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Some general remarks about induced modules:

We consider the tensor product of modules over non-commutative rings:

Definition. Tensor Product.

Suppose that R,S are rings, M is a (R,S)-bimodule, and N is a left S-module. Then M ⊗S N is a left R-module satisfying the universal
property:

For any Abelian group P and balanced map ϕ : M ×N → P, there exists a unique group homomorphism ϕ̃ : M ⊗S N → P such that the
following diagram commutes:

M ×N P

M ⊗S N

ϕ

σ ∃ ! ϕ̃

Suppose that k is a field, G is a group, H ÉG , and W is a k[H ]-module. It is not hard to verify that the induced module satisfies the
universal property, so that we have:

IndG
H W = k[G]⊗k[H ] W

I believe that this is the standard way to define induced modules in most textbooks. The tensor product is useful because we know
the identities:(

n⊕
i=1

Mi

)
⊗S N ∼=

n⊕
i=1

(Mi ⊗S N ) M ⊗S S ∼= S ⊗S M ∼= M (M ⊗R N )⊗S P ∼= M ⊗R (N ⊗S P )

which makes the transitivity of induced modules a trivial fact:

IndG
H IndH

J W = k[G]⊗k[H ]
(
k[H ]⊗k[J ] W

)∼= (
k[G]⊗k[H ] k[H ]

)⊗k[J ] W ∼= k[G]⊗k[J ] W = IndG
J W

Question 1

Find the character table of the alternating group A5. It may be helpful to remember that A5 acts as a group of rotations of the
regular icosahedron.

Proof. Recall from Part A Group Theory (Lemma 44) that the conjugacy classes of A5 are:

• the identity;

• all 20 3-cycles;

• all 15 double transpositions;

• 12 of the 5-cycles;

• the remaining 12 of the 5-cycles, these being the squares of those in the previous class.

We choose the representatives e, (123), (12)(34), (12345), (13245). So A5 have 5 non-isomorphic irreducible representations.
The first one would be the trivial representation 1 on C.

Since A5 is the symmetry group of the regular icosahedron, we have a representation ρ : A5 → GL3(R) É GL3(C). Using the
method established in Question 4 of Sheet 3, for g ∈ A5 with o(g ) = n, we have χρ(g ) = 1+2Reζn , where ζn is a primitive n-th
root of unity. Then we have:

χρ(e) = 1+2 = 3

χρ((123)) = 1+2Reζ3 = 1+ (−1) = 0

χρ((12)(34)) = 1+2Reζ2 = 1+ (−2) =−1

χρ((12345)) = 1+2Reζ5 = 1+p
5

2
or

1−p
5

2

χρ((13245)) = 1+2Reζ5 = 1+p
5

2
or

1−p
5

2
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In fact there are two distinct 3-dimensional irreducible representations, as we compute the inner product and invoke the
row orthogonality relation.

Now we have 1 1-dimensional and 2 3-dimensional irreducible representations. By Artin-Weddernburn theorem, the re-
maining two irreducible representations satisfy

(degρ4)2 + (degρ5)2 = |A5|−12 −2×32 = 41 =⇒ degρ4 = 4, degρ5 = 5

We have the following incomplete character table:

A5 e (123) (12)(34) (12345) (13245)

|g G | 1 20 15 12 12

χ1 1 1 1 1 1

χ2 3 0 -1
1+p

5

2

1−p
5

2

χ3 3 0 -1
1−p

5

2

1+p
5

2
χ4 4 a42 a43 a44 a45

χ5 5 a52 a53 a54 a55

The table can be completed by using column orthogonality relation successively:

1+4a42 +5a52 = 0, 1+|a42|2 +|a52|2 = 3 =⇒ a42 = 1, a52 =−1

1+a43 −a53 = 0, 1−3−3+4a43 +5a53 = 0 =⇒ a43 = 0, a53 = 1

1+a44 −a54 = 0, 1+3× 1+p
5

5
+3× 1−p

5

2
+4a44 +5a54 = 0 =⇒ a44 =−1, a54 = 0

1+a45 −a55 = 0, 1+3× 1−p
5

5
+3× 1+p

5

2
+4a45 +5a55 = 0 =⇒ a45 =−1, a55 = 0

The complete character table is shown as follows:

A5 e (123) (12)(34) (12345) (13245)

|g G | 1 20 15 12 12

χ1 1 1 1 1 1

χ2 3 0 -1
1+p

5

2

1−p
5

2

χ3 3 0 -1
1−p

5

2

1+p
5

2
χ4 4 1 0 -1 -1
χ5 5 -1 1 0 0

Question 2

Let G be a finite group with an irreducible representation ρ : G → GL2(C).

(a) Prove that G has an element a of order 2.

(b) For a as above show that either detρ(a) 6= 1 or else ρ(a) is central in GL2(C).

(c) Deduce that a finite simple group cannot have an irreducible representation of degree 2.

Proof. (a) By Frobenius divisibility, we know that dimGL2(C) = 2 divides |G|. By Cauchy’s Theorem, G has elements of order 2.

(b) Suppose that detρ(a) = 1. Since a ∈ G is of order 2, ρ(a) is of order 2 in GL2(C). Hence the eigenvalues of ρ(a) are in
{1,−1}. But this implies that the only eigenvalue of ρ(a) is −1, and since ρ(a) is diagonalisable, ρ(a) =− id. Hence ρ(a)
is central in GL2(C).

(c) Suppose that G is simple and has an irreducible representation of degree 2. Then kerρ/G is either {e} or G . In the latter
case ρ is not irreducible. Therefore ρ is faithful. For g ∈G , we have

ρ([a, g ]) = [ρ(a),ρ(g )] = id =⇒ [a, g ] = e
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Hence a ∈ Z (G) and, by simplicity of G , Z (G) =G . Hence G is Abelian. But this contradicts the result in Question 3.(a)
of Sheet 3, which says that every complex irreducible representation of an Abelian group is 1-dimensional.

Question 3

Let G be a finite group and suppose that V is a simple CG-module.

(a) Prove that eV = dimV

|G|
∑

g∈G
χV (g )g is an element of the centre of CG .

(b) Let V ′ be another simple CG-module. Prove that eV kills V ′ if V ′ is not isomorphic to V , and that eV acts as the identity
on V .

(c) Let V1, · · · ,Vr be the simple CG-modules (up to isomorphism) and let ei := eVi for i = 1, · · · ,r . Prove that ei e j = δi , j ei for
all i , j = 1, · · · ,r, and that e1 +·· ·+er = 1.

Proof. (a) For h ∈G , using the fact that χV is a class function, we have

heV = dimV

|G|
∑

g∈G
χV (g )hg = dimV

|G|
∑

hg h−1∈G

χV (g )hg h−1 ·h = dimV

|G|
∑

g∈G
χV (h−1g h)g h = dimV

|G|
∑

g∈G
χV (g )g h = eV h

By extending linearly in C[G], we deduce that eV ∈ Z (C[G]).

(b) For simplicity we use the notation in part (c). By row orthogonality relation, we have

χ j (ei ) = dimVi

|G|
∑

g∈G
χi (g )χ j (g ) = dimViδi j

For i = j , χi (ei ) = dimVi = χi (eG ). In Question 5.(a) of Sheet 3 we have proven that χi (ei ) = χi (eG ) implies that ei ∈
kerρi , where ρi : G → GL(Vi ) is the representation afforded by Vi . Hence ρi (ei ) = idVi .

For i 6= j , χ j (ei ) = 0. Note that by Schur’s Lemma ei acting on V j is a scalar. So we have in fact ei · v = 0 for any v ∈V j .

(c) Consider the Artin-Weddernburn decomposition of C[G] into simple submodules:

C[G] =
r⊕

i=1
V dimVi

i , ∀v ∈C[G] : v =
r∑

i=1
vi , vi ∈V dimVi

i

Then by (b) ei · v = vi for any v ∈C[G]. In particular, ei ·1 = ei ∈Vi . Hence

1 =
r∑

i=1
ei , ei ∈Vi

and ei e j = δi j ei . {e1, ...,er } is a set of (primitive) central idempotent.

Question 4

A conjugacy class g G of a finite group G is called real if g is conjugate to g−1. A character χ of G is called real if χ(g ) ∈R for all
g ∈G . By considering the vector space

V := {
f : G →C : f (g ) = f

(
h−1g h

)= f
(
g−1) for all g ,h ∈G

}
or otherwise, prove that the number of real conjugacy classes in G is equal to the number of irreducible real characters.

Proof. First we claim that χ is an irreducible character of G if and only if χ : g 7→χ(g ) is an irreducible character of G .

Let V be a C[G]-module. Then the dual space V ′ is naturally a C[G]-module which affords the dual representation of V . By
Proposition 5.21 we know that χV ′ = χV . Suppose that V is not simple. Let U be a non-trivial sub-C[G]-module of V . By
Maschke’s Theorem we have V = U ⊕W for some sub-C[G]-module W É V . Then V ′ ∼= U ′⊕W ′ is reducible. For the other
direction, we use the canonical isomorphism V ∼=V ′′ and repeat the same proof. This proves the claim.
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Since χ=χ if and only if χ is real, by row orthogonality relation, we have

〈
χ,χ

〉={
1, χ is real

0, χ is not real

Let Irr(G) be the set of irreducible characters of G . Then the number of irreducible real characters is

n = ∑
χ∈Irr(G)

〈
χ,χ

〉= 1

|G|
∑

χ∈Irr(G)

∑
g∈G

χ(g )χ(g ) = 1

|G|
∑

χ∈Irr(G)

∑
g∈G

χ(g )χ(g−1)

By column orthogonality relation, we have

∑
χ∈Irr(G)

χ(g )χ(g−1) =
{
|CG (g )|, g−1 ∈ g G

0, g−1 ∉ g G

Let g1, ..., gr be the representatives of the conjugacy classes of G . Then the number of real conjugacy classes is

m =
r∑

i=1

1

|CG (gi )|
∑

χ∈Irr(G)
χ(gi )χ(g−1

i ) =
r∑

i=1

|g G
i |

|G|
∑

χ∈Irr(G)
χ(gi )χ(g−1

i ) = 1

|G|
∑

g∈G

∑
χ∈Irr(G)

χ(g )χ(g−1)

It is clear that m = n. The number of irreducible real characters equals to the number of real conjugacy classes.

Question 5

Prove that every finite group has a faithful representation. Which finite abelian groups have a faithful irreducible representa-
tion?

Proof. Suppose that G is a finite group. The regular representation afford by the regular k[G]-module k[G] is faithful.

Suppose that G is Abelian. We claim that G has a faithful irreducible complex representation if and only if G is cyclic.

" =⇒ ": Suppose that G has a faithful irreducible representation ρ : G → GL(V ). Since G is Abelian, by Schur’s Lemma any
ρ(g ) acting on V is a scalar gV ∈ C. Moreover, since o(g ) <∞, gV is a root of unity. Hence we have a group monomorphism
ρ : G →C×. Hence G is isomorphic to a subgroup of C× of finite order, which is cyclic.

" ⇐= ": Suppose that G = 〈
g
〉

is cyclic. Consider the set of |G|-th roots of unity in C, H := {ω ∈ C× : ω|G| = 1}. It is clear that
G ∼= H and H É GL(C). This gives a faithful irreducible representation ρ : G → GL(V ).

Question 6

Let H be a cyclic subgroup of G := S4 and let ϕ : H → C× be a faithful linear character. Write IndG
H ϕ as a sum of irreducible

characters of G when (a) H = 〈(1234)〉, and (b) H = 〈(123)〉.

Proof. First we write down the character table of G = S4 from Example 5.24:

e (12) (12)(34) (123) (1234)∣∣g G
∣∣ 1 3 8 6 6∣∣CG (g )

∣∣ 24 8 3 4 4

χ1 1 1 1 1 1
χ2 1 -1 1 1 -1
χ3 2 0 2 -1 0
χ4 3 1 -1 0 -1
χ5 3 -1 -1 0 1

By Frobenius reciprocity, we have

IndG
H ϕ=

5∑
i=1

χi
〈
χi , IndG

H ϕ
〉

G =
5∑

i=1
χi

〈
ResG

H χi ,ϕ
〉

H
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(a) For H = 〈(1234)〉 = {e, (1234), (13)(24), (1432)}, we can write down the following table (two elements in S4 are conjugate
if and only if they have the same cycle type):

H e (1234) (13)(24) (1432)

χ1 1 1 1 1
χ2 1 -1 1 -1
χ3 2 0 2 0
χ4 3 -1 -1 -1
χ5 3 1 -1 1

ϕ 1 i -1 −i

Hence〈
ResG

H ϕ,χ1
〉

H = 0,
〈

ResG
H ϕ,χ2

〉
H = 0,

〈
ResG

H ϕ,χ3
〉

H = 0,
〈

ResG
H ϕ,χ4

〉
H = 1,

〈
ResG

H ϕ,χ5
〉

H = 1,

We conclude that IndG
H ϕ=χ4 +χ5.

(b) For H = 〈(123)〉 = {e, (123), (132)}, we can write down the following table:

H e (123) (132)

χ1 1 1 1
χ2 1 1 1
χ3 2 -1 -1
χ4 3 0 0
χ5 3 0 0

ϕ 1 ω ω2

where ω= 1+p
3i

2
is a primitive third root of unity. Hence

〈
ResG

H ϕ,χ1
〉

H = 0,
〈

ResG
H ϕ,χ2

〉
H = 0,

〈
ResG

H ϕ,χ3
〉

H = 1,
〈

ResG
H ϕ,χ4

〉
H = 1,

〈
ResG

H ϕ,χ5
〉

H = 1,

We conclude that IndG
H ϕ=χ3 +χ4 +χ5.

Question 7

(a) Let V be a simple CG-module and let W be a simple CH-module. Construct a linear G ×H-action on V ⊗W and prove
that the resulting C(G ×H)-module is simple.

(b) Let V be a simple CG -module and let Z be the centre of G . Show that for each m Ê 1, the subgroup
Dm := {

(z1, · · · , zm) ∈ Z m : z1 · · ·zm = 1
}

of Z m acts trivially on V ⊗m .

(c) By considering large values of m, deduce that dimV divides |G/Z |.

Proof. (a) For (g ,h) ∈G ×H , we define
(g ,h) · (v ⊗C w) := (g · v)⊗C (h ·w)

for v ∈ V and w ∈ W , and then extend linearly on C[G × H ] and on V ⊗CW . It is easy to verify that this defines a left
C[G ×H ]-module structure on V ⊗CW :

• For (g1,h1), (g2,h2) ∈G ×H and v ⊗C w ∈V ⊗CW :

(g1,h1) · ((g2,h2) · (v ⊗C w)
)= (g1g2 · v)⊗C (h1h2 ·w) = (g1g2,h1h2) · (v ⊗C w) = (

(g1,h1) · (g2,h2)
) · (v ⊗C w)

By extending linearly on C[G ×H ] and on V ⊗CW we can prove associativity.

• The distributivity is satisfied automatically when we make the definition and extend them linearly.

• For v ⊗C w ∈V ⊗CW ,
(eG ,eH ) · (v ⊗C w) = v ⊗C w

By extending linearly on V ⊗CW we can prove the identity action.
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Let χV be the character afforded by V and χW be the character afforded by W . By the same proof of Proposition 5.21.(c),
we have χV ⊗C W =χV χW . Since χV and χW are irreducible characters, we have

〈
χV ⊗C W ,χV ⊗C W

〉= 1

|G||H |
∑

g∈G

∑
h∈H

χV (g )χW (h)χV (g )χW (h) =
(

1

|G|
∑

g∈G
χV (g )χV (g )

)(
1

|H |
∑

h∈H
χW (h)χW (h)

)
= 〈

χV ,χV
〉〈
χW ,χW

〉= 1

Hence χV ⊗CW is an irreducible character of G ×H , and V ⊗CW is a simple C[G ×H ]-module.

(b) By Schur’s Lemma, the action of Z (G) on V is scalar multiplication. We denote this by the central characterϕ : Z (G) →C.

For (z1, ..., zm) ∈ Z m and v1 ⊗C · · ·⊗C vm ∈V ⊗m ,

(z1, ..., zm) · (v1 ⊗C · · ·⊗C vm) = z1 · v1 ⊗C · · ·⊗C zm · vm =ϕ(z1)v1 ⊗C · · ·⊗Cϕ(zm)vm

=ϕ(z1 · · ·zm)v1 ⊗C · · ·⊗C vm = v1 ⊗C · · ·⊗C vm

By extending linearly on V ⊗m we deduce that Z m acts trivially on V ⊗m .

(c) Since Z m acts trivially on V ⊗m , the C[Gm]-module structure on V ⊗m descends to a C[Gm/Dm]-module via

∀g ∈Gm ∀v ∈V ⊗m g Dm · v := g · v

By Frobenius divisibility, dimV ⊗m divides |Gm/Dm |.
It is clear from the definition of Dm that |Dm | = |Z |m−1, because the value of zm is fixed by z1, ..., zm−1 ∈ Z , which are

arbitrary. On the other hand, dimV ⊗m = (dimV )m . Hence (dimV )m divides [G : Z ]m |Z |. Let α := [G : Z ]

dimV
. Then |Z |−1

divides αm for any m ∈Z+. We deduce that

Z[α] ⊆ 1

|Z |Z⊆C

It is clear that
1

|Z |Z is a finitely generatedZ-module. SinceZ is a principle ideal domain,Z[α] is also a finitely generated

Z-module. Since α ·Z[α] ⊆ Z[α], by Proposition 7.4, α is an algebraic integer. But α is also rational, and Z is integrally
closed. Therefore α ∈Z and dimV divides [G : Z ].

Question 8

Prove that induction is transitive: if k is a field and J ⊆ H are subgroups of G , then

IndG
H

(
IndH

J V
)∼= IndG

J V

as kG-modules, for every k J-module V .

Proof. See the general remark at the beginning of this sheet.

Question 9

Suppose that V is a faithful representation of G . Prove that every simple CG -module W appears as a direct summand of some
tensor power V ⊗n of V , by considering the infinite series∑

nÊ0

〈
χW ,χV ⊗n

〉
t n

where t is an indeterminate.

Proof. Consider the power series in C[[t ]]:

f (t ) =
∞∑

n=0

〈
χW ,χV ⊗n

〉
t n =

∞∑
n=0

1

|G|χW (g )χV (g )n t n = 1

|G|χW (g )
∞∑

n=0

(
χV (g )t

)n
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For sufficiently small t ∈C, the sum converges to

1

|G|
∑

g∈G

χW (g )

1−χV (g )t
= 1

|G|

(
dimW

1−dimV · t
+ ∑

g 6=e

χW (g )

1−χV (g )t

)

Since the representation afforded by V is faithful, by the proof of Question 5.(a) in Sheet 3, χV (g ) 6= dimV for all g ∈ G \ {e}.
Then f (t ) contains a non-zero term whose denominator is 1−dimV · t . In particular f (t ) is not the zero function. Hence
there exists n ∈N such that

〈
χW ,χV ⊗n

〉 6= 0.

Since W is a simple C[G]-module, and
〈
χW ,χV ⊗n

〉 6= 0, we have

χV ⊗n = 〈
χW ,χV ⊗n

〉
χW +

r∑
i=1

aiχi

where χ1, ...,χr are other irreducible characters of G besides χW . Passing to C[G]-modules,

V ⊗n =W 〈χW ,χV ⊗n 〉 ⊕
(

r⊕
i=1

V ai
i

)

Hence W is a direct summand of V ⊗n .

Question 10

Construct the character table of A6 as follows.

(a) Use the conjugation action of A5 on its set of Sylow 5-subgroups to construct an injective homomorphism σ : A5 → A6,
and prove that its image contains no 3-cycles.

(b) Use the left-multiplication action of A6 on A6/σ (A5) to construct an automorphism τ : A6 → A6 and prove that τ swaps
the two conjugacy classes in A6 consisting of elements of order 3.

(c) Use the natural 2-transitive action on A6 on {1,2,3,4,5,6} together with part (b) to write down two irreducible characters
χ2 and χ3 of A6, each of degree 5.

(d) Use Λ2χ2 and χ2χ3 and the Orthogonality Theorems to complete the character table of A6.

Proof. (a) Note that |A5| = 60 = 5×12. By Sylow 1st theorem, A5 has Sylow 5-subgroups. By Sylow 3rd theorem, the number a of
Sylow 5-subgroups satisfies

a ≡ 1 mod5, a | 12

which implies that a = 1 or 6.

Note that A5 has 24 elements of order 5, each of which generates a cycle subgroup of A5 of order 5. Hence A5 has exactly
6 Sylow 5-subgroups. Consider the action of A5 on Syl5(A5) by conjugation:

g ·H := g H g−1

This defines a group homomorphism σ : A5 → S6. It is clear that σ is non-trivial. Since A5 is simple, σ is injective. On
the other hand, we know that A5 is generated by all 3-cycles, whose image under σ is of order 3. The order 3 elements
in S6 are a product of disjoint 3-cycles, and hence are elements of A6. We deduce that σ(A5) ⊆ A6. Hence we have an
injective homomorphism σ : A5 → A6.

By Sylow 2nd theorem, the action of A5 on Syl5(A5) is transitive. By orbit-stabliser theorem, the stabliser of any H ∈
Syl5(A5) is the identity e. Hence for any g ∈ σ(A5) \ {e}, g fixes no points in {1,2,3,4,5,6}. In particular, σ(A5) contains
no 3-cycles.

(b) The left multiplication action of A6 on A6/σ(A5) gives a group homomorphism τ : A6 → Sym(A6/σ(A5)) ∼= S6. It is clear
that τ is non-trivial. Since A6 is simple, τ is injective. Hence τ : A6 → A6 É S6 is an automorphism.

A6 has two conjugacy classes whose elements are of order 3: one is the set of all 3-cycles; the other is the set of all
products of two disjoint 3-cycles. Each of them has 40 elements. Since τ is an automorphism of A6, it either preserves
the two classes, or swaps the two classes.
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From part (a) we know that all elements of order 3 inσ(A5) are of the form (abc)(de f ), where {a,b,c,d ,e, f } = {1,2,3,4,5,6}.
Take (abc)(de f ) ∈ σ(A5). We note that (abc)(de f )σ(A5) = σ(A5), so (abc)(de f ) fixes σ(A5) ∈ A6/σ(A5). τ((abc)(de f ))
has a fixed point, and hence can only be a 3-cycle in A6. We deduce that τ swaps the two conjugacy classes consisting
of elements of order 3.

(c) First we consider the permutation representation of S6 on V = C6. By Question 2 in Sheet 1, it is the direct sum of the
simple sub-C[S6]-modules U and W , where

U :=
〈

6∑
i=1

xi

〉
, W :=

{
6∑

i=1
ai xi :

6∑
i=1

ai = 0

}

It is clear that ResS6
A6

U can only be the trivial representation. Hence χ2 := ResS6
A6
χW = ResS6

A6
χV − 1. (The restriction

ResS6
A6

W is not necessarily irreducible, but once we calculate the character it will be clear). By Question 6.(a) in Sheet 3,
χ2(g ) = Fix(g )−1.

A6 has 7 conjugacy classes:

A6 e (123) (12345) (13524) (12)(34) (123)(456) (1234)(56)

|g G | 1 40 72 72 45 40 90

χ2 5 2 0 0 1 -1 -1

Note that 〈
χ2,χ2

〉= 1

360
(52 +22 ×40+1×45+1×40+1×90) = 1

Hence χ2 is irreducible.

W has another C[A6]-module structure, given by ρ(g )(xi ) := xτ(g )·i . The resulting character χ3 swaps the value on the
conjugacy classes of (123) and of (123)(456), and fixes all another values. Then χ3 is also an irreducible character of A6.

Now we have:

A6 e (123) (12345) (13524) (12)(34) (123)(456) (1234)(56)

|g G | 1 40 72 72 45 40 90

χ1 1 1 1 1 1 1 1
χ2 5 2 0 0 1 -1 -1
χ3 5 -1 0 0 1 2 -1

(d) We compute
∧2χ2 using Proposition 5.21.(f). For g ∈ A6,

Λ2χ2(g ) = 1

2

(
χ2(g )2 −χ2(g 2)

)= 1

2

(
χ2(g )2 −χV (g 2)−1

)
This gives

A6 e (123) (12345) (13524) (12)(34) (123)(456) (1234)(56)

χ2 5 2 0 0 1 -1 -1∧2χ2 10 1 0 0 -2 1 0

Since
〈∧2χ2,

∧2χ2
〉= 1,

∧2χ2 is irreducible.

We compute S2χ2 using S2χ2 =χ2
2 −

∧2χ2, which gives

A6 e (123) (12345) (13524) (12)(34) (123)(456) (1234)(56)

χ2 5 2 0 0 1 -1 -1

S2χ2 15 3 0 0 3 0 1

We have 〈
S2χ2,S2χ2

〉= 3,
〈

S2χ2,χ1
〉= 1,

〈
S2χ2,χ2

〉= 1

Hence S2χ2 =χ1 +χ2 +χ5, where χ5 is an irreducible character, given by

A6 e (123) (12345) (13524) (12)(34) (123)(456) (1234)(56)

χ5 9 0 -1 -1 1 0 1

We can write down the incomplete character table as follows:
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A6 e (123) (12345) (13524) (12)(34) (123)(456) (1234)(56)

|g G | 1 40 72 72 45 40 90

χ1 1 1 1 1 1 1 1
χ2 5 2 0 0 1 -1 -1
χ3 5 -1 0 0 1 2 -1∧2χ2 10 1 0 0 -2 1 0
χ5 9 0 -1 -1 1 0 1
χ6 a61 a62 a63 a64 a65 a66 a67

χ7 a71 a72 a73 a74 a75 a76 a77

Since |A6| = 360 = 12 +52 +52 +102 +92 +a2
61 +a2

71, we have a61 = a71 = 8.

We can complete the table by using column orthogonality relation successively. The complete table is given as follows:

A6 e (123) (12345) (13524) (12)(34) (123)(456) (1234)(56)

|g G | 1 40 72 72 45 40 90

χ1 1 1 1 1 1 1 1
χ2 5 2 0 0 1 -1 -1
χ3 5 -1 0 0 1 2 -1∧2χ2 10 1 0 0 -2 1 0
χ5 9 0 -1 -1 1 0 1
χ6 8 -1 1

2 (1+p
5) 1

2 (1−p
5) 0 -1 0

χ7 8 -1 1
2 (1−p

5) 1
2 (1+p

5) 0 -1 0

James
Pencil




