is a contradiction. We conclude that H,,_; (M) = H} (M) is torsion-free.

* By universal coefficient theorem for cohomology, we have a split short exact sequence
0— EXt%(Hn—l(M)’Z) — H"(M) — Homgz(H,(M),Z) — 0

Since M is compact, the homology group H,_;(M) is finitely generated.” We have proven that it is
torsion-free. Then by the structure theorem for finitely generate? Abelian groups, H,_;(M) = Z* for
some k. In particular H,_ (M) is free. Hence ExtIZ(Hn_l (M),Z) =0. Wehave H" (M) = Homz(H,,(M), 7). \/
Since [M] generates H, (M), there exists wys € H" (M) such that wp;([M]) = 1.

b) We have H,(M)Y = H"(M), and w), is a dual basis of [M]. Then f* : H"(N) — H"(M) is the dual map of

[t Hy(M) — Hyp(N), [M] — deg f - [N]. Then by linear algebra we have f*: wy— de%{-wM. W
pob v 00 5 R WUAQI\S % Sevp \
c) Since T" = S! x --- x S!, By Kiinneth Theorem, we have the following group isomorphism, which is also a

ring homorphism into H*(T").
n ~
QH' (") ———— H(T™
i=1
e1®---®e, |_> p;‘(el) N vp;‘l(en)
viou
where p;‘ : H(SY) — HY(T") is the pull-back df the projection p; : T" — st

Consider f:S" — T". The pull-back f*: H*(T") — H*(S") is a ring homomorphism. Then

f*(piten) - pylen) = f*piler) =+~ [ pylen)



Note that each f* p; (e;) € H'(8™) = 0. So we must han/* (p3(e1) - pr(en) =0. Since pj(ey) — -+~
pn(en) generates H"(T"), we conclude that deg f = 0.

Finally we construct amap f: T" — S” with non-zero degree. Choose p € T". Since T" is a manifold, there
exists a neighbourhood U < T" of p such that U = D". Consider the quotient map

f:T"=T"I(T"\U)=S"

We claim that f : H,(T") — Hy,(S™) is a isomorphism, and hence have degree#l. Consider the long exact
sequence of relative homology

0 —> Hu(T"\U) —> Hup(T™) ﬁ) Hy(T", T"\ U) i) Hy o (T"\U) — -

Note that T"\U = S'v---vS! (view T" as I" with edge identifications, and retract T" \ U onto the edges). So
Hy(T"\U)=0and H,_(T"\U) =0 (n=3). Then p,: H,(T") — H,(T", T" \ U) is an isomorphism. Since
(T", T™\ U) is a good pair, we have another isomorphism ¢ : H,(T", T"\U) — H,(T"/(T"\ U)) = H,(8™).
The composite p; o = f.. This proves that f, is an isomorphism. ?@ ( _F e } O

Question 2
Show that any matrix A € M}, ,(Z) definesamap f: T" — T" on the n-torus T"=R"/Z" = S! x ... x S,
Describe f, : H1 (T) — H;(T) in terms of explicit generators. Show that deg f = det A€ Z.

Cutural Remark. Any Lie group homomorphism ¢ : T" — T" gives rise to such a Lie algebra homomorphism D; ¢ :
R — R" such that D¢ 7n = A.

v/

Proof. Let q:R" — (R/Z)" = R"/Z" be the quotient map. Then go A:R" — R"*/Z". For any v € Z", as Av € Z", then
go Av =0. Hence go Ainduces amap A:R"/Z" — IR”‘/%/’. A can be viewed as an endomorphism on the n-torus

T". ‘ Yo wpps T —2 oyt corda ok Lot
W () Par g e v b= L /2 4 U e
~] Letey,..., e, be the generat\?rs of each S!. Their representatives in R” form a basis of R”. We know that H,(T") =
T/*{ ? 7" by Kiinneth's Theorem. ey, ...,e,; € H(T") in fact form a basis of H;(T"). The map f. : Hi(T") — H (T") is
Z

s given by e; — Ae; € Hi(T").
€, >

(0~ ,W@m/the lectures, we know that H" (T") is generated by pj (e;) A---A p;‘;(en)E/Then f*:HY(T" — H"(T") isgiven
by pi(e1) A--- A py(en) — py (Aer) A--- A pj(Aey). By the definition of determinant,
3

A - NA *(Aep) A+ Apr(Ae
.{LQUOuJ) det A< erN-A en:l?l(>k 1) P,:( n):degf
RS annenh pie) A Apyen

t?j\\ow Q\M e ek I'\DLroSr\\OV\

O

Question 3

a) For M, N compact connected orientable n-manifolds, prove that M # N is also a compact connected ori-
entable n-manifold, and that

H.(M#N)=H.(M)® H.(N) forl<se<n-1
b) Formulate and prove such an isomorphism on cohomology, as a ring isomorphism.

¢) What can you say about the case » = n, and cup products of H*(M), H*(N) classes that land in H" (M # N)?

d) Deduce what H.(Zg), x(Z¢) and the ring H'(Z ¢) are, for the genus g surface Zg.



Proof.

nWE
\N.;J
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~ \
a) The connected sum can be defined in the following way. Choose x€ M and y€ N. Let U € M and V € N be

charts containing x and y respectively. We can identify U and 8V via U = $"~! = gV. Then we define the

connected sumtobe M#N:=(M\U)uU (N\V))/ (U ~9oV).

It is clear from definition that M # N is connected and compact (being the quotient of a compact space).

M# N is orientable, as we can pick an isg m( Jphlsm 0U =9V such th t the lpcal ori tatlons on them agree.
pleo o Pk N = & pannitto UStney collar nexg *obur
LetU'bea nelghbourhood of U in M and V' be a neighbourhood of V in N. Consider A := (M \D)u (V'\V)

and B = (N\ V)uU (U’'\ U) as subspaces of M# N. Then M# N = A° U B°. The Mayor-Vietoris sequence is
given by

- — Hiy(AnB) — Hi(A)® Hi(B) — Hi(M#N) —> Hi_,(AnB) — ---

mfx NB=S8""1 Then Hi.(AnB) =0 for k < n—2. In such case, we have Hy.(M# N) = Hi.(A) ® Hi.(B)
N~
from the long exact sequence. (V4

We have M = Au, D", where ¢ identifies dD" = §"~1 with V’. From Question 6 of Sheet 3, we have Hj.(A) =
Hi(M)fork<n —%./Similarly H(B) = Hi(N). Hence Hi (M #N) = Hi(M)® H.(N)forl1<k<n-2. \/

For k = n—1, since M and N are orientable, we use Poincaré duality: H,,_;(M#N) = H'(M#N), H,_1(M) =
H'(M), and H,,_1(N) = H'(N). Using the cohomology version of Mayer-Vietoris sequence we can prove
that H' (M # N) = H' (M) @ H'(N), /Hence H,_1(M#N) = H,_, (M) & H,_(N). This concludes the proof a\

b) We have a group isomorphism at each grading of the cohomology ring: Hove's
AN sgme.
H*M#N) = H* (M) o H'(N), 1<k<n-1 it ww({y

"Wvolied

which is proven by the same Mayer-Vietoris technique. The cup product is computed component-wise
for 1 < k+¢ < n—1. That is, for (ay, Br) € H*(M) @ H*(N) = H*(M# N) and (a,, B,) € H’ (M) & H!(N) =
H*(M#N),

(@, Br) ~ (g, Be) = (@r ~ ag, B~ Bo) € H (M) @ HE Y (N) = H* (M # N)\/

c) Atdegree n, the good pair (M # N, s gives the long exact sequence
. —— HvYsYy — S HP(M#N,S8" Yy —— H'(M#N) —> 0
Note that H*(M#N,S" )= H*(M#N/S" )= H*(M v N) = H*(M) ® H"(N).

Since H"(M) @ H"(N) = 7%, H"(M # N) = Z, the map H"(M) @ H"(N) — H"(M#N) is given by (wy,0) —
wyy and (0,wy) — wM#AVTherefore, for k+¢ = n, (ay, Br) € H*(M# N) and (ay, B¢) € H! (M # N), we have

7 VWO
(@, Br) ~ (ag, Be) = ag~ ap+ i~ Bre H'(M#N) ca &Q\Lj e
The rings H* (M # N) and H* (M) x H*(N) are certainly not isomorphic.

d) From the lectures and previous problem sheets, we know that for X; = T?,

Z, n=0 Z, n=0

ZZ, n=1 Zz, n=1

H,(T2) = . H'(TH)= ‘/
Z, n=2 Z, n=2
0, otherwise 0, otherwise



Since Zg = T2 #---# T2, inductively we have

Z, n=0 \/ Z, n=0 \/

_|z?8, n=1 noe 7%, n=1
Hy(Zg) = ) H"(Zg) =
Z, n=2 Z, n=2
0, otherwise 0, otherwise
The Euler characteristic -
PIOBE 0(—1)"ranan(Zg) =2-2g \/
n=

Let a;, b; be the generators of H'(T?) for i = 1,...,g. Then H'(Zg) is generated by ai, by, ..., ag, bg, with the
cup product structure

aj~a;=0, bi~b;j=0, ai~bj=0, alvbl=-~-=agvbggeneratest(Zg)EZ

This completely describes the ring structure of H*(Zg). O

Question 4
a) Verify that Ext},(Z; G) = 0 and Ext},(Z/d; G) = G/dG for any Abelian group G.
b) Use the universal coefficients theorem to compute H*(RP3;Q/Z).
c) Compute H,CW([RPE";@/ Z) and H(‘:W(IR{P3 ;Q/27) directly.

d) We typically expect the torsion of H. to move up by 1 in H*. How come that failed in (c)?

Proof. a) Since Z is free, it is projective, and the functor Homyz(Z, —) is exact. Then the right derived functors
Ext¥(Z,-) := R*Homz(Z,-) = 0 for k > 1. In particular Ext},(Z, G) = 0.
The following exact sequence is a free resolution of Z/d:

0 vz 457 s Z/d so U

Applying the functor Homyz (-, G) to the unaugmented chain:

0 Homz(Z,G) -4 Homz(Z.G) — 0
As Homyz(Z, G) = G, after taking cohomology we obtain that
{geG:dg=0}, k=0 \/

ExtS(Z/d,G) =1 GIdG, k=1

0, otherwise

b) The universal coefficient theorem for cohomology:
0 — Exty(Hp-1(RP%);Q/Z) — H"(RP%Q/Z) — Homgz(H,RP*),Q/Z) — 0

Note that Q/Z is an injective Z-module (since it is divisible),”and hence is an acyclic object with respect
to the left exact functor Homz (Hp,—1 (RP®), ). The extension module Ext}, (H,—1 (RP%); Q/Z) = 0. Hence we
have

H"(RP3;Q/Z) = Homyz (H,([RP%),Q/2) L/



It remains to compute the homology groups H,,(RP%). From the computation in Question 5 of Sheet 3, we
know that the cellcular chain complex of RP3 is given by

0—sz7-9y7-2y,7 0,5

Taking homology we have

Z, n=0,3
H,®P*={27/2, n=1
0, otherwise

It is clear that Homz(Z,Q/Z) £ Z. To compute Homz(Z/2,Q/Z), we note that for ¢ € Homz(Z/2,Q/Z), we
must have 2¢(1) = 0 € Homz(Z/2,Q/Z). Hence ¢(1) = 0 or 1/2. We deduce that Homz(Z/2,Q/2Z) = Z/2. In
summary, the cohomology groups are given by \/

Q/Z, n=0,3
H'"RP3Q/2)={27/2, n=1 \/

0, otherwise

c¢) The cellcular chain complex of RP® with coefficients in Q/Z is given by

0 — @1z 23 @1z -2 g1z % @iz

Q/Z, n=0,3 \/

HVY®RPQ/2)=327/2, n=2

Taking the homology we obtain

0, otherwise

Dualising the chain complex and taking the cohomology, we have

Tht LS Q/Z, n=0,3
wlts I/’gﬁm B N mp3. - - \/ Peerk doosv + vaote
v Y H RP%QIZ) =3 2/2, n=1 e Dy s
Heoeet oA,
use iy 0, otherwise -av

" ke, ‘
wk,jfe i, V\;mw& % N_J'\Nﬂou\q %\M Jb{o\ﬂgU{V\MS M&Q‘sa\'\{)\'\ sy LIBY), H@,\,e Gyz \92. uﬁﬂi%%@*’q"

d) The torsion shift holds only if H, (RP3; Q/2) is a finitely generated Z-module for all neN. Butforn=0,

Hy(RP; @/ Q/Z is not 1tely generated as odule.
Y Tedwi osl j{ré \oxsion Y{/\ ety coved qu,g; ‘R Hied 50 & Q"\Dﬂ dere gl wuld be « .

Letme prove this. Suppose that Q/7 is finitely generated. Slnce it is divisible, we have (2), Q/Z = Q/Z. Then
by Nakayama Lemma, there exists n € Z odd, such that nQ)/Z = 0, which is impossible. ‘l’fME“

/ TW Loy L_k_ L’e«;w%.\.,g{'e‘z

Let X be the Moore space M(Z/m,n) = S" U, D"*!, where the attaching map ¢ : 0D"*! = §” — S" has degree m.

Question 5
a) Show that the quotient map X — X/S§" = §"*! is zero on H. but non-zero on H".
b) Deduce that in the universal coefficient theorem the splitting cannot be natural.

Proof. a) The good pair (X, S") induces the long exact sequence of the reduced homology

- — Hi(S™ —> Hip(X) — Hi(S™) —> Hi (8" — -



J J J

Since ﬁk(8”+1) =0fork#n+1,thenqgy=0fork#n+1. But,fork=n+1, ﬁn+1(X) 0 (Question 2 and 8
of Sheet 3) and hence g,+; = 0. This implies that the push»ems of the quotient map g : X — S§™*1 are zero

on the homology groups. Pw &JrUOON’ 2S
Thuoed

Similarly, we have the long exact sequence of the relative cohomology

1 .
s mRNsm O fksn —> R0 5y fksm —s -

For k # n+1, H*(S"*!) = 0 and hence g* = 0. For k = n+ 1, from Question 8 of Sheet 3 we know that
axzzim.

Furthermore, since H"*1(5") = 0, then i* = 0. By exactness at H"*1(X), im g* = ker i* = H"*1(X). In partic-
ular g* # 0. This implies that the pull-back of the quotient map g is non-zero on H**!.

— b) The universal coefficient theorems for cohomology for X and S"*! give split short exact sequences
7<_7§ 0 — Ext}(H,(X),2) —— H"™(X) —— Homgz(Hy41(X),Z2) — 0

‘H“) Jam

0 — Ext}(H,(8"*"),2) — H™'($"*") — Homgz(H,11(S™1),2) — 0

\ * Suppose that the splitting is functorial. Since ﬁnH(X) =0 and f[n(S”“) = 0, we have the commutative
diagram

0 — Bxtl(H,(X),2) —— A™(X) > 0 > 0
* n+1 \L
B\ l“ l" _ p
LW VOO 0 > 0 > H'(S™) — Homgz(Hy41(S™1),2) — 0

Then a =0 and B = 0. Since g"*! # 0, it is impossible that the diagram is commutative. Hence the splitting
in the universal coefficient theor ms 1s not functori \ l_‘{ | O
@’\ \/18 N2

The SES are Luvdaned. Tle splt

Question 6

State and prove a locality theorem for cohomology when viewed as a ring.

(Hint. Naturality of the universal coefficient SES.)

Proof. Let % < 2(X) such that X = Uyey U°. Let CZ (X) be the chain of %-small simplicies. That is, C,? (X) is the
free Abelian group generated by the n-simplicies o for which o < U for some U € %. The locality theorem for
homology states that

Hy(C¥ (X)) = Hy(C. (X)) =t Hy(X)

Let C%z (X) be the cochain complex of C?‘ (X). We claim that the locality theorem for cohomology gives the
following ring isomorphism
H'(Cc}[(X)) EH (C'(X)=H(X)

The universal coefficient theorem for cohomology for the cochain C, (X) gives the split short exact sequence
0 — Ext}(H,-1(C¥ (X)),2) — H"(C},(X)) — Homgz(H,(C¥ (X)),2) — 0

Using the locality theorem Hk(C% (X)) 2 Hi(X) and 5-lemma, we have the group isomorphism H "(C X)) =

H"(X) foreach neN. \/ nweess @WMV\\LS\WV Jn Mw -Q{GM V\,QLU-I‘().Ll \'LQd‘P‘
SES (e UCT
Next we consider the cup product structure on H* (C ° . (X)). From the universal coefficient theorem, the inclusion

of C¥ (X) into C.(X) induces the isomorphism ¢ : H e (Cs, (X)) = H"(X). So by the functorlahty of e cup product,

fﬂ‘“‘

e



pla~— B)=p(a) - @(P) forany a € H"(C%l (X)) and B € Hj(C%Z (X)). Hence the group isomorphism H*(C;, (X)) =
H*(X) is indeed a ring isomorphism. O

Losd @ i PV’U\\SE .

Question 7

Show that S? x S? and CP? # CP? have the same homology but have a different cup product on cohomology, where
CP2 is CP? with opposite orientation.

(Hint. Compare quadratic forms associated to the symmetric bilinear form H? x H> — H*))

Explain why this argument does not work if we use R-coefficients.

Proof. The homology groups for S? are given by

) {Z, n=02  /
Hp(§%) =

0, otherwise

By Kiinneth’s Theorem, H,(§*x 8% = @ (H,- (Sz) ® H;j (Sz)). Hence the homology groups for 2 x §2 are given by

i+j=n

7Z, n=0,4

Hp(S*x $) =472, n=2 /

0, otherwise

Since CP? is compact connected orientable 4-manifolds, By Question 3, we have

Z, n=0,4
Ho(CP*#CP2) ={ H,(CP) & H,(CP?), 1<n<3 ./
0, otherwise
By Question 5 of Sheet 3, we know that
Z, n=0,2,4
H,(CP?) = V4
0, otherwise
Hence
Z, n=0,4
H,(CP*#CP%)={7% n=2 v

0, otherwise
The two spaces have the same homology groups.

Next we compute the intersection forms on these 4-manifolds. Since the homology groups above are all free,
Poincaré duality gives non-degenerate symmetric bilinear forms

I: HHX)x H*(X) ———— Z
(@ f) —— ((XI,a~ B)
For simplicity we write X := S$? x $? and Y := CP? #CP2.

For X = §% x §2, H?(§% x §?) = H,(S* x S?)V be universal coefficient theorem. We note that Hp (5% x S?) is generated



by a:=[$*|®1and f:=1@[S%]. Then Hy(S* x %) =Za" ® Zp". We have [X] = [$?] ® [$] = a x f € Hy(X). Then
(X]~a'=(@xp)~a'=p [XI~p'=a
Hence the intersection form on X
I@',a")=(X]~a",a")=(B,a"y=0, I1(B",p")=(a,p¥)=0, @' p")=(BB")=1

It has Gram matrix M with respect to the basis {a", 8"} of H*(X):
e [0 \/
711 o

For Y = CP?>#CP?, from Question 3 we know that H?(Y) = H?>(CP?)® H?(CP?) =: Zu®Zv and that u —~ v=0¢€

H*(Y). From the cup product structure on CP?, we know that U~ p= [CP?] = —[@] = —v « v. Hence the
intersection form on Y has Gram matrix
(o) S
(g )

We note that Mx and My are not congruent in M., (Z). We can verify this by brute computation. Suppose that
PT My P = My for some P € Myy>(Z). Then

b
P:(z d) = d*+c*=0and V*+d*=0 = P=0 \/

which is impossible. In particular, the intersection forms on X and Y are distinct. Therefore H*(S? x S?) and

H*(CP?#CP?) are not isomorphic as cohomology rings. /

The argument fails for R-coefficients, because Mx and My are congruent in M., (R). By Sylvester’s law of inertia,
the congruent classes in Ms.2(R) can be c\l?iﬁed by the signature. Both My and My have eigenvalues +1, and
hence the signature g (X) = o (Y) =0. O

Question 8
a) Let W be a compact oriented (n+ 1)-manifold with boundary M = dW. Prove that y(M) =2y (W) if nis even.

b) Can RP? arise as the boundary of a compact 3-manifold?

Proof. a) The pair (W, M) induces the long exact sequence of relative homology
oo — Hy(M) — H(W) — Hi(W,M) — Hy (M) — -

Since W is compact oriented with boundary M, by Poincaré-Lefschetz duality, Hi(W, M) = H"*1=F(W). We
can take the alternating sum of the rank of the groups in the long exact sequence: v

n+l n+l1 n+l
Y (~D¥rank Hy (M) - ¥ (-D)Frank Hy (W) + Y (=1)*rank H" 1 *F(w) = 0
k=0 k=0 k=0

By universal coefficient theorem, rank H n+l=k(W) = rank H,,, 1 (W). Since n is even, we obtain that

n+1 n+1
> (-DFrank He (M) -2 Y (-1)* rank Hi.(W) =0
k=0 k=0

By definition of Euler characteristic, we have y (M) = 2y (W) as required. /



b) The homology groups of RP? are given by

Z, n=0
H,®RP*)={7/2, n=1
0, otherwise

Hence )(([R{PZ) = j’l"zo(—l)”ranan(RPz) =1. If RP? = 30X, then by (a) x(X) = 1/2, which is impossible.
Hence RP? is not the boundary of a compact oriented 3-manifold. \/ O

Question 9. Borsuk-Ulam Theorem

Prove that if f:S" — §” is an odd map (f(—x) = —f(x)) then deg f is odd. Deduce that if g : S — R” then there
exists x € §” with g(x) = g(—x).

Hints: f induces amap f :RP"™ — RP". Show that f : H, (RP") — H, (RP") is an isomorphism (recall that H; (RP") =
72 is generated by any path in S” from a point x to —x), deduce that f is an isomorphism on H*(RP";Z/2).

To show that deg f is odd, it suffices to show H,(S";Z/2) — H,(S";Z/2) sends [S"] — [S"] (hint. universal coeffi-
cient theorem). Consider “transfer map” C.(RP"; Z/2) — C.(S"; Z/2): simgular simplex (¢ : A" — RP™") — G+ aod =
(sum of possible “lifts” of o to S™). Show that it is functorial with respect to f and then consider the fundamental
class [RP"] over Z/2.

Application: show that there are two antipodal points on the Earth’s surface with the same temperature and baro-
metric pressure.

Proof. e Anoddmap f: S" — S" has odd degree.

f: 8" — 8" induces the map f: RP" — RP". Let o € H, (RP") be a 1-simplex which is a path from x to f(x).
The push-out 7*: H;(RP™) — RP" sends a 1-simplex ¢ to ?* (o), which is non-zero in H; (RP"), as it is a
path from f(x) to — f(x). Hence f, is an isomorphism on H; (RP"). The same argument shows that f , is an
isomorphism on Hy (RP™;Z/2).

Let7: C.(RP";Z/2) — C.(S"; Z/2) be the transfer map, which sends a simplex to the sum of its two distinct
lifts in S”. We have a short exact sequence of chain complexes:

0 — C.(RP™";Z/2) < C.(8™";212) SELEN C.(RP%2/2) —> 0

This induces a long exact sequence of homology groups

o -
o H(S"212) 5 Hy®PZI2) 55 H o RP7212) TS H o (87212) —
It is easy to check that f and f induce a morphism from the short exact sequence to itself:

0 — C.(RP™Z/2) — C.(8";2/2) —5 C.RP™Z/2) — 0 Y4
|2 I 7.
0 — C.(RP™Z/2) — C.(8";2/2) —5 C.RP™Z/2) — 0
By functoriality of the long exact sequence, we have

1) _
ey Hi(8212) 2K mu®P212) 25y H  ®RP212) 25N B (87212) — -

lf* | lﬂ lﬁ lf*

5 .
ey Hi(85212) 2K mu®PZ12) 25 H ®RPZ12) 2N B (87212) — -



For 1< k<n-1,wehave Hg(S";Z/2) =0. Then § is an isomorphism. In each commutative square:

Hi(RP";Z/2) — Hi_1(RP™Z/2)

.| 7.

HyRP";Z/2) — Hj_1(RP";Z/2)

We can use induction to prove that f, : Hi(RP";Z/2) — Hi(RP";Z/2) is an isomorphism for 1 < k <n—1.

For k = n, we have

0 —— H,RP™Z/2) - H,(5":2/2) s H,®RP™2/2) -2 H, |RP"Z/2) — 0

7. I o 5
0 — H,RP™Z/2) - H,(S"2/2) 2 H,®RP™Z/2) -2 H, |RP"Z/2) — 0

We note that 7 : S — RP? is a 2-fold covering map. Hence the induced map =, : H,(S";Z2/2) — Hy, (RP%;7/2)
is zero. We can split the diagram above into two commutative squares:

H,(RP™Z/2) — H,(S";Z/2) H,(RP";7/2) —— H,_,(RP";Z/2)
[7. % [7. |
H,(RP™;Z/2) — H,(S";Z/2) H,(RP*;Z/2) — H,_1(RP™;Z/2)

Then f* :H,(RP"*7/2) — H,(RP";Z/2) and f, : H,(S";Z/2) — H,(S";Z/2) are isomorphisms.
Finally, by universal coefficient theorem for homology, we have the short exact sequence
0 — Hy(SM®72/2 — Hy(S"%2/2) — Torf (Hp—1(S");2/2) — 0

It is clear that Tor%(Hn_l(S”) = 0. Then we have the natural isomorphism H,(S";Z/2) = H,(S") ®z Z/2. By
functoriality, we have a commutative diagram

H,(SM)®7Z/12 —> H,(S":;7/2)
degf@idl lf*
H,(SM®77Z/12 — H,(S";7/2)

The map H,(S8") ®7Z/2 — H,(S") ®z Z/2 given by multiplication by deg f is non-zero. Hence we conclude
that deg f is odd. Socw( f
* Proof of Borsuk-Ulam Theorem.

Let f(x) = g(x) — g(—x). Suppose that for all x € S, f(x) # 0. Then h(x) := f(x)/|l f(x)| is a odd map from
S" to "1 < §". The restriction h|g.1 : "1 — S has odd degree by the previous result. But h|g.-1 is
null-homotopic. This is a contradiction. Hence there exists x € S” such that g(x) = g(—x).

» There are two antipodal points on the Earth’s surface with the same temperature and barometric pressure.

Let (p,T) : S> — R? represents the temperature and pressure (as scalar fields) on the Earth’s surface. By
Borsuk-Ulam Theorem, there exists x € S2 such that (p(x), T(x)) = (p(=x), T(—=x)). So x and —x are a pair of
antipodal points on the Earth’s surface that have the same T and p. O

Question 10

A good cover of a manifold is an open cover {U;} such that U; ZR"” and U;, n---N Ui, =R" or @ forall iy, ..., i, k.
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Fact/Example: Smooth manifolds always admit a good cover.

Prove that any manifold M which admits a finite good cover has finitely generated homology groups.

Proof. We use induction on k. /

 Base case: Suppose that M = R". Then M is contractible, with zero homology groups.

* Induction case: Suppose that for any manifold M that admits a good cover of cardinality at most k — 1,
H,, (M) is finitely generated for each m € N.

Now suppose that M admits a good cover {Uj, ..., Ug}. Let N := Uy U---U U_;. By induction hypothesis,
Nand Nn Uy = (U NnUg) U---U (Ug-1 N Ug) have finitely generated homology groups. The Mayor-Vietoris
sequence for homology is given by

o —> Hp(NNUy) — Hp(N) @ Hp(Uy) — Hpu(M) — Hp 1 (NNUy) —— -+

U, is contractible and has zero homology groups for m > 0. Then by the following lemma we know that
H,, (M) is finitely generated. This completes the induction.

Lemma 1 l
f g

Let R be a principal ideal domain. Suppose that the sequence of R-modules A — B —— C is exact at B.
If A and C are finitely generated, then so is B.

Proof. Let{ay,...,ay} < A generates A. Then {f(a,),..., f(a,)} generates im f. By exactness and the first isomor-

phism theorem, we have
B

=i
<f(a1);,f(an)>
Since C is finitely generated and im g is a submodule of C, im g is also finitely generated (Question 6 of
Sheet 3 of C2.2 Homological Algebra). Suppose that im g ir generated by {c;, ..., ¢,} < C. Then B is gener-
ated by {f(a1),..., f(an), b1,..., b}, where b; € h~1(c;) and his the compositemap B — B/im f —— img.
O

mg

We conclude that every manifold that admits a finite good cover has finitely generated homology groups. O
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