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Section A: Introductory

Question 1

Let E1, E2, E3 be vector fields on S3 such that [Ei, Ej ] = −2εijkEk. For λ > 0, let

X1 = λE1, X2 = E2, X3 = E3

and define a Riemannian metric g on S3 by the condition that

g (Xi, Xj) = δij

(a) Show that
(
S3, g

)
is Einstein if and only if λ = 1.

(b) Find a necessary and sufficient condition on λ so that the scalar curvature of
(
S3, g

)
is zero.

Question 2

Let (Sn, g) be the round n-sphere and let h be the product metric on Sn × Sn.

Show that (Sn × Sn, h) is Einstein with non-negative sectional curvature.

Question 3

(a) Show that the induced metric on an oriented minimal hypersurface in
(
Rn+1, g0

)
is flat if and only if

the minimal hypersurface is totally geodesic.

(b) Let

M =

{
(z1, z2) ∈ C2 : |z1| = |z2| =

1√
2

}
⊆ S3

and let g be the induced metric on M from the round metric on S3. Show that (M, g) is flat and that
M is a minimal hypersurface in S3 which is not totally geodesic.

Section B: Core

Question 4

Let M be SO(n),O(n),SU(m) or U(m) and let g be the bi-invariant metric on M given by

gA(B,C) = − tr
(
A−1BA−1C

)
for all A ∈M and B,C ∈ TAM . Let LA : M →M denote left-multiplication by A and let

X = {vector fields X on M : (LA)∗X = X ∀A ∈M}

(a) Show that, for all X,Y ∈ X ,

∇XY =
1

2
[X,Y ]

[You may assume that [X,Y ](I) is the matrix commutator of X(I) and Y (I), where I is the identity
matrix.]
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(b) Show that the sectional curvatures of (M, g) are non-negative and that (M, g) is flat if and only if n = 2

or m = 1.

(c) Let m > 1 and define a submanifold D of U(m) by

D =
{

diag
(

eiθ1 , . . . , eiθm
)

: θ1, . . . , θm ∈ R
}
⊆ U(m)

Show that D is a flat totally geodesic submanifold in (U(m), g).

Proof. (a) For any X,Z ∈ X , the Koszul formula is given by

g(∇XX,Z) =
1

2
(X(g(X,Z)) +X(g(X,Z))− Z(g(X,X))− g(X, [X,Z]) + g(X, [Z,X]) + g(Z, [X,X]))

= X(g(X,Z))− 1

2
Z(g(X,X)) + g(X, [Z,X])

Since X and Z are invariant, and g is bi-invariant, we have

gA(X,Z) = gA((LA)∗X, (LA)∗Z) = ((LA)∗g)I(X,Z) = gI(X,Z)

for all A ∈ M . Hence g(X,Z) is constant on M , and X(g(X,Z)) = 0. Similarly Z(g(X,X)) = 0.
Therefore we have g(∇XX,Z) = g(X, [Z,X]).

Next, we claim that g(X, [Z,X]) = 0. Since this is constant on M , it suffices to look at the identity
I ∈M . By the hint we have

g(X, [Z,X]) = gI(X, [Z,X]) = gI(X,ZX −XZ) = tr(XZX −XXZ) = tr(XZX)− tr(XZX) = 0

We deduce that g(∇XX,Z) = 0. We know that X ∼= TIM is the Lie algebra of M . In particular X
spans Γ(TM) as a C∞(M)-module. This is enough to deduce that ∇XX = 0. Then for X,Y ∈ X

0 = ∇X+Y (X + Y ) = ∇XX +∇Y Y +∇XY +∇YX = ∇XY +∇YX

And finally

∇XY =
1

2
(∇XY −∇YX) =

1

2
[X,Y ]

(b) For X,Y, Z ∈ X , the Riemann curvature is given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

=
1

4
[X, [Y,Z]]− 1

4
[Y, [X,Z]]− 1

2
[[X,Y ], Z]

= −1

4
[[X,Y ], Z]

For a plane σ ⊆ TAM , we can find X,Y ∈ X such that X|A and Y |A form a orthonormal basis of σ.
Then the sectional curvature is given by

K(σ) =
R(X,Y, Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
= g(R(X,Y )Y,X) = −1

4
g([[X,Y ], Y ], X)

Using the same method as above (looking at the identity), we can prove that g([[X,Y ], Y ], X) =

g([X,Y ], [Y,X]). Hence

K(σ) =
1

4
g([X,Y ], [X,Y ]) > 0

by the positivity of g. Hence all sectional curvatures are non-negative.
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Suppose that (M, g) are flat. Then K(σ) = 0 for all σ ⊆ TAM and A ∈ M . For orthonormal
X,Y ∈ X , [X,Y ] = 0. Hence X is an Abelian Lie algebra. The exponential map expI : X → M is
surjective onto the connected component of I ∈M , which is hence an Abelian subgroup of M . From
linear algebra this implies that n = 2 or m = 1, because SO(n) and SU(n) are non-Abelian for n > 2

and m > 1.

Conversely, suppose that n = 2 or m = 1. We know that M is Abelian as a Lie group. Hence the
Lie algebra X is Abelian. [X,Y ] = 0 for all X,Y ∈ X . This implies that K(σ) = 0 for all σ. By
Proposition 4.6, R = 0 on M and hence (M, g) is flat.

(c) Note that D is an Abelian subgroup ofM with the induced bi-invariant metric. By the same reasoning
in (b), we can show that D is flat.

To show that D is totally geodesic, we need to show that for A ∈ D and X ∈ TAD ⊆ TAM , the
geodesic γ(t) = expA(tX) ∈ D for all t ∈ R. In fact it suffices to prove this for A = I. (This is some
intuition from bi-invariance. I am not sure...) We work in the local coordinates (θ1, ..., θm) on D with
the frame vector fields ∂1, ..., ∂m. For X = Xi∂i ∈ TIM ,

expI(tX) = diag(eitX
1
, ..., eitX

m
) ∈ D 1

which proves that D is geodesic at I, and hence is totally geodesic.

Question 5

(a) Let γ : [0, L]→ (M, g) be a geodesic and let f : (−ε, ε)× [0, L]→M be a variation of γ so that the curve
γs : [0, L] → (M, g) given by γs(t) = f(s, t) is a geodesic for all s ∈ (−ε, ε). Show that the variation
field Vf of f is a Jacobi field along γ.

(b) Let

Hn =

{
(x1, . . . , xn+1) ∈ Rn+1 :

n∑
i=1

x2i − x2n+1 = −1, xn+1 > 0

}

and let g be the restriction of h =
∑n

i=1 dx2i − dx2n+1 on Rn+1 to Hn. Given that the normalized
geodesics γ in (Hn, g) with γ(0) = x and γ′(0) = X are given by

γ(t) = x cosh t+X sinh t

show that (Hn, g) has constant sectional curvature −1.

Proof. (a) This is the proof of Lemma 6.3 verbatim. We have

D2

Dt2
∂f

∂s
= ∇∂tf∇∂tf

∂f

∂s
= ∇∂tf∇∂sf

∂f

∂t
(symmetry lemma)

= ∇∂sf∇∂tf
∂f

∂t
−R

(
∂f

∂s
,
∂f

∂t

)
∂f

∂t
(Lemma 6.1)

= −R
(
∂f

∂s
,
∂f

∂t

)
∂f

∂t
(∇∂tf

∂f

∂t
= ∇γ′sγ

′
s = 0)

Take s = 0 in the above equation. We have
∂f

∂s
= Vf and

∂f

∂t
= γ′. Hence V ′′f +R(Vf , γ

′)γ′ = 0. This
implies that Vf is a Jacobi field.

1This is again intuition from matrix exponentiation. I don’t know if there is a clean way to deduce it rigourously.
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(b) Fix x ∈ Hn. Let σ be a plane in TxHn. Let X,Y be an orthonormal basis of σ. Let γ : [0, L] → Hn
be a geodesic such that γ(0) = x and γ′(0) = X. Let α : [0, L]→ Hn be a geodesic such that α(0) = x

and α′(0) = Y . Then we know that γ(t) = x cosh t+X sinh t and α(s) = x cosh s+Y sinh s. We define
f : [0, L]× [0, L]→ Hn by

f(s, t) := α(s) cosh t+X sinh t = (x cosh s+ Y sinh s) cosh t+X sinh t

Then f(0, t) = γ(t), and γs : t 7→ f(s, t) is a geodesic for each fixed s. By (a), Vf is a Jacobi field
along γ:

Vf (t) =
∂f

∂s
(0, t) = (x sinh s+ Y cosh s) cosh t+X sinh t

Obviously Vf (0) = Y and V ′′f = Vf . The Jacobi equation V ′′f + R(Vf , γ
′)γ′ = 0 at t = 0 gives

Y +R(Y,X)X = 0. Since X and Y are orthonormal, we have

K(σ) = K(X,Y ) = g(R(Y,X)X,Y ) = g(−Y, Y ) = −1

We conclude that Hn has constant sectional curvature −1.

Section C: Optional

Question 6

Let
(
S2n+1, g

)
be the round (2n+ 1)-sphere, view S2n+1 ⊆ Cn+1 and let π : S2n+1 → CPn be the projection

map. For z ∈ S2n+1 we have E(z) = iz (identifying tangent vectors in Cn with Cn), ker dπz = Span{E(z)}
and we let Hz =

{
X ∈ TzS2n+1 : g(X,E(z)) = 0

}
and Φz = dπz : Hz → Tπ(z)CPn The Fubini-Study

metric h on CPn is then given by

hπ(z)(X,Y ) = gz
(
Φ−1z (X),Φ−1z (Y )

)
(a) For any vector field X on CPn we define a vector field X̂ on S2n+1 by

X̂(z) = Φ−1z (X(π(z)))

If ∇̂ is the Levi-Civita connection of g and ∇ is the Levi-Civita connection of h, show that, for all vector
fields X,Y on CPn

∇̂
X̂
Ŷ = ∇̂XY +

1

2
g([X̂, Ŷ ], E)E

[Hint: Show that [X̂, Ŷ ]− [X̂, Y ] and [X̂, E] are multiples of E.]

(b) Show that γ : (−ε, ε) → (CPn, h) is a geodesic with γ(0) = π(z) if and only if γ = π ◦ γ̂ where
γ̂ : (−ε, ε)→

(
S2n+1, g

)
is a geodesic with γ̂(0) = z and γ̂′(0) ∈ Hz.

(c) Since X ∈ Hz if and only if iX ∈ Hz, we can define J = Jπ(z) : Tπ(z)CPn → Tπ(z)CPn by

J(X) = dπz
(
iΦ−1z (X)

)
which then extends to a map J from vector fields to vector fields on CPn. Let X,Y ∈ Tπ(z)CPn be
orthogonal unit vectors and write Y = cosαZ + sinαJX where Z is orthogonal to JX and unit length.
Show that the sectional curvature K of (CPn, h) satisfies

K(X,Y ) = 1 + 3 sin2 α
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[Hint: Let γ be a geodesic in (CPn, h) with γ(0) = π(z) and γ′(0) = X, and consider a variation f(s, t)

of γ so that γs(t) = f(s, t) is geodesic for all s such that γs(0) = π(z) and γ′s(0) = cos sX + sin sY . You
may want to consider the cases sinα = 0 and cosα = 0 first.]


