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Section A: Introductory

Question 1

Let E1, Es, E3 be vector fields on 8% such that [E;, E}] = —2¢;xEj. For A > 0, let
X1 =MAE1, Xo=F; X3=E3
and define a Riemannian metric g on S by the condition that
9 (Xi, Xj) = bij
(a) Show that (S?,g) is Einstein if and only if A = 1.

(b) Find a necessary and sufficient condition on A so that the scalar curvature of (83, g) is zero.

Question 2
Let (8™, g) be the round n-sphere and let h be the product metric on 8™ x S™.

Show that (S™ x 8™, h) is Einstein with non-negative sectional curvature.

Question 3

(a) Show that the induced metric on an oriented minimal hypersurface in (R™*1, go) is flat if and only if
the minimal hypersurface is totally geodesic.

(b) Let

1
M = {(21,22) eC?: |21’ = |2’2| = ﬂ} §83

and let g be the induced metric on M from the round metric on 8. Show that (M, g) is flat and that
M is a minimal hypersurface in S? which is not totally geodesic.

Section B: Core

Question 4

Let M be SO(n),O(n),SU(m) or U(m) and let g be the bi-invariant metric on M given by
ga(B,C)=—tr (A"'BA™'0)
forall Ae M and B,C € TaoM. Let L4 : M — M denote left-multiplication by A and let
X = {vector fields X on M : (L4), X =X VAe M}

(a) Show that, for all X,Y € X,

VxY = Z[X,Y]

1
2
[You may assume that [X,Y](I) is the matriz commutator of X (I) and Y (I), where I is the identity
matriz.|



(b) Show that the sectional curvatures of (M, g) are non-negative and that (M, g) is flat if and only if n = 2
orm = 1.

(c) Let m > 1 and define a submanifold D of U(m) by
D= {diag (ewl, e ,eiem) 20,0, € R} C U(m)
Show that D is a flat totally geodesic submanifold in (U(m), g).

Proof. (a) For any X,Z € X, the Koszul formula is given by

Q(VXX; Z) = % (X(g(X7 Z)) + X(g(X7 Z)) - Z(g(X7X)) - g(X7 [Xv Z]) + g(X7 [Z7X]) +g(Z7 [X7 X]))
= X(g(X, 7)) ~ 3 Z(s(X, X)) + (X, [Z, X))
Since X and Z are invariant, and ¢ is bi-invariant, we have

9a(X, Z) = ga((La)« X, (La)«Z) = ((La)*9)1(X, Z) = g1(X, Z)

for all A € M. Hence g(X, Z) is constant on M, and X (g(X,Z)) = 0. Similarly Z(¢(X, X)) = 0.
Therefore we have ¢(Vx X, Z) = g(X, [Z, X]).

Next, we claim that g(X,[Z, X]) = 0. Since this is constant on M, it suffices to look at the identity
I € M. By the hint we have

9(X, (2, X)) = g1(X,[Z, X)) = g1(X, ZX — XZ) =tx(XZX — XX Z) = tr(XZX) — tr(XZX) = 0

We deduce that g(Vx X, Z) = 0. We know that X = T;M is the Lie algebra of M. In particular X
spans I'(TM) as a C°°(M)-module. This is enough to deduce that VxX = 0. Then for X, Y € X

0=Vxiv(X+Y)=VxX+VyY +VxY +VyX =VxY +VyX

And finally
1 1
VXY—i(VXY—VyX)—§[X,Y] J

(b) For X,Y,Z € X, the Riemann curvature is given by

R(X,Y)Z =VxVyZ —VyVxZ —Vixy|Z
1

1 1
= XY, 2] - (Y. [X, 2] - 5[IX. Y], Z]

1
- _J[X,Y],Z
HESNs
For a plane 0 € T4 M, we can find X,Y € X such that X|, and Y|, form a orthonormal basis of o.

Then the sectional curvature is given by

R(X,Y,Y,X)

Ko) = X X0 ¥) g (X V2

GR(X, Y)Y, X) =~ 14([[X, V], Y], X)

Using the same method as above (looking at the identity), we can prove that g([[X,Y],Y], X) =
g9([X,Y],[Y, X]). Hence

K(0) = 3o(IX.Y],[X,Y]) > 0

by the positivity of g. Hence all sectional curvatures are non-negative. \/


Andrea

Andrea


Suppose that (M,g) are flat. Then K(o) = 0 for all ¢ C T4yM and A € M. For orthonormal
X,Y € X, [X,Y] =0. Hence X is an Abelian Lie algebra. The exponential map exp; : X — M is
surjective onto the connected component of I € M, which is hence an Abelian subgroup of M. From
linear algebra this implies that n = 2 or m = 1, because SO(n) and SU(n) are non-Abelian for n > 2
and m > 1.

Conversely, suppose that n = 2 or m = 1. We know that M is Abelian as a Lie group. Hence the
Lie algebra X is Abelian. [X,Y] = 0 for all X,Y € X. This implies that K(c) = 0 for all . By
Proposition 4.6, R =0 on M and hence (M, g) is flat. \/

(c) Note that D is an Abelian subgroup of M with the induced bi-invariant metric. By the same reasoning

. . ik waks Jusk ay before | given AeD Lat M—>T i an issmelay sud stdy D b D
in (b), we can show that D is flat. \/ Cla sends qeod. o geslnics | ot expmap w Hot, €xe.mep)

p
To show that D is totally geodesic, we need, fo show that for A € D and X € ToD C T4M, the
geodesic Y(t) = exp,(tX) € D for all t € B/ In fact it suffices to prove this for A = I. (This is some

intuition from bi-invariance. I am not sure...) We work in the local coordinates (61, ..., 6,,) on D with
— 9. D T don'F geb wlat Yoo medun it Fhe vem K,
the frame vector fields 01, ...,0p,. For X = X'0; € Ti M, Tz Tt T . trame. o Tab
$9€5 1 o] whoe  Eys dinglon 2. o)
: it X1 itXm ’ B
exp[(tX) = dlag(el Y ) eD CD Thew by defuibon  exp (6X) - erp, (diagLitX'| [iex1l

_ = diag (e8! 07
il bais €D by Jehuikon of D.

which proves that D is geodesic at I, and hence is totally geodesic. O
Peshect!
Question 5
(a) Lety:[0,L] — (M, g) be a geodesic and let f : (—e¢,€) x [0, L] — M be a variation of 4 so that the curve
vs : [0, L] — (M, g) given by ~s(t) = f(s,t) is a geodesic for all s € (—¢,€). Show that the variation
field Vy of f is a Jacobi field along .
(b) Let
H" = {(.’L’l, v an-i-l) € Rn+1 : Zx? - m%%kl = _17xn+1 > 0}
i=1
and let g be the restriction of h = Y1 dz? — da?,, on R™™! to H". Given that the normalized
geodesics v in (H", g) with v(0) = x and 7/(0) = X are given by
~v(t) = zcosht + X sinh ¢
show that (H", g) has constant sectional curvature —1.
Proof. (a) This is the proof of Lemma 6.3 verbatim. We have
D2 of of of
A5 = Vatfvatfg = Vatfv&fg (symmetry lemma)
of of of\of
=Vo.tVo,r= —R| =—, = | = L 6.1
O Y0 By (as’ at ) ot (Lemma. 6.1)
_ of of\of of _ ’_
= R(c?s’ 6t> E (Vatfa = vv;% = O)
. . 6f af / " / / 3
Take s = 0 in the above equation. We have s = Vi and 5= Hence V' + R(Vy,7')y' = 0. This
s

implies that Vy is a Jacobi field. \/

IThis is again intuition from matrix exponentiation. I don’t know if there is a clean way to deduce it rigourously.
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(b) Fix x € H™. Let o be a plane in T, H". Let X,Y be an orthonormal basis of o. Let 7 : [0, L] — H"
be a geodesic such that (0) = z and +/(0) = X. Let « : [0, L] — H" be a geodesic such that a(0) = x
and o/(0) =Y. Then we know that () = x cosht+ X sinh¢ and a(s) = x cosh s+ Y sinh s. We define
f:]0,L] x [0, L] — H™ by

f(s,t) ;== a(s)cosht + X sinht = (x cosh s + Y sinh s) cosht + X sinht

Then f(0,t) = y(t), and s : t — f(s,t) is a geodesic for each fixed s. By (a), V¥ is a Jacobi field

along ~:
of

Vi(t) = 5(0, t) = (zsinh s + Y cosh s) cosht + X sinh ¢
Obviously V¢(0) = Y and Vi’ = V;. The Jacobi equation V}' + R(Vy,7')y = 0 at t = 0 gives
Y + R(Y, X)X =0. Since X and Y are orthonormal, we have

K(o) = K(X,Y) =g(R(Y,X)X,Y) =g(-Y,Y) = -1

We conclude that H" has constant sectional curvature —1. \/ Pv‘(u\' O

Section C: Optional

Question 6

Let (§?"*1,g) be the round (2n + 1)-sphere, view §***1 C C"*! and let 7 : §2"*! — CP" be the projection
map. For z € 82" we have E(z) = iz (identifying tangent vectors in C* with C"), ker dr, = Span{E(z)}
and we let H, = {X € T.8" . g(X, E(2)) = 0} and @, =dm, : H, = Ty(,)CP" The Fubini-Study
metric h on CP" is then given by

hw(z) (X7 Y) =9z ((I)_I(X)a (I)_l(Y))

z z

(a) For any vector field X on CP" we define a vector field X on §2n+! by

If V is the Levi-Civita connection of g and V is the Levi-Civita connection of i, show that, for all vector

fields X,Y on CP"

~ —

~ 1 o~ ~
VeV =VxY + -g([X,Y],E)E

2
[Hint: Show that [X,Y] — [ﬂ] and [X, E] are multiples of E .|

(b) Show that v : (—¢,e) — (CP", h) is a geodesic with v(0) = 7(z) if and only if v = 7 o7 where
Y :(—€€) = (8?1 g) is a geodesic with 5(0) = z and 7/(0) € H..

(c) Since X € H, if and only if iX € H,, we can define J = Jy(,y : Tyr(,yCP" — T (,,CP" by
J(X) = dr. (i®;1(X))

which then extends to a map J from vector fields to vector fields on CP". Let X,Y € T )CP" be
orthogonal unit vectors and write Y = cosaZ + sin aJ X where Z is orthogonal to JX and unit length.
Show that the sectional curvature K of (CP", h) satisfies

K(X,Y)=1+3sin’a
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[Hint: Let v be a geodesic in (CP™, h) with v(0) = w(z) and v'(0) = X, and consider a variation f(s,t)
of v so that vs(t) = f(s,t) is geodesic for all s such that v5(0) = w(z) and v4(0) = cos sX +sinsY. You
may want to consider the cases sina = 0 and cosa = 0 first.|



