A Mice Solutions.

Peize Liu St. Peter's College University of Oxford

Problem Sheet 4 B2.1: Introduction to Representation Theory

Some general remarks about induced modules:

We consider the tensor product of modules over non-commutative rings:

Definition. Tensor Product.

Suppose that R, S are rings, M is a (R, S)-bimodule, and N is a left S-module. Then $M \otimes_S N$ is a left R-module satisfying the universal property:

For any Abelian group P and balanced map $\varphi: M \times N \to P$, there exists a unique group homomorphism $\widetilde{\varphi}: M \otimes_S N \to P$ such that the following diagram commutes:

$$M \times N \xrightarrow{\varphi} P$$

$$\downarrow \sigma \qquad \exists ! \, \widetilde{\varphi}$$

$$M \otimes_S N$$

Suppose that k is a field, G is a group, $H \le G$, and W is a k[H]-module. It is not hard to verify that the induced module satisfies the universal property, so that we have:

$$\operatorname{Ind}_{H}^{G}W = k[G] \otimes_{k[H]} W$$

I believe that this is the standard way to define induced modules in most textbooks. The tensor product is useful because we know the identities:

$$\left(\bigoplus_{i=1}^{n} M_{i}\right) \otimes_{S} N \cong \bigoplus_{i=1}^{n} (M_{i} \otimes_{S} N) \qquad M \otimes_{S} S \cong S \otimes_{S} M \cong M \qquad (M \otimes_{R} N) \otimes_{S} P \cong M \otimes_{R} (N \otimes_{S} P)$$

which makes the transitivity of induced modules a trivial fact:

$$\operatorname{Ind}_{H}^{G}\operatorname{Ind}_{J}^{H}W=k[G]\otimes_{k[H]}\left(k[H]\otimes_{k[J]}W\right)\cong\left(k[G]\otimes_{k[H]}k[H]\right)\otimes_{k[J]}W\cong k[G]\otimes_{k[J]}W=\operatorname{Ind}_{J}^{G}W$$

Question 1

Find the character table of the alternating group A_5 . It may be helpful to remember that A_5 acts as a group of rotations of the regular icosahedron.

Proof. Recall from Part A Group Theory (Lemma 44) that the conjugacy classes of A_5 are:

- the identity;
- all 20 3-cycles;
- all 15 double transpositions;
- 12 of the 5-cycles;
- the remaining 12 of the 5-cycles, these being the squares of those in the previous class.

We choose the representatives e, (123), (12)(34), (12345), (13245). So A_5 have 5 non-isomorphic irreducible representations. The first one would be the trivial representation 1 on \mathbb{C} .

Since A_5 is the symmetry group of the regular icosahedron, we have a representation $\rho: A_5 \to \mathrm{GL}_3(\mathbb{R}) \leq \mathrm{GL}_3(\mathbb{C})$. Using the method established in Question 4 of Sheet 3, for $g \in A_5$ with $\mathrm{o}(g) = n$, we have $\chi_{\rho}(g) = 1 + 2 \operatorname{Re} \zeta_n$, where ζ_n is a primitive n-th root of unity. Then we have:

$$\chi_{\rho}(e) = 1 + 2 = 3$$

$$\chi_{\rho}((123)) = 1 + 2\operatorname{Re}\zeta_{3} = 1 + (-1) = 0$$

$$\chi_{\rho}((12)(34)) = 1 + 2\operatorname{Re}\zeta_{2} = 1 + (-2) = -1$$

$$\chi_{\rho}((12345)) = 1 + 2\operatorname{Re}\zeta_{5} = \frac{1 + \sqrt{5}}{2} \text{ or } \frac{1 - \sqrt{5}}{2}$$

$$\chi_{\rho}((13245)) = 1 + 2\operatorname{Re}\zeta_{5} = \frac{1 + \sqrt{5}}{2} \text{ or } \frac{1 - \sqrt{5}}{2}$$

In fact there are two distinct 3-dimensional irreducible representations, as we compute the inner product and invoke the row orthogonality relation.

Now we have 1 1-dimensional and 2 3-dimensional irreducible representations. By Artin-Weddernburn theorem, the remaining two irreducible representations satisfy

$$(\deg \rho_4)^2 + (\deg \rho_5)^2 = |A_5| - 1^2 - 2 \times 3^2 = 41 \implies \deg \rho_4 = 4, \deg \rho_5 = 5$$

We have the following incomplete character table:

A_5	e	(123)	(12)(34)	(12345)	(13245)
$ g^G $	1	20	15	12	12
χ1	1	1	1	1	1
X 2	3	0	-1	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$
χз	3	0	-1	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$
χ_4	4	a_{42}	a_{43}	a_{44}	a_{45}
χ_5	5	a_{52}	a_{53}	a_{54}	a_{55}

The table can be completed by using column orthogonality relation successively:

$$1 + 4a_{42} + 5a_{52} = 0, \quad 1 + |a_{42}|^2 + |a_{52}|^2 = 3 \implies a_{42} = 1, \ a_{52} = -1$$

$$1 + a_{43} - a_{53} = 0, \quad 1 - 3 - 3 + 4a_{43} + 5a_{53} = 0 \implies a_{43} = 0, \ a_{53} = 1$$

$$1 + a_{44} - a_{54} = 0, \quad 1 + 3 \times \frac{1 + \sqrt{5}}{5} + 3 \times \frac{1 - \sqrt{5}}{2} + 4a_{44} + 5a_{54} = 0 \implies a_{44} = -1, \ a_{54} = 0$$

$$1 + a_{45} - a_{55} = 0, \quad 1 + 3 \times \frac{1 - \sqrt{5}}{5} + 3 \times \frac{1 + \sqrt{5}}{2} + 4a_{45} + 5a_{55} = 0 \implies a_{45} = -1, \ a_{55} = 0$$

The complete character table is shown as follows:

Good. To save Some calculations, look @ Sheet 3,06, to construct

A_5	e	(123)	(12)(34)	(12345)	(13245)
$ g^G $	1	20	15	12	12
χ1	1	1	1	1	1
X 2	3	0	-1	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$
X 3	3	0	-1	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$
χ_4	4	1	0	-1	-1
χ_5	5	-1	1	0	0
,				× .	

a 4-ding for free (X(g) = 1 Fix (y) 1-1)

Question 2

Let G be a finite group with an irreducible representation $\rho: G \to GL_2(\mathbb{C})$.

- (a) Prove that *G* has an element *a* of order 2.
- (b) For *a* as above show that either $\det \rho(a) \neq 1$ or else $\rho(a)$ is central in $GL_2(\mathbb{C})$.
- (c) Deduce that a finite simple group cannot have an irreducible representation of degree 2.

Maybe pla)= Iz

Not true

П

(a) By Frobenius divisibility, we know that $\dim GL_2(\mathbb{C}) = 2$ divides |G|. By Cauchy's Theorem, G has elements of order 2. Proof.

- (b) Suppose that $\det \rho(a) = 1$. Since $a \in G$ is of order 2, $\rho(a)$ is of order 2 in $GL_2(\mathbb{C})$. Hence the eigenvalues of $\rho(a)$ are in $\{1,-1\}$. But this implies that the only eigenvalue of $\rho(a)$ is -1, and since $\rho(a)$ is diagonalisable, $\rho(a)=-\mathrm{id}$. Hence $\rho(a)$ is central in $GL_2(\mathbb{C})$. (or , >14) - 1d)
- (c) Suppose that G is simple and has an irreducible representation of degree 2. Then $\ker \rho \triangleleft G$ is either $\{e\}$ or G. In the latter case ρ is not irreducible. Therefore ρ is faithful. For $g \in G$, we have

$$\rho([a,g]) = [\rho(a), \rho(g)] = \mathrm{id} \Longrightarrow [a,g] = e$$

Hence $a \in Z(G)$ and, by simplicity of G, Z(G) = G. Hence G is Abelian. But this contradicts the result in Question 3.(a) of Sheet 3, which says that every complex irreducible representation of an Abelian group is 1-dimensional.

Question 3

Let G be a finite group and suppose that V is a simple $\mathbb{C}G$ -module.

- (a) Prove that $e_V = \frac{\dim V}{|G|} \sum_{g \in G} \overline{\chi_V(g)} g$ is an element of the centre of $\mathbb{C}G$.
- (b) Let V' be another simple $\mathbb{C}G$ -module. Prove that e_V kills V' if V' is not isomorphic to V, and that e_V acts as the identity
- (c) Let V_1, \dots, V_r be the simple $\mathbb{C}G$ -modules (up to isomorphism) and let $e_i := e_{V_i}$ for $i = 1, \dots, r$. Prove that $e_i e_j = \delta_{i,j} e_i$ for all $i, j = 1, \dots, r$, and that $e_1 + \dots + e_r = 1$.

Proof. (a) For $h \in G$, using the fact that χ_V is a class function, we have

 $\text{ actively, } I \text{ then } he_V = \frac{\dim V}{|G|} \sum_{g \in G} \overline{\chi_V(g)} hg = \frac{\dim V}{|G|} \sum_{hgh^{-1} \in G} \overline{\chi_V(g)} hgh^{-1} \cdot h = \frac{\dim V}{|G|} \sum_{g \in G} \overline{\chi_V(h^{-1}gh)} gh = \frac{\dim V}{|G|} \sum_{g \in G} \overline{\chi_V(g)} gh = e_V hgh$ Py extending linearly in $\mathbb{C}[G]$, we deduce that $e_V \in Z(\mathbb{C}[G])$.

(b) For simplicity we use the notation in part (c). By row orthogonality relation, we have $\begin{array}{c} \text{The question is} \\ \text{only valid} \\ \text{only valid} \\ \text{for } \\ \chi_j(e_i) = \frac{\dim V_i}{|G|} \sum_{g \in G} \overline{\chi_i(g)} \chi_j(g) = \dim V_i \delta_{ij} \\ \text{only valid} \\ \text{only$

For i = j, $\chi_i(e_i) = \dim V_i = \chi_i(e_G)$. In Question 5.(a) of Sheet 3 we have proven that $\chi_i(e_i) = \chi_i(e_G)$ implies that $e_i \in$ $\ker \rho_i$, where $\rho_i: G \to \operatorname{GL}(V_i)$ is the representation afforded by V_i . Hence $\rho_i(e_i) = \operatorname{id}_{V_i}$.

For $i \neq j$, $\chi_j(e_i) = 0$. Note that by Schur's Lemma e_i acting on V_j is a scalar. So we have in fact $e_i \cdot v = 0$ for any $v \in V_j$.

(c) Consider the Artin-Weddernburn decomposition of $\mathbb{C}[G]$ into simple submodules:

 $\mathbb{C}[G] = \bigoplus_{i=1}^{r} V_i^{\dim V_i}, \qquad \forall \ \nu \in \mathbb{C}[G]: \ \nu = \sum_{i=1}^{r} \nu_i, \ \nu_i \in V_i^{\dim V_i}$

in all \$\tilde{\phi}_0.06 → GL(Vi)

Then by (b) $e_i \cdot v = v_i$ for any $v \in \mathbb{C}[G]$. In particular, $e_i \cdot 1 = e_i \in V_i$. Hence

$$1 = \sum_{i=1}^r e_i, \ e_i \in V_i$$

and $e_i e_j = \delta_{ij} e_i$. $\{e_1, ..., e_r\}$ is a set of (primitive) central idempotent.

Question 4

A conjugacy class g^G of a finite group G is called real if g is conjugate to g^{-1} . A character χ of G is called real if $\chi(g) \in \mathbb{R}$ for all $g \in G$. By considering the vector space

$$V := \left\{ f : G \to \mathbb{C} : f(g) = f\left(h^{-1}gh\right) = f\left(g^{-1}\right) \quad \text{for all} \quad g, h \in G \right\}$$

or otherwise, prove that the number of real conjugacy classes in *G* is equal to the number of irreducible real characters.

Proof. First we claim that χ is an irreducible character of G if and only if $\overline{\chi}: g \mapsto \overline{\chi(g)}$ is an irreducible character of G.

Let V be a $\mathbb{C}[G]$ -module. Then the dual space V' is naturally a $\mathbb{C}[G]$ -module which affords the dual representation of V. By Proposition 5.21 we know that $\chi_{V'} = \overline{\chi_V}$. Suppose that V is not simple. Let U be a non-trivial sub- $\mathbb{C}[G]$ -module of V. By Maschke's Theorem we have $V = U \oplus W$ for some sub- $\mathbb{C}[G]$ -module $W \leq V$. Then $V' \cong U' \oplus W'$ is reducible. For the other direction, we use the canonical isomorphism $V \cong V''$ and repeat the same proof. This proves the claim.

(or quicker $\langle \chi, \chi \rangle = \langle \chi, \chi \rangle = \langle \chi, \chi \rangle$)

Since $\chi = \overline{\chi}$ if and only if χ is real, by row orthogonality relation, we have

$$\langle \chi, \overline{\chi} \rangle = \begin{cases} 1, & \chi \text{ is real} \\ 0, & \chi \text{ is not real} \end{cases}$$

Let Irr(G) be the set of irreducible characters of G. Then the number of irreducible real characters is

$$n = \sum_{\chi \in \operatorname{Irr}(G)} \langle \chi, \overline{\chi} \rangle = \frac{1}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} \sum_{g \in G} \overline{\chi(g)\chi(g)} = \frac{1}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} \sum_{g \in G} \overline{\chi(g)}\chi(g^{-1})$$

By column orthogonality relation, we have

$$\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(g^{-1}) = \begin{cases} |C_G(g)|, & g^{-1} \in g^G \\ 0, & g^{-1} \notin g^G \end{cases}$$

Let $g_1, ..., g_r$ be the representatives of the conjugacy classes of G. Then the number of real conjugacy classes is

$$m = \sum_{i=1}^{r} \frac{1}{|C_G(g_i)|} \sum_{\chi \in \text{Irr}(G)} \overline{\chi(g_i)} \chi(g_i^{-1}) = \sum_{i=1}^{r} \frac{|g_i^G|}{|G|} \sum_{\chi \in \text{Irr}(G)} \overline{\chi(g_i)} \chi(g_i^{-1}) = \frac{1}{|G|} \sum_{g \in G} \sum_{\chi \in \text{Irr}(G)} \overline{\chi(g)} \chi(g^{-1})$$

It is clear that m = n. The number of irreducible real characters equals to the number of real conjugacy classes.

Question 5

Prove that every finite group has a faithful representation. Which finite abelian groups have a faithful irreducible representation?

Proof. Suppose that G is a finite group. The regular representation afford by the regular k[G]-module k[G] is faithful.

Suppose that G is Abelian. We claim that G has a faithful irreducible complex representation if and only if G is cyclic.

" \Longrightarrow ": Suppose that G has a faithful irreducible representation $\rho: G \to GL(V)$. Since G is Abelian, by Schur's Lemma any $\rho(g)$ acting on V is a scalar $g_V \in \mathbb{C}$. Moreover, since $o(g) < \infty$, g_V is a root of unity. Hence we have a group monomorphism $\rho: G \to \mathbb{C}^{\times}$. Hence *G* is isomorphic to a subgroup of \mathbb{C}^{\times} of finite order, which is cyclic.

" \Leftarrow ": Suppose that $G = \langle g \rangle$ is cyclic. Consider the set of |G|-th roots of unity in \mathbb{C} , $H := \{\omega \in \mathbb{C}^\times : \omega^{|G|} = 1\}$. It is clear that $G \cong H$ and $H \leq GL(\mathbb{C})$. This gives a faithful irreducible representation $\rho: G \to GL(V)$.

Question 6

Let H be a cyclic subgroup of $G := S_4$ and let $\varphi : H \to \mathbb{C}^{\times}$ be a faithful linear character. Write $\operatorname{Ind}_H^G \varphi$ as a sum of irreducible characters of G when (a) $H = \langle (1234) \rangle$, and (b) $H = \langle (123) \rangle$

<u>oof.</u> First we write down the character table of $G = S_4$ from Example 5.24:

	e	(12)	(12)(34)	(123)	(1234)
$ g^G $	1	3	8	6	6
$ C_G(g) $	24	8	3	4	4
χ1	1	1	1	1	1
χ_2	1	-1	1	1	-1
X 3	2	0	2	-1	0
χ_4	3	1	-1	0	-1
X 5	3	-1	-1	0	1

By Frobenius reciprocity, we have

$$\operatorname{Ind}_{H}^{G} \varphi = \sum_{i=1}^{5} \chi_{i} \langle \chi_{i}, \operatorname{Ind}_{H}^{G} \varphi \rangle_{G} = \sum_{i=1}^{5} \chi_{i} \langle \operatorname{Res}_{H}^{G} \chi_{i}, \varphi \rangle_{H}$$

(a) For $H = \langle (1234) \rangle = \{e, (1234), (13)(24), (1432)\}$, we can write down the following table (two elements in S_4 are conjugate if and only if they have the same cycle type):

H	e	(1234)	(13)(24)	(1432)
χ_1	1	1	1	1
χ_2	1	-1	1	-1
X 3	2	0	2	0
χ_4	3	-1	-1	-1
χ_5	3	1	-1	1
$\overline{\varphi}$	1	i	-1	-i

Hence

$$\left\langle \operatorname{Res}_{H}^{G} \varphi, \chi_{1} \right\rangle_{H} = 0, \qquad \left\langle \operatorname{Res}_{H}^{G} \varphi, \chi_{2} \right\rangle_{H} = 0, \qquad \left\langle \operatorname{Res}_{H}^{G} \varphi, \chi_{3} \right\rangle_{H} = 0, \qquad \left\langle \operatorname{Res}_{H}^{G} \varphi, \chi_{4} \right\rangle_{H} = 1, \qquad \left\langle \operatorname{Res}_{H}^{G} \varphi, \chi_{5} \right\rangle_{H} = 1,$$
 We conclude that $\operatorname{Ind}_{H}^{G} \varphi = \chi_{4} + \chi_{5}$.

(b) For $H = \langle (123) \rangle = \{e, (123), (132)\}$, we can write down the following table:

H	e	(123)	(132)
χ_1	1	1	1
χ_1 χ_2	1	1	1
χз	2	-1	-1
χ_4	3	0	0
X 5	3	0	0
$\overline{\varphi}$	1	ω	ω^2

where $\omega = \frac{1 + \sqrt{3}i}{2}$ is a primitive third root of unity. Hence

$$\left\langle \operatorname{Res}_{H}^{G} \varphi, \chi_{1} \right\rangle_{H} = 0, \qquad \left\langle \operatorname{Res}_{H}^{G} \varphi, \chi_{2} \right\rangle_{H} = 0, \qquad \left\langle \operatorname{Res}_{H}^{G} \varphi, \chi_{3} \right\rangle_{H} = 1, \qquad \left\langle \operatorname{Res}_{H}^{G} \varphi, \chi_{4} \right\rangle_{H} = 1, \qquad \left\langle \operatorname{Res}_{H}^{G} \varphi, \chi_{5} \right\rangle_{H} = 1,$$
 We conclude that $\operatorname{Ind}_{H}^{G} \varphi = \chi_{3} + \chi_{4} + \chi_{5}$.

Question 7

- (a) Let V be a simple $\mathbb{C}G$ -module and let W be a simple $\mathbb{C}H$ -module. Construct a linear $G \times H$ -action on $V \otimes W$ and prove that the resulting $\mathbb{C}(G \times H)$ -module is simple.
- (b) Let *V* be a simple $\mathbb{C}G$ -module and let *Z* be the centre of *G*. Show that for each $m \ge 1$, the subgroup $D_m := \{(z_1, \dots, z_m) \in \mathbb{Z}^m : z_1 \dots z_m = 1\} \text{ of } \mathbb{Z}^m \text{ acts trivially on } V^{\otimes m}.$
- (c) By considering large values of m, deduce that dim V divides |G/Z|.

Proof. (a) For $(g, h) \in G \times H$, we define

$$(g,h)\cdot (v\otimes_{\mathbb{C}} w):=(g\cdot v)\otimes_{\mathbb{C}} (h\cdot w)$$

for $v \in V$ and $w \in W$, and then extend linearly on $\mathbb{C}[G \times H]$ and on $V \otimes_{\mathbb{C}} W$. It is easy to verify that this defines a left $\mathbb{C}[G \times H]$ -module structure on $V \otimes_{\mathbb{C}} W$:

• For $(g_1, h_1), (g_2, h_2) \in G \times H$ and $v \otimes_{\mathbb{C}} w \in V \otimes_{\mathbb{C}} W$:

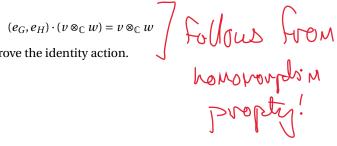
$$(g_1, h_1) \cdot ((g_2, h_2) \cdot (v \otimes_{\mathbb{C}} w)) = (g_1 g_2 \cdot v) \otimes_{\mathbb{C}} (h_1 h_2 \cdot w) = (g_1 g_2, h_1 h_2) \cdot (v \otimes_{\mathbb{C}} w) = ((g_1, h_1) \cdot (g_2, h_2)) \cdot (v \otimes_{\mathbb{C}} w)$$

By extending linearly on $\mathbb{C}[G \times H]$ and on $V \otimes_{\mathbb{C}} W$ we can prove associativity.

- The distributivity is satisfied automatically when we make the definition and extend them linearly.
- For $v \otimes_{\mathbb{C}} w \in V \otimes_{\mathbb{C}} W$,

$$(e_G,e_H)\cdot (v\otimes_{\mathbb{C}} w)=v\otimes_{\mathbb{C}} w$$

By extending linearly on $V \otimes_{\mathbb{C}} W$ we can prove the identity action.



Let χ_V be the character afforded by V and χ_W be the character afforded by W. By the same proof of Proposition 5.21.(c), we have $\chi_{V \otimes_C W} = \chi_V \chi_W$. Since χ_V and χ_W are irreducible characters, we have

$$\langle \chi_{V \otimes_{C} W}, \chi_{V \otimes_{C} W} \rangle = \frac{1}{|G||H|} \sum_{g \in G} \sum_{h \in H} \overline{\chi_{V}(g) \chi_{W}(h)} \chi_{V}(g) \chi_{W}(h) = \left(\frac{1}{|G|} \sum_{g \in G} \overline{\chi_{V}(g)} \chi_{V}(g) \right) \left(\frac{1}{|H|} \sum_{h \in H} \overline{\chi_{W}(h)} \chi_{W}(h) \right)$$

$$= \langle \chi_{V}, \chi_{V} \rangle \langle \chi_{W}, \chi_{W} \rangle = 1$$

Hence $\chi_{V \otimes_{\mathbb{C}} W}$ is an irreducible character of $G \times H$, and $V \otimes_{\mathbb{C}} W$ is a simple $\mathbb{C}[G \times H]$ module.

(b) By Schur's Lemma, the action of Z(G) on V is scalar multiplication. We denote this by the central character $\varphi: Z(G) \to \mathbb{C}$. For $(z_1,...,z_m) \in \mathbb{Z}^m$ and $v_1 \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} v_m \in \mathbb{V}^{\otimes m}$

$$\begin{split} (z_1,...,z_m)\cdot (v_1\otimes_{\mathbb C}\cdots\otimes_{\mathbb C}v_m) &= z_1\cdot v_1\otimes_{\mathbb C}\cdots\otimes_{\mathbb C}z_m\cdot v_m = \varphi(z_1)v_1\otimes_{\mathbb C}\cdots\otimes_{\mathbb C}\varphi(z_m)v_m \\ &= \varphi(z_1\cdots z_m)v_1\otimes_{\mathbb C}\cdots\otimes_{\mathbb C}v_m = v_1\otimes_{\mathbb C}\cdots\otimes_{\mathbb C}v_m \end{split}$$

By extending linearly on $V^{\otimes m}$ we deduce that Z^m acts trivially on $V^{\otimes m}$.

(c) Since Z^m acts trivially on $V^{\otimes m}$, the $\mathbb{C}[G^m]$ -module structure on $V^{\otimes m}$ descends to a $\mathbb{C}[G^m/D_m]$ -module via

$$\forall\,g\in G^m\;\forall\,v\in V^{\otimes m}\quad gD_m\cdot v:=g\cdot v$$

By Frobenius divisibility, dim $V^{\otimes m}$ divides $|G^m/D_m|$.

It is clear from the definition of D_m that $|D_m| = |Z|^{m-1}$, because the value of z_m is fixed by $z_1, ..., z_{m-1} \in Z$, which are arbitrary. On the other hand, $\dim V^{\otimes m} = (\dim V)^m$. Hence $(\dim V)^m$ divides $[G:Z]^m|Z|$. Let $\alpha:=\frac{[G:Z]}{\dim V}$. Then $|Z|^{-1}$ divides α^m for any $m \in \mathbb{Z}_+$. We deduce that

$$\mathbb{Z}[\alpha] \subseteq \frac{1}{|Z|} \mathbb{Z} \subseteq \mathbb{C}$$

It is clear that $\frac{1}{|Z|}\mathbb{Z}$ is a finitely generated \mathbb{Z} -module. Since \mathbb{Z} is a principle ideal domain, $\mathbb{Z}[\alpha]$ is also a finitely generated $\frac{\mathcal{Z}}{Z}$? \mathbb{Z} -module. Since $\alpha \cdot \mathbb{Z}[\alpha] \subseteq \mathbb{Z}[\alpha]$, by Proposition 7.4, α is an algebraic integer. But α is also rational, and \mathbb{Z} is integrally closed. Therefore $\alpha \in \mathbb{Z}$ and dim V divides [G:Z].

Question 8

Prove that induction is transitive: if k is a field and $J \subseteq H$ are subgroups of G, then

$$\operatorname{Ind}_{H}^{G}\left(\operatorname{Ind}_{J}^{H}V\right)\cong\operatorname{Ind}_{J}^{G}V$$

as kG-modules, for every kJ-module V.

Proof. See the general remark at the beginning of this sheet.

Question 9

Suppose that V is a faithful representation of G. Prove that every simple $\mathbb{C}G$ -module W appears as a direct summand of some tensor power $V^{\otimes n}$ of V, by considering the infinite series

$$\sum_{n\geq 0} \langle \chi_W, \chi_{V^{\otimes n}} \rangle t^n$$

where t is an indeterminate.

Proof. Consider the power series in $\mathbb{C}[[t]]$:

$$f(t) = \sum_{n=0}^{\infty} \left\langle \chi_W, \chi_{V^{\otimes n}} \right\rangle t^n = \sum_{n=0}^{\infty} \frac{1}{|G|} \overline{\chi_W(g)} \chi_V(g)^n t^n = \frac{1}{|G|} \overline{\chi_W(g)} \sum_{n=0}^{\infty} \left(\chi_V(g) t \right)^n$$

For sufficiently small $t \in \mathbb{C}$, the sum converges to

$$\frac{1}{|G|} \sum_{g \in G} \frac{\overline{\chi_W(g)}}{1 - \chi_V(g)t} = \frac{1}{|G|} \left(\frac{\dim W}{1 - \dim V \cdot t} + \sum_{g \neq e} \frac{\overline{\chi_W(g)}}{1 - \chi_V(g)t} \right)$$

Since the representation afforded by V is faithful, by the proof of Question 5.(a) in Sheet 3, $\chi_V(g) \neq \dim V$ for all $g \in G \setminus \{e\}$. Then f(t) contains a non-zero term whose denominator is $1 - \dim V \cdot t$. In particular f(t) is not the zero function. Hence there exists $n \in \mathbb{N}$ such that $\langle \chi_W, \chi_{V^{\otimes n}} \rangle \neq 0$.

Since W is a simple $\mathbb{C}[G]$ -module, and $\langle \chi_W, \chi_{V^{\otimes n}} \rangle \neq 0$, we have

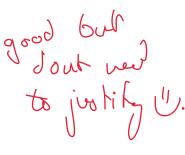
HUS W

$$\chi_{V^{\otimes n}} = \langle \chi_W, \chi_{V^{\otimes n}} \rangle \chi_W + \sum_{i=1}^r a_i \chi_i$$

where $\chi_1,...,\chi_r$ are other irreducible characters of G besides χ_W . Passing to $\mathbb{C}[G]$ -modules,

$$V^{\otimes n} = W^{\langle \chi_W, \chi_{V^{\otimes n}} \rangle} \oplus \left(\bigoplus_{i=1}^r V_i^{a_i} \right)$$

Hence *W* is a direct summand of $V^{\otimes n}$.



Question 10

Construct the character table of A_6 as follows.

- (a) Use the conjugation action of A_5 on its set of Sylow 5-subgroups to construct an injective homomorphism $\sigma: A_5 \to A_6$, and prove that its image contains no 3-cycles.
- (b) Use the left-multiplication action of A_6 on A_6/σ (A_5) to construct an automorphism $\tau: A_6 \to A_6$ and prove that τ swaps the two conjugacy classes in A_6 consisting of elements of order 3.
- (c) Use the natural 2-transitive action on A_6 on $\{1,2,3,4,5,6\}$ together with part (b) to write down two irreducible characters χ_2 and χ_3 of A_6 , each of degree 5.
- (d) Use $\Lambda^2 \chi_2$ and $\chi_2 \chi_3$ and the Orthogonality Theorems to complete the character table of A_6 .

Proof. (a) Note that $|A_5| = 60 = 5 \times 12$. By Sylow 1st theorem, A_5 has Sylow 5-subgroups. By Sylow 3rd theorem, the number a of Sylow 5-subgroups satisfies

$$a \equiv 1 \mod 5$$
, $a \mid 12$

which implies that a = 1 or 6.

Note that A_5 has 24 elements of order 5, each of which generates a cycle subgroup of A_5 of order 5. Hence A_5 has exactly 6 Sylow 5-subgroups. Consider the action of A_5 on Syl₅(A_5) by conjugation:

$$g \cdot H := gHg^{-1}$$

This defines a group homomorphism $\sigma: A_5 \to S_6$. It is clear that σ is non-trivial. Since A_5 is simple, σ is injective. On the other hand, we know that A_5 is generated by all 3-cycles, whose image under σ is of order 3. The order 3 elements in S_6 are a product of disjoint 3-cycles, and hence are elements of A_6 . We deduce that $\sigma(A_5) \subseteq A_6$. Hence we have an injective homomorphism $\sigma: A_5 \to A_6$.

By Sylow 2nd theorem, the action of A_5 on $\mathrm{Syl}_5(A_5)$ is transitive. By orbit-stabliser theorem, the stabliser of any $H \in \mathrm{Syl}_5(A_5)$ is the identity e. Hence for any $g \in \sigma(A_5) \setminus \{e\}$, g fixes no points in $\{1,2,3,4,5,6\}$. In particular, $\sigma(A_5)$ contains no 3-cycles.

(b) The left multiplication action of A_6 on $A_6/\sigma(A_5)$ gives a group homomorphism $\tau: A_6 \to \operatorname{Sym}(A_6/\sigma(A_5)) \cong S_6$. It is clear that τ is non-trivial. Since A_6 is simple, τ is injective. Hence $\tau: A_6 \to A_6 \leqslant S_6$ is an automorphism.

 A_6 has two conjugacy classes whose elements are of order 3: one is the set of all 3-cycles; the other is the set of all products of two disjoint 3-cycles. Each of them has 40 elements. Since τ is an automorphism of A_6 , it either preserves the two classes, or swaps the two classes.

From part (a) we know that all elements of order 3 in $\sigma(A_5)$ are of the form (abc)(def), where $\{a,b,c,d,e,f\} = \{1,2,3,4,5,6\}$. Take $(abc)(def) \in \sigma(A_5)$. We note that $(abc)(def)\sigma(A_5) = \sigma(A_5)$, so (abc)(def) fixes $\sigma(A_5) \in A_6/\sigma(A_5)$. $\tau((abc)(def))$ has a fixed point, and hence can only be a 3-cycle in A_6 . We deduce that τ swaps the two conjugacy classes consisting of elements of order 3.

(c) First we consider the permutation representation of S^6 on $V = \mathbb{C}^6$. By Question 2 in Sheet 1, it is the direct sum of the simple sub- $\mathbb{C}[S_6]$ -modules U and W, where

$$U := \left\langle \sum_{i=1}^{6} x_i \right\rangle, \qquad W := \left\{ \sum_{i=1}^{6} a_i x_i : \sum_{i=1}^{6} a_i = 0 \right\}$$

It is clear that $\operatorname{Res}_{A_6}^{S_6}U$ can only be the trivial representation. Hence $\chi_2 := \operatorname{Res}_{A_6}^{S_6}\chi_W = \operatorname{Res}_{A_6}^{S_6}\chi_V - 1$. (The restriction $\operatorname{Res}_{A_6}^{S_6}W$ is not necessarily irreducible, but once we calculate the character it will be clear). By Question 6.(a) in Sheet 3, $\chi_2(g) = \operatorname{Fix}(g) - 1$.

A₆ has 7 conjugacy classes:

A_6	e	(123)	(12345)	(13524)	(12)(34)	(123)(456)	(1234)(56)
$ g^G $	1	40	72	72	45	40	90
χ2	5	2	0	1	1	-1	-1

Note that

$$\langle \chi_2, \chi_2 \rangle = \frac{1}{360} (5^2 + 2^2 \times 40 + 1 \times 45 + 1 \times 40 + 1 \times 90) = 1$$

Hence χ_2 is irreducible.

W has another $\mathbb{C}[A_6]$ -module structure, given by $\rho(g)(x_i) := x_{\tau(g) \cdot i}$. The resulting character χ_3 swaps the value on the conjugacy classes of (123) and of (123)(456), and fixes all another values. Then χ_3 is also an irreducible character of A_6 .

Now we have:

A_6	e	(123)	(12345)	(13524)	(12)(34)	(123)(456)	(1234)(56)
$ g^G $	1	40	72	72	45	40	90
χ_1	1	1	1	1	1	1	1
χ_2	5	2	0	0	1	-1	-1
X 3	5	-1	0	0	1	2	-1

(d) We compute $\bigwedge^2 \chi_2$ using Proposition 5.21.(f). For $g \in A_6$,

$$\Lambda^2 \chi_2(g) = \frac{1}{2} \left(\chi_2(g)^2 - \chi_2(g^2) \right) = \frac{1}{2} \left(\chi_2(g)^2 - \chi_V(g^2) - 1 \right)$$

This gives

A_6	e	(123)	(12345)	(13524)	(12)(34)	(123)(456)	(1234)(56)
<i>X</i> 2	5	2	0	0	1	-1	-1
$\Lambda^2 \chi_2$	10	1	0	0	-2	1	0

Since $\langle \bigwedge^2 \chi_2, \bigwedge^2 \chi_2 \rangle = 1$, $\bigwedge^2 \chi_2$ is irreducible.

We compute $S^2 \chi_2$ using $S^2 \chi_2 = \chi_2^2 - \bigwedge^2 \chi_2$, which gives

A_6	e	(123)	(12345)	(13524)	(12)(34)	(123)(456)	(1234)(56)	
X 2	5	2	0	0	1	-1	-1	
$S^2 \chi_2$	15	3	0	0	3	0	1	

We have

$$\langle S^2 \chi_2, S^2 \chi_2 \rangle = 3, \qquad \langle S^2 \chi_2, \chi_1 \rangle = 1, \qquad \langle S^2 \chi_2, \chi_2 \rangle = 1$$

Hence $S^2 \chi_2 = \chi_1 + \chi_2 + \chi_5$, where χ_5 is an irreducible character, given by

$$A_6$$
 | e (123) (12345) (13524) (12)(34) (123)(456) (1234)(56)
 χ_5 | 9 | 0 | -1 | -1 | 1 | 0 | 1

We can write down the incomplete character table as follows:

	1	(100)	(10045)	(10504)	(10) (0.4)	(100) (450)	(1004) (50)
A_6	e	(123)	(12345)	(13524)	(12)(34)	(123)(456)	(1234)(56)
$ g^G $	1	40	72	72	45	40	90
χ_1	1	1	1	1	1	1	1
χ_2	5	2	0	0	1	-1	-1
χз	5	-1	0	0	1	2	-1
$\Lambda^2 \chi_2$	10	1	0	0	-2	1	0
χ_5	9	0	-1	-1	1	0	1
χ_6	a_{61}	a_{62}	a_{63}	a_{64}	a_{65}	a_{66}	a_{67}
χ_7	a_{71}	a_{72}	a_{73}	a_{74}	a_{75}	a_{76}	a_{77}

Since $|A_6| = 360 = 1^2 + 5^2 + 5^2 + 10^2 + 9^2 + a_{61}^2 + a_{71}^2$, we have $a_{61} = a_{71} = 8$.

We can complete the table by using column orthogonality relation successively. The complete table is given as follows:

A_6	e	(123)	(12345)	(13524)	(12)(34)	(123)(456)	(1234)(56)
$ g^G $	1	40	72	72	45	40	90
χ_1	1	1	1	1	1	1	1
χ_2	5	2	0	0	1	-1	-1
X 3	5	-1	0	0	1	2	-1
$\wedge^2 \chi_2$	10	1	0	0	-2	1	0
X 5	9	0	-1	-1	1	0	1
χ_6	8	-1	$\frac{1}{2}(1+\sqrt{5})$	$\frac{1}{2}(1-\sqrt{5})$	0	-1	0
X 7	8	-1	$\frac{1}{2}(1-\sqrt{5})$	$\frac{1}{2}(1+\sqrt{5})$	0	-1	0

Nia job!