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Convention: All spaces are topological spaces. Maps of spaces are always continuous.

Question 1

a) For M an oriented closed connected n-manifold, prove that

• H n(M) ∼=Z;

• Hn−1(M) has no torsion;

• There exists a generatorωM ∈ H n(M) withωM ([M ]) = 1.

(You may use Poincaré duality and universal coefficients theorems.)

b) For M , N oriented closed connected n-manifolds, and f : M → N , prove that

f ∗ : H n(N ) H n(M)

ωN deg f ·ωM

c) Let f : Sn → T n , n � 2. Prove that deg f = 0. Construct a map T n → Sn of non-zero degree.

Proof. a) Since M is an oriented compact connected n-manifold, by Poincaré duality, H k (M) ∼= Hn−k (M) for 0 � k � n.

• H n(M) ∼= H0(M) ∼=Z;

• Hn−1(M) ∼= H 1(M). By universal coefficient theorem for cohomology, we have a split short exact se-

quence

0 Ext1
Z

(H0(M),Z) H 1(M) HomZ(H1(M),Z) 0

Note that Ext1
Z

(H0(M),Z) ∼= Ext1
Z

(Z,Z) = 0. We have H 1(M) ∼= HomZ(H1(M),Z). We know that dualisa-

tion kills torsion. More specifically, suppose that n ∈Z \ {0} and ϕ ∈ HomZ(H1(M),Z) \ {0} are such that

nϕ= 0. We take x ∈ H1(M) \ {0} such that ϕ(x) �= 0. Then nϕ(x) �= 0 since Z is an integral domain. This

is a contradiction. We conclude that Hn−1(M) ∼= H 1(M) is torsion-free.

• By universal coefficient theorem for cohomology, we have a split short exact sequence

0 Ext1
Z

(Hn−1(M),Z) H n(M) HomZ(Hn(M),Z) 0

Since M is compact, the homology group Hn−1(M) is finitely generated. We have proven that it is

torsion-free. Then by the structure theorem for finitely generated Abelian groups, Hn−1(M) ∼= Zk for

some k. In particular Hn−1(M) is free. Hence Ext1
Z

(Hn−1(M),Z) = 0. We have H n(M) ∼= HomZ(Hn(M),Z).

Since [M ] generates Hn(M), there exists ωM ∈ H n(M) such that ωM ([M ]) = 1.

b) We have Hn(M)∨ ∼= H n(M), and ωM is a dual basis of [M ]. Then f ∗ : H n(N ) → H n(M) is the dual map of

f∗ : Hn(M) → Hn(N ), [M ] �→ deg f · [N ]. Then by linear algebra we have f ∗ : ωN �→ deg f ·ωM .

c) Since T n = S1 × ·· · × S1, By Künneth Theorem, we have the following group isomorphism, which is also a

ring homorphism into H•(T n).

n�
i=1

H 1(S1) H n(T n)

e1 ⊗ · · ·⊗en p∗
1 (e1)� · · ·� p∗

n(en)

∼=

where p∗
i : H 1(S1) → H 1(T n) is the pull-back of the projection pi : T n → S1.

Consider f : Sn → T n . The pull-back f ∗ : H•(T n) → H•(Sn) is a ring homomorphism. Then

f ∗ �
p∗

1 (e1)� · · ·� p∗
n(en)

�= f ∗p∗
1 (e1)� · · ·� f ∗p∗

n(en)
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Note that each f ∗p∗
i (ei ) ∈ H 1(Sn) = 0. So we must have f ∗ �

p∗
1 (e1)� · · ·� p∗

n(en)
� = 0. Since p∗

1 (e1) � · · ·�
p∗

n(en) generates H n(T n), we conclude that deg f = 0.

Finally we construct a map f : T n → Sn with non-zero degree. Choose p ∈ T n . Since T n is a manifold, there

exists a neighbourhood U ⊆ T n of p such that U ∼=Dn . Consider the quotient map

f : T n → T n/(T n \U ) ∼= Sn

We claim that f∗ : Hn(T n) → Hn(Sn) is a isomorphism, and hence have degree 1. Consider the long exact

sequence of relative homology

0 Hn(T n \U ) Hn(T n) Hn(T n ,T n \U ) Hn−1(T n \U ) · · ·pn δn

Note that T n \U � S1∨· · ·∨S1 (view T n as I n with edge identifications, and retract T n \U onto the edges). So

Hn(T n \U ) = 0 and Hn−1(T n \U ) = 0 (n � 3). Then pn : Hn(T n) → Hn(T n ,T n \U ) is an isomorphism. Since

(T n ,T n \U ) is a good pair, we have another isomorphism ϕ : Hn(T n ,T n \U ) → Hn(T n/(T n \U )) ∼= Hn(Sn).

The composite pn ◦ϕ= f∗. This proves that f∗ is an isomorphism.

Question 2

Show that any matrix A ∈ Mn×n(Z) defines a map f : T n → T n on the n-torus T n=Rn/Zn ∼= S1 ×·· ·×S1.

Describe f∗ : H1(T ) → H1(T ) in terms of explicit generators. Show that deg f = det A ∈Z.

Cutural Remark. Any Lie group homomorphism ϕ : T n → T n gives rise to such a Lie algebra homomorphism D1ϕ :

Rn →Rn such that D1ϕ
��
Zn = A.

Proof. Let q : Rn → (R/Z)n ∼= Rn/Zn be the quotient map. Then q ◦ A : Rn → Rn/Zn . For any v ∈ Zn , as Av ∈ Zn , then

q ◦ Av = 0. Hence q ◦ A induces a map �A :Rn/Zn →Rn/Zn . �A can be viewed as an endomorphism on the n-torus

T n .

Let e1, ...,en be the generators of each S1. Their representatives in Rn form a basis of Rn . We know that H1(T n) ∼=
Zn by Künneth’s Theorem. e1, ...,en ∈ H1(T n) in fact form a basis of H1(T n). The map f∗ : H1(T n) → H1(T n) is

given by ei �→ Aei ∈ H1(T n).

From the lectures, we know that H n(T n) is generated by p∗
1 (e1)∧· · ·∧p∗

n(en). Then f ∗ : H n(T n) → H n(T n) is given

by p∗
1 (e1)∧ · · ·∧p∗

n(en) �→ p∗
1 (Ae1)∧ · · ·∧p∗

n(Aen). By the definition of determinant,

det A = Ae1 ∧ · · ·∧ Aen

e1 ∧ · · ·∧en
= p∗

1 (Ae1)∧ · · ·∧p∗
n(Aen)

p∗
1 (e1)∧ · · ·∧p∗

n(en)
= deg f

Question 3

a) For M , N compact connected orientable n-manifolds, prove that M # N is also a compact connected ori-

entable n-manifold, and that

H•(M # N ) ∼= H•(M)⊕H•(N ) for 1 � •� n −1

b) Formulate and prove such an isomorphism on cohomology, as a ring isomorphism.

c) What can you say about the case • = n, and cup products of H•(M), H•(N ) classes that land in H n(M # N )?

d) Deduce what H•(Σg ), χ(Σg ) and the ring H•(Σg ) are, for the genus g surface Σg .
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Proof. a) The connected sum can be defined in the following way. Choose x ∈ M and y ∈ N . Let U ∈ M and V ∈ N be

charts containing x and y respectively. We can identify ∂U and ∂V via ∂U ∼= Sn−1 ∼= ∂V . Then we define the

connected sum to be M # N := ((M \U )∪ (N \V ))/(∂U ∼ ∂V ).

It is clear from definition that M # N is connected and compact (being the quotient of a compact space).

M # N is orientable, as we can pick an isomorphism ∂U ∼= ∂V such that the local orientations on them agree.

Let U � be a neighbourhood of U in M and V � be a neighbourhood of V in N . Consider A := (M \U )∪(V � \V )

and B = (N \ V )∪ (U � \U ) as subspaces of M # N . Then M # N = A◦ ∪B◦. The Mayor-Vietoris sequence is

given by

· · · �Hk (A∩B) �Hk (A)⊕ �Hk (B) �Hk (M # N ) �Hk−1(A∩B) · · ·

Note that A∩B � Sn−1. Then �Hk (A∩B) = 0 for k � n −2. In such case, we have �Hk (M # N ) ∼= �Hk (A)⊕ �Hk (B)

from the long exact sequence.

We have M � A∪ϕDn , whereϕ identifies ∂Dn ∼= Sn−1 with ∂V �. From Question 6 of Sheet 3, we have Hk (A) ∼=
Hk (M) for k � n −2. Similarly Hk (B) ∼= Hk (N ). Hence Hk (M # N ) ∼= Hk (M)⊕Hk (N ) for 1 � k � n −2.

For k = n−1, since M and N are orientable, we use Poincaré duality: Hn−1(M # N ) ∼= H 1(M # N ), Hn−1(M) ∼=
H 1(M), and Hn−1(N ) ∼= H 1(N ). Using the cohomology version of Mayer-Vietoris sequence we can prove

that H 1(M # N ) ∼= H 1(M)⊕H 1(N ). Hence Hn−1(M # N ) ∼= Hn−1(M)⊕Hn−1(N ). This concludes the proof.

b) We have a group isomorphism at each grading of the cohomology ring:

H k (M # N ) ∼= H k (M)⊕H k (N ), 1 � k � n −1

which is proven by the same Mayer-Vietoris technique. The cup product is computed component-wise

for 1 � k +� � n − 1. That is, for (αk ,βk ) ∈ H k (M)⊕ H k (N ) ∼= H k (M # N ) and (α�,β�) ∈ H�(M)⊕ H�(N ) ∼=
H k (M # N ),

(αk ,βk )� (α�,β�) = (αk �α�,βk �β�) ∈ H k+�(M)⊕H k+�(N ) ∼= H k+�(M # N )

c) At degree n, the good pair (M # N ,Sn−1) gives the long exact sequence

· · · H n−1(Sn−1) H n(M # N ,Sn−1) H n(M # N ) 0

Note that H n(M # N ,Sn−1) ∼= H n(M # N /Sn−1) ∼= H n(M ∨N ) ∼= H n(M)⊕H n(N ).

Since H n(M)⊕ H n(N ) ∼= Z2, H n(M # N ) ∼= Z, the map H n(M)⊕ H n(N ) → H n(M # N ) is given by (ωM ,0) �→
ωM#N and (0,ωN ) �→ωM#N . Therefore, for k +�= n, (αk ,βk ) ∈ H k (M # N ) and (α�,β�) ∈ H�(M # N ), we have

(αk ,βk )� (α�,β�) =αk �α�+βk �β� ∈ H n(M # N )

The rings H•(M # N ) and H•(M)×H•(N ) are certainly not isomorphic.

d) From the lectures and previous problem sheets, we know that for Σ1 = T 2,

Hn(T 2) ∼=





Z, n = 0

Z2, n = 1

Z, n = 2

0, otherwise

, H n(T 2) ∼=





Z, n = 0

Z2, n = 1

Z, n = 2

0, otherwise
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Since Σg = T 2 # · · ·# T 2, inductively we have

Hn(Σg ) ∼=





Z, n = 0

Z2g , n = 1

Z, n = 2

0, otherwise

, H n(Σg ) ∼=





Z, n = 0

Z2g , n = 1

Z, n = 2

0, otherwise

The Euler characteristic

χ(Σg ) =
∞�

n=0
(−1)n rank Hn(Σg ) = 2−2g

Let ai ,bi be the generators of H 1(T 2) for i = 1, ..., g . Then H 1(Σg ) is generated by a1,b1, ..., ag ,bg , with the

cup product structure

ai � a j = 0, bi � b j = 0, ai � b j = 0, a1 � b1 = ·· · = ag � bg generates H 2(Σg ) ∼=Z

This completely describes the ring structure of H•(Σg ).

Question 4

a) Verify that Ext1
Z

(Z;G) = 0 and Ext1
Z

(Z/d ;G) ∼=G/dG for any Abelian group G .

b) Use the universal coefficients theorem to compute H•(RP 3;Q/Z).

c) Compute H CW
• (RP 3;Q/Z) and H•

CW(RP 3;Q/Z) directly.

d) We typically expect the torsion of H• to move up by 1 in H•. How come that failed in (c)?

Proof. a) Since Z is free, it is projective, and the functor HomZ(Z,−) is exact. Then the right derived functors

Extk
Z

(Z,−) :=Rk HomZ(Z,−) = 0 for k � 1. In particular Ext1
Z

(Z,G) = 0.

The following exact sequence is a free resolution of Z/d :

0 Z Z Z/d 0d

Applying the functor HomZ(−,G) to the unaugmented chain:

0 HomZ(Z,G) HomZ(Z,G) 0d

As HomZ(Z,G) ∼=G , after taking cohomology we obtain that

Extk
Z(Z/d ,G) =





�
g ∈G : d g = 0

�
, k = 0

G/dG , k = 1

0, otherwise

b) The universal coefficient theorem for cohomology:

0 Ext1
Z

(Hn−1(RP 3);Q/Z) H n(RP 3;Q/Z) HomZ(Hn(RP 3),Q/Z) 0

Note that Q/Z is an injective Z-module (since it is divisible), and hence is an acyclic object with respect

to the left exact functor HomZ(Hn−1(RP 3),−). The extension module Ext1
Z

(Hn−1(RP 3);Q/Z) = 0. Hence we

have

H n(RP 3;Q/Z) ∼= HomZ(Hn(RP 3),Q/Z)
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It remains to compute the homology groups Hn(RP 3). From the computation in Question 5 of Sheet 3, we

know that the cellcular chain complex of RP 3 is given by

0 Z Z Z Z
2 00

Taking homology we have

Hn(RP 3) =





Z, n = 0,3

Z/2, n = 1

0, otherwise

It is clear that HomZ(Z,Q/Z) ∼= Z. To compute HomZ(Z/2,Q/Z), we note that for ϕ ∈ HomZ(Z/2,Q/Z), we

must have 2ϕ(1) = 0 ∈ HomZ(Z/2,Q/Z). Hence ϕ(1) = 0 or 1/2. We deduce that HomZ(Z/2,Q/Z) ∼= Z/2. In

summary, the cohomology groups are given by

H n(RP 3;Q/Z) =





Q/Z, n = 0,3

Z/2, n = 1

0, otherwise

c) The cellcular chain complex of RP 3 with coefficients inQ/Z is given by

0 Q/Z Q/Z Q/Z Q/Z2 00

Taking the homology we obtain

H CW
n (RP 3;Q/Z) =





Q/Z, n = 0,3

Z/2, n = 2

0, otherwise

Dualising the chain complex and taking the cohomology, we have

H n
CW(RP 3;Q/Z) =





Q/Z, n = 0,3

Z/2, n = 1

0, otherwise

d) The torsion shift holds only if Hn(RP 3;Q/Z) is a finitely generated Z-module for all n ∈ N. But for n = 0,

H0(RP 3;Q/Z) ∼=Q/Z is not finitely generated as a Z-module.

Let me prove this. Suppose thatQ/Z is finitely generated. Since it is divisible, we have 〈2〉ZQ/Z=Q/Z. Then

by Nakayama Lemma, there exists n ∈Z odd, such that nQ/Z= 0, which is impossible.

Question 5

Let X be the Moore space M(Z/m, n) = Sn ∪ϕDn+1, where the attaching map ϕ : ∂Dn+1 = Sn → Sn has degree m.

a) Show that the quotient map X → X /Sn ∼= Sn+1 is zero on �H• but non-zero on �H•.

b) Deduce that in the universal coefficient theorem the splitting cannot be natural.

Proof. a) The good pair (X ,Sn) induces the long exact sequence of the reduced homology

· · · �Hk (Sn) �Hk (X ) �Hk (Sn+1) �Hk−1(Sn) · · ·ik qk δk
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Since �Hk (Sn+1) = 0 for k �= n +1, then qk = 0 for k �= n +1. But, for k = n +1, �Hn+1(X ) = 0 (Question 2 and 8

of Sheet 3) and hence qn+1 = 0. This implies that the push-outs of the quotient map q : X → Sn+1 are zero

on the homology groups.

Similarly, we have the long exact sequence of the relative cohomology

· · · �H k−1(Sn) �H k (Sn+1) �H k (X ) �H k (Sn) · · ·δk−1 qk
i k

For k �= n + 1, �H k (Sn+1) = 0 and hence qk = 0. For k = n + 1, from Question 8 of Sheet 3 we know that
�H n+1(X ) ∼=Z/m.

Furthermore, since �H n+1(Sn) = 0, then i k = 0. By exactness at �H n+1(X ), im qk = ker i k = �H n+1(X ). In partic-

ular qk �= 0. This implies that the pull-back of the quotient map q is non-zero on �H n+1.

b) The universal coefficient theorems for cohomology for X and Sn+1 give split short exact sequences

0 Ext1
Z

( �Hn(X ),Z) �H n+1(X ) HomZ( �Hn+1(X ),Z) 0

0 Ext1
Z

( �Hn(Sn+1),Z) �H n+1(Sn+1) HomZ( �Hn+1(Sn+1),Z) 0

qn+1

Suppose that the splitting is functorial. Since �Hn+1(X ) = 0 and �Hn(Sn+1) = 0, we have the commutative

diagram

0 Ext1
Z

( �Hn(X ),Z) �H n+1(X ) 0 0

0 0 �H n+1(Sn+1) HomZ( �Hn+1(Sn+1),Z) 0

∼=

∼=
qn+1

α β

Then α= 0 and β= 0. Since qn+1 �= 0, it is impossible that the diagram is commutative. Hence the splitting

in the universal coefficient theorems is not functorial.

Question 6

State and prove a locality theorem for cohomology when viewed as a ring.

(Hint. Naturality of the universal coefficient SES.)

Proof. Let 𝒰 ⊆ P (X ) such that X = �
U∈𝒰U ◦. Let C𝒰

• (X ) be the chain of 𝒰-small simplicies. That is, C𝒰
n (X ) is the

free Abelian group generated by the n-simplicies σ for which σ ⊆ U for some U ∈𝒰. The locality theorem for
homology states that

Hn(C𝒰
• (X )) ∼= Hn(C•(X )) =: Hn(X )

Let C •
𝒰(X ) be the cochain complex of C𝒰

• (X ). We claim that the locality theorem for cohomology gives the

following ring isomorphism

H•(C •
𝒰(X )) ∼= H•(C •(X )) =: H•(X )

The universal coefficient theorem for cohomology for the cochain C •
𝒰(X ) gives the split short exact sequence

0 Ext1
Z

(Hn−1(C𝒰
• (X )),Z) H n(C •

𝒰(X )) HomZ(Hn(C𝒰
• (X )),Z) 0

Using the locality theorem Hk (C𝒰
• (X )) ∼= Hk (X ) and 5-lemma, we have the group isomorphism H n(C •

𝒰(X )) ∼=
H n(X ) for each n ∈N.

Next we consider the cup product structure on H•(C •
𝒰(X )). From the universal coefficient theorem, the inclusion

of C𝒰
• (X ) into C•(X ) induces the isomorphismϕ : H n(C •

𝒰(X )) ∼= H n(X ). So by the functoriality of the cup product,
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ϕ(α� β) =ϕ(α) �ϕ(β) for any α ∈ H i (C •
𝒰(X )) and β ∈ H j (C •

𝒰(X )). Hence the group isomorphism H•(C •
𝒰(X )) ∼=

H•(X ) is indeed a ring isomorphism.

Question 7

Show that S2 ×S2 and CP 2 #CP 2 have the same homology but have a different cup product on cohomology, where

CP 2 is CP 2 with opposite orientation.

(Hint. Compare quadratic forms associated to the symmetric bilinear form H 2 ×H 2 → H 4.)

Explain why this argument does not work if we use R-coefficients.

Proof. The homology groups for S2 are given by

Hn(S2) ∼=
�
Z, n = 0,2

0, otherwise

By Künneth’s Theorem, Hn(S2×S2) ∼=
�

i+ j=n

�
Hi (S2)⊗H j (S2)

�
. Hence the homology groups for S2×S2 are given by

Hn(S2 ×S2) ∼=





Z, n = 0,4

Z2, n = 2

0, otherwise

Since CP 2 is compact connected orientable 4-manifolds, By Question 3, we have

Hn(CP 2 #CP 2) ∼=





Z, n = 0,4

Hn(CP 2)⊕Hn(CP 2), 1 � n � 3

0, otherwise

By Question 5 of Sheet 3, we know that

Hn(CP 2) =
�
Z, n = 0,2,4

0, otherwise

Hence

Hn(CP 2 #CP 2) ∼=





Z, n = 0,4

Z2, n = 2

0, otherwise

The two spaces have the same homology groups.

Next we compute the intersection forms on these 4-manifolds. Since the homology groups above are all free,

Poincaré duality gives non-degenerate symmetric bilinear forms

I : H 2(X )×H 2(X ) Z

(α,β)
�

[X ],α�β
�

For simplicity we write X := S2 ×S2 and Y :=CP 2 #CP 2.

For X = S2×S2, H 2(S2×S2) ∼= H2(S2×S2)∨ be universal coefficient theorem. We note that H2(S2×S2) is generated
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by α := [S2]⊗1 and β := 1⊗ [S2]. Then H2(S2 ×S2)∨ =Zα∨⊕Zβ∨. We have [X ] = [S2]⊗ [S2] =α×β ∈ H4(X ). Then

[X ]�α∨ = (α×β)�α∨ =β, [X ]�β∨ =α

Hence the intersection form on X

I (α∨,α∨) = �
[X ]�α∨,α∨�= �

β,α∨�= 0, I (β∨,β∨) = �
α,β∨�= 0, I (α∨,β∨) = �

β,β∨�= 1

It has Gram matrix MX with respect to the basis {α∨,β∨} of H 2(X ):

MX =
�

0 1

1 0

�

For Y = CP 2 #CP 2, from Question 3 we know that H 2(Y ) ∼= H 2(CP 2)⊕ H 2(CP 2) =: Zµ⊕Zν and that µ� ν = 0 ∈
H 4(Y ). From the cup product structure on CP 2, we know that µ � µ = [CP 2] = −[CP 2] = −ν � ν. Hence the

intersection form on Y has Gram matrix

MY =
�

1 0

0 −1

�

We note that MX and MY are not congruent in M2×2(Z). We can verify this by brute computation. Suppose that

P�MY P = MX for some P ∈ M2×2(Z). Then

P =
�

a b

c d

�
=⇒ a2 +c2 = 0 and b2 +d 2 = 0 =⇒ P = 0

which is impossible. In particular, the intersection forms on X and Y are distinct. Therefore H•(S2 × S2) and

H•(CP 2 #CP 2) are not isomorphic as cohomology rings.

The argument fails for R-coefficients, because MX and MY are congruent in M2×2(R). By Sylvester’s law of inertia,

the congruent classes in M2×2(R) can be classified by the signature. Both MX and MY have eigenvalues ±1, and

hence the signature σ(X ) =σ(Y ) = 0.

Question 8

a) Let W be a compact oriented (n+1)-manifold with boundary M = ∂W . Prove that χ(M) = 2χ(W ) if n is even.

b) Can RP 2 arise as the boundary of a compact 3-manifold?

Proof. a) The pair (W, M) induces the long exact sequence of relative homology

· · · Hk (M) Hk (W ) Hk (W, M) Hk−1(M) · · ·

Since W is compact oriented with boundary M , by Poincaré-Lefschetz duality, Hk (W, M) ∼= H n+1−k (W ). We

can take the alternating sum of the rank of the groups in the long exact sequence:

n+1�
k=0

(−1)k rank Hk (M)−
n+1�
k=0

(−1)k rank Hk (W )+
n+1�
k=0

(−1)k rank H n+1−k (W ) = 0

By universal coefficient theorem, rank H n+1−k (W ) = rank Hn+1−k (W ). Since n is even, we obtain that

n+1�
k=0

(−1)k rank Hk (M)−2
n+1�
k=0

(−1)k rank Hk (W ) = 0

By definition of Euler characteristic, we have χ(M) = 2χ(W ) as required.
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b) The homology groups of RP 2 are given by

Hn(RP 2) =





Z, n = 0

Z/2, n = 1

0, otherwise

Hence χ(RP 2) = �∞
n=0(−1)n rank Hn(RP 2) = 1. If RP 2 = ∂X , then by (a) χ(X ) = 1/2, which is impossible.

Hence RP 2 is not the boundary of a compact oriented 3-manifold.

Question 9. Borsuk-Ulam Theorem

Prove that if f : Sn → Sn is an odd map ( f (−x) = − f (x)) then deg f is odd. Deduce that if g : Sn → Rn then there

exists x ∈ Sn with g (x) = g (−x).

Hints: f induces a map f :RP n →RP n . Show that f : H1(RP n) → H1(RP n) is an isomorphism (recall that H1(RP n) ∼=
Z/2 is generated by any path in Sn from a point x to −x), deduce that f

∗
is an isomorphism on H•(RP n ;Z/2).

To show that deg f is odd, it suffices to show Hn(Sn ;Z/2) → Hn(Sn ;Z/2) sends [Sn] �→ [Sn] (hint. universal coeffi-

cient theorem). Consider “transfer map” C•(RP n ;Z/2) →C•(Sn ;Z/2): simgular simplex (σ :Δn →RP n) �→ �σ+a◦�σ=
(sum of possible “lifts” of σ to Sn). Show that it is functorial with respect to f and then consider the fundamental

class [RP n] over Z/2.

Application: show that there are two antipodal points on the Earth’s surface with the same temperature and baro-

metric pressure.

Proof. • An odd map f : Sn → Sn has odd degree.

f : Sn → Sn induces the map f : RP n →RP n . Let σ ∈ H1(RP n) be a 1-simplex which is a path from x to f (x).

The push-out f ∗ : H1(RP n) → RP n sends a 1-simplex σ to f ∗(σ), which is non-zero in H1(RP n), as it is a

path from f (x) to − f (x). Hence f ∗ is an isomorphism on H1(RP n). The same argument shows that f ∗ is an

isomorphism on H1(RP n ;Z/2).

Let τ : C•(RP n ;Z/2) →C•(Sn ;Z/2) be the transfer map, which sends a simplex to the sum of its two distinct

lifts in Sn . We have a short exact sequence of chain complexes:

0 C•(RP n ;Z/2) C•(Sn ;Z/2) C•(RP n ;Z/2) 0τ π

This induces a long exact sequence of homology groups

· · · Hk (Sn ;Z/2) Hk (RP n ;Z/2) Hk−1(RP n ;Z/2) Hk−1(Sn ;Z/2) · · ·πk δk τk−1

It is easy to check that f and f induce a morphism from the short exact sequence to itself:

0 C•(RP n ;Z/2) C•(Sn ;Z/2) C•(RP n ;Z/2) 0

0 C•(RP n ;Z/2) C•(Sn ;Z/2) C•(RP n ;Z/2) 0

τ π

τ π

f � f� f �

By functoriality of the long exact sequence, we have

· · · Hk (Sn ;Z/2) Hk (RP n ;Z/2) Hk−1(RP n ;Z/2) Hk−1(Sn ;Z/2) · · ·

· · · Hk (Sn ;Z/2) Hk (RP n ;Z/2) Hk−1(RP n ;Z/2) Hk−1(Sn ;Z/2) · · ·

πk δk τk−1

πk δk τk−1

f∗ f ∗ f ∗ f∗
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For 1 � k � n −1, we have Hk (Sn ;Z/2) = 0. Then δk is an isomorphism. In each commutative square:

Hk (RP n ;Z/2) Hk−1(RP n ;Z/2)

Hk (RP n ;Z/2) Hk−1(RP n ;Z/2)

∼=

f ∗ f ∗

∼=
We can use induction to prove that f ∗ : Hk (RP n ;Z/2) → Hk (RP n ;Z/2) is an isomorphism for 1 � k � n −1.

For k = n, we have

0 Hn(RP n ;Z/2) Hn(Sn ;Z/2) Hn(RP n ;Z/2) Hn−1(RP n ;Z/2) 0

0 Hn(RP n ;Z/2) Hn(Sn ;Z/2) Hn(RP n ;Z/2) Hn−1(RP n ;Z/2) 0

δn

f ∗
∼=

δn

πn

πnτn

τn

f ∗ f∗

We note thatπ : Sn →RP 2 is a 2-fold covering map. Hence the induced mapπn : Hn(Sn ;Z/2) → Hn(RP 2;Z/2)

is zero. We can split the diagram above into two commutative squares:

Hn(RP n ;Z/2) Hn(Sn ;Z/2) Hn(RP n ;Z/2) Hn−1(RP n ;Z/2)

Hn(RP n ;Z/2) Hn(Sn ;Z/2) Hn(RP n ;Z/2) Hn−1(RP n ;Z/2)

∼=

f ∗
∼=

∼=∼=

∼=

f ∗ f∗

Then f ∗ : Hn(RP n ;Z/2) → Hn(RP n ;Z/2) and f∗ : Hn(Sn ;Z/2) → Hn(Sn ;Z/2) are isomorphisms.

Finally, by universal coefficient theorem for homology, we have the short exact sequence

0 Hn(Sn)⊗ZZ/2 Hn(Sn ;Z/2) TorZ1 (Hn−1(Sn);Z/2) 0

It is clear that TorZ1 (Hn−1(Sn) = 0. Then we have the natural isomorphism Hn(Sn ;Z/2) ∼= Hn(Sn)⊗Z Z/2. By

functoriality, we have a commutative diagram

Hn(Sn)⊗ZZ/2 Hn(Sn ;Z/2)

Hn(Sn)⊗ZZ/2 Hn(Sn ;Z/2)

deg f ⊗ id f∗

The map Hn(Sn)⊗Z Z/2 → Hn(Sn)⊗Z Z/2 given by multiplication by deg f is non-zero. Hence we conclude

that deg f is odd.

• Proof of Borsuk-Ulam Theorem.

Let f (x) = g (x)− g (−x). Suppose that for all x ∈ Sn , f (x) �= 0. Then h(x) := f (x)/� f (x)� is a odd map from

Sn to Sn−1 ⊆ Sn . The restriction h|Sn−1 : Sn−1 → Sn−1 has odd degree by the previous result. But h|Sn−1 is

null-homotopic. This is a contradiction. Hence there exists x ∈ Sn such that g (x) = g (−x).

• There are two antipodal points on the Earth’s surface with the same temperature and barometric pressure.

Let (p,T ) : S2 → R2 represents the temperature and pressure (as scalar fields) on the Earth’s surface. By

Borsuk-Ulam Theorem, there exists x ∈ S2 such that (p(x),T (x)) = (p(−x),T (−x)). So x and −x are a pair of

antipodal points on the Earth’s surface that have the same T and p.

Question 10

A good cover of a manifold is an open cover {Ui } such that Ui
∼=Rn and Ui1 ∩ · · ·∩Uik

∼=Rn or ∅ for all i1, ..., ik ,k.
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Fact/Example: Smooth manifolds always admit a good cover.

Prove that any manifold M which admits a finite good cover has finitely generated homology groups.

Proof. We use induction on k.

• Base case: Suppose that M ∼=Rn . Then M is contractible, with zero homology groups.

• Induction case: Suppose that for any manifold M that admits a good cover of cardinality at most k − 1,

Hm(M) is finitely generated for each m ∈N.

Now suppose that M admits a good cover {U1, ...,Uk }. Let N := U1 ∪ · · ·∪Uk−1. By induction hypothesis,

N and N ∩Uk = (U1 ∩Uk )∪ · · ·∪ (Uk−1 ∩Uk ) have finitely generated homology groups. The Mayor-Vietoris

sequence for homology is given by

· · · Hm(N ∩Uk ) Hm(N )⊕Hm(Uk ) Hm(M) Hm−1(N ∩Uk ) · · ·

Um is contractible and has zero homology groups for m > 0. Then by the following lemma we know that

Hm(M) is finitely generated. This completes the induction.

Lemma 1

Let R be a principal ideal domain. Suppose that the sequence of R-modules A B C
f g

is exact at B .

If A and C are finitely generated, then so is B .

Proof. Let {a1, ..., an} ⊆ A generates A. Then { f (a1), ..., f (an)} generates im f . By exactness and the first isomor-

phism theorem, we have
B�

f (a1), ..., f (an)
� ∼= im g

Since C is finitely generated and im g is a submodule of C , im g is also finitely generated (Question 6 of

Sheet 3 of C2.2 Homological Algebra). Suppose that im g ir generated by {c1, ...,cm} ⊆C . Then B is gener-

ated by { f (a1), ..., f (an),b1, ...,bm}, where bi ∈ h−1(ci ) and h is the composite map B B/im f im g .

We conclude that every manifold that admits a finite good cover has finitely generated homology groups.


