Peize Liu St. Peter's College University of Oxford

Problem Sheet 3

C3.11: Riemannian Geometry

Section A: Introductory

Question 1

Let E_1, E_2, E_3 be vector fields on S^3 such that $[E_i, E_j] = -2\epsilon_{ijk}E_k$. For $\lambda > 0$, let

$$X_1 = \lambda E_1, \quad X_2 = E_2, \quad X_3 = E_3$$

and define a Riemannian metric g on S^3 by the condition that

$$g(X_i, X_j) = \delta_{ij}$$

- (a) Show that (S^3, g) is Einstein if and only if $\lambda = 1$.
- (b) Find a necessary and sufficient condition on λ so that the scalar curvature of (S^3, g) is zero.

Question 2

Let (S^n, g) be the round n-sphere and let h be the product metric on $S^n \times S^n$.

Show that $(S^n \times S^n, h)$ is Einstein with non-negative sectional curvature.

Question 3

- (a) Show that the induced metric on an oriented minimal hypersurface in (\mathbb{R}^{n+1}, g_0) is flat if and only if the minimal hypersurface is totally geodesic.
- (b) Let

$$M = \left\{ (z_1, z_2) \in \mathbb{C}^2 : |z_1| = |z_2| = \frac{1}{\sqrt{2}} \right\} \subseteq \mathcal{S}^3$$

and let g be the induced metric on M from the round metric on S^3 . Show that (M, g) is flat and that M is a minimal hypersurface in S^3 which is not totally geodesic.

Section B: Core

Question 4

Let M be SO(n), O(n), SU(m) or U(m) and let q be the bi-invariant metric on M given by

$$g_A(B,C) = -\operatorname{tr}\left(A^{-1}BA^{-1}C\right)$$

for all $A \in M$ and $B, C \in T_AM$. Let $L_A : M \to M$ denote left-multiplication by A and let

$$\mathcal{X} = \{ \text{vector fields } X \text{ on } M : (L_A)_* X = X \ \forall A \in M \}$$

(a) Show that, for all $X, Y \in \mathcal{X}$,

$$\nabla_X Y = \frac{1}{2} [X, Y]$$

[You may assume that [X,Y](I) is the matrix commutator of X(I) and Y(I), where I is the identity matrix.]

- (b) Show that the sectional curvatures of (M, g) are non-negative and that (M, g) is flat if and only if n = 2 or m = 1.
- (c) Let m > 1 and define a submanifold D of U(m) by

$$D = \left\{ \operatorname{diag} \left(e^{i\theta_1}, \dots, e^{i\theta_m} \right) : \theta_1, \dots, \theta_m \in \mathbb{R} \right\} \subseteq \mathrm{U}(m)$$

Show that D is a flat totally geodesic submanifold in (U(m), g).

Proof. (a) For any $X, Z \in \mathcal{X}$, the Koszul formula is given by

$$g(\nabla_X X, Z) = \frac{1}{2} \left(X(g(X, Z)) + X(g(X, Z)) - Z(g(X, X)) - g(X, [X, Z]) + g(X, [Z, X]) + g(Z, [X, X]) \right)$$
$$= X(g(X, Z)) - \frac{1}{2} Z(g(X, X)) + g(X, [Z, X])$$

Since X and Z are invariant, and g is bi-invariant, we have

$$g_A(X,Z) = g_A((L_A)_*X, (L_A)_*Z) = ((L_A)^*g)_I(X,Z) = g_I(X,Z)$$

for all $A \in M$. Hence g(X, Z) is constant on M, and X(g(X, Z)) = 0. Similarly Z(g(X, X)) = 0. Therefore we have $g(\nabla_X X, Z) = g(X, [Z, X])$.

Next, we claim that g(X, [Z, X]) = 0. Since this is constant on M, it suffices to look at the identity $I \in M$. By the hint we have

$$g(X, [Z, X]) = g_I(X, [Z, X]) = g_I(X, ZX - XZ) = \operatorname{tr}(XZX - XXZ) = \operatorname{tr}(XZX) - \operatorname{tr}(XZX) = 0$$

We deduce that $g(\nabla_X X, Z) = 0$. We know that $\mathcal{X} \cong T_I M$ is the Lie algebra of M. In particular \mathcal{X} spans $\Gamma(TM)$ as a $C^{\infty}(M)$ -module. This is enough to deduce that $\nabla_X X = 0$. Then for $X, Y \in \mathcal{X}$

$$0 = \nabla_{X+Y}(X+Y) = \nabla_X X + \nabla_Y Y + \nabla_X Y + \nabla_Y X = \nabla_X Y + \nabla_Y X$$

And finally

$$\nabla_X Y = \frac{1}{2}(\nabla_X Y - \nabla_Y X) = \frac{1}{2}[X, Y] \quad \checkmark$$

(b) For $X, Y, Z \in \mathcal{X}$, the Riemann curvature is given by

$$\begin{split} R(X,Y)Z &= \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z \\ &= \frac{1}{4} [X,[Y,Z]] - \frac{1}{4} [Y,[X,Z]] - \frac{1}{2} [[X,Y],Z] \\ &= -\frac{1}{4} [[X,Y],Z] \end{split}$$

For a plane $\sigma \subseteq T_A M$, we can find $X, Y \in \mathcal{X}$ such that $X|_A$ and $Y|_A$ form a orthonormal basis of σ . Then the sectional curvature is given by

$$K(\sigma) = \frac{R(X, Y, Y, X)}{g(X, X)g(Y, Y) - g(X, Y)^2} = g(R(X, Y)Y, X) = -\frac{1}{4}g([[X, Y], Y], X)$$

Using the same method as above (looking at the identity), we can prove that g([[X,Y],Y],X) = g([X,Y],[Y,X]). Hence

$$K(\sigma) = \frac{1}{4}g([X,Y],[X,Y]) \geqslant 0$$

by the positivity of g. Hence all sectional curvatures are non-negative.

Suppose that (M,g) are flat. Then $K(\sigma)=0$ for all $\sigma\subseteq \mathrm{T}_AM$ and $A\in M$. For orthonormal $X,Y\in\mathcal{X},\ [X,Y]=0$. Hence \mathcal{X} is an Abelian Lie algebra. The exponential map $\exp_I:\mathcal{X}\to M$ is surjective onto the connected component of $I\in M$, which is hence an Abelian subgroup of M. From linear algebra this implies that n=2 or m=1, because $\mathrm{SO}(n)$ and $\mathrm{SU}(n)$ are non-Abelian for n>2 and m>1.

Conversely, suppose that n=2 or m=1. We know that M is Abelian as a Lie group. Hence the Lie algebra \mathcal{X} is Abelian. [X,Y]=0 for all $X,Y\in\mathcal{X}$. This implies that $K(\sigma)=0$ for all σ . By Proposition 4.6, R=0 on M and hence (M,g) is flat.

(c) Note that D is an Abelian subgroup of M with the induced bi-invariant metric. By the same reasoning in (b), we can show that D is flat. \int if works, Just as before, given, $A \in D$ LA: $M \to M$ is an isometry and study D into DClassification gendences of the expense in the expense in the expense.

To show that D is totally geodesic, we need to show that for $A \in D$ and $X \in T_AD \subseteq T_AM$, the geodesic $\gamma(t) = \exp_A(tX) \in D$ for all $t \in \mathbb{R}$. In fact it suffices to prove this for A = I. (This is some intuition from bi-invariance. I am not sure...) We work in the local coordinates $(\theta_1, ..., \theta_m)$ on D with the frame vector fields $\partial_1, ..., \partial_m$. For $X = X^i \partial_i \in T_IM$, T_ID

The coordinates
$$g_{...}$$
 $g_{...}$ $g_{...}$ diag ($e^{itX^1},...,e^{itX^m}$) $\in D$

Then by definition $exp_{\mathcal{I}}(tx) = exp_{\mathcal{I}}(tx) = e$

which proves that D is geodesic at I, and hence is totally geodesic.

Perfect!

Question 5

- (a) Let $\gamma:[0,L] \to (M,g)$ be a geodesic and let $f:(-\epsilon,\epsilon) \times [0,L] \to M$ be a variation of γ so that the curve $\gamma_s:[0,L] \to (M,g)$ given by $\gamma_s(t)=f(s,t)$ is a geodesic for all $s\in(-\epsilon,\epsilon)$. Show that the variation field V_f of f is a Jacobi field along γ .
- (b) Let

$$\mathcal{H}^{n} = \left\{ (x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : \sum_{i=1}^{n} x_{i}^{2} - x_{n+1}^{2} = -1, x_{n+1} > 0 \right\}$$

and let g be the restriction of $h = \sum_{i=1}^n \mathrm{d} x_i^2 - \mathrm{d} x_{n+1}^2$ on \mathbb{R}^{n+1} to \mathcal{H}^n . Given that the normalized geodesics γ in (\mathcal{H}^n, g) with $\gamma(0) = x$ and $\gamma'(0) = X$ are given by

$$\gamma(t) = x \cosh t + X \sinh t$$

show that (\mathcal{H}^n, g) has constant sectional curvature -1.

Proof. (a) This is the proof of Lemma 6.3 verbatim. We have

$$\frac{D^2}{Dt^2} \frac{\partial f}{\partial s} = \nabla_{\partial_t f} \nabla_{\partial_t f} \frac{\partial f}{\partial s} = \nabla_{\partial_t f} \nabla_{\partial_s f} \frac{\partial f}{\partial t} \qquad (symmetry lemma)$$

$$= \nabla_{\partial_s f} \nabla_{\partial_t f} \frac{\partial f}{\partial t} - R \left(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t} \right) \frac{\partial f}{\partial t} \qquad (Lemma 6.1)$$

$$= -R \left(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t} \right) \frac{\partial f}{\partial t} \qquad (\nabla_{\partial_t f} \frac{\partial f}{\partial t} = \nabla_{\gamma_s'} \gamma_s' = 0)$$

Take s=0 in the above equation. We have $\frac{\partial f}{\partial s}=V_f$ and $\frac{\partial f}{\partial t}=\gamma'$. Hence $V_f''+R(V_f,\gamma')\gamma'=0$. This implies that V_f is a Jacobi field.

¹This is again intuition from matrix exponentiation. I don't know if there is a clean way to deduce it rigourously.

(b) Fix $x \in \mathcal{H}^n$. Let σ be a plane in $T_x\mathcal{H}^n$. Let X,Y be an orthonormal basis of σ . Let $\gamma:[0,L]\to\mathcal{H}^n$ be a geodesic such that $\gamma(0)=x$ and $\gamma'(0)=X$. Let $\alpha:[0,L]\to\mathcal{H}^n$ be a geodesic such that $\alpha(0)=x$ and $\alpha'(0)=Y$. Then we know that $\gamma(t)=x\cosh t+X\sinh t$ and $\alpha(s)=x\cosh s+Y\sinh s$. We define $f:[0,L]\times[0,L]\to\mathcal{H}^n$ by

$$f(s,t) := \alpha(s)\cosh t + X\sinh t = (x\cosh s + Y\sinh s)\cosh t + X\sinh t$$

Then $f(0,t) = \gamma(t)$, and $\gamma_s : t \mapsto f(s,t)$ is a geodesic for each fixed s. By (a), V_f is a Jacobi field along γ :

$$V_f(t) = \frac{\partial f}{\partial s}(0, t) = (x \sinh s + Y \cosh s) \cosh t + X \sinh t$$

Obviously $V_f(0) = Y$ and $V''_f = V_f$. The Jacobi equation $V''_f + R(V_f, \gamma')\gamma' = 0$ at t = 0 gives Y + R(Y, X)X = 0. Since X and Y are orthonormal, we have

$$K(\sigma) = K(X, Y) = g(R(Y, X)X, Y) = g(-Y, Y) = -1$$

We conclude that \mathcal{H}^n has constant sectional curvature -1.

Perfect.

Section C: Optional

Question 6

Let (S^{2n+1}, g) be the round (2n+1)-sphere, view $S^{2n+1} \subseteq \mathbb{C}^{n+1}$ and let $\pi: S^{2n+1} \to \mathbb{CP}^n$ be the projection map. For $z \in S^{2n+1}$ we have E(z) = iz (identifying tangent vectors in \mathbb{C}^n with \mathbb{C}^n), ker $\mathrm{d}\pi_z = \mathrm{Span}\{E(z)\}$ and we let $H_z = \{X \in T_z S^{2n+1}: g(X, E(z)) = 0\}$ and $\Phi_z = \mathrm{d}\pi_z: H_z \to T_{\pi(z)}\mathbb{CP}^n$ The Fubini-Study metric h on \mathbb{CP}^n is then given by

$$h_{\pi(z)}(X,Y) = g_z \left(\Phi_z^{-1}(X), \Phi_z^{-1}(Y) \right)$$

(a) For any vector field X on \mathbb{CP}^n we define a vector field \widehat{X} on \mathcal{S}^{2n+1} by

$$\widehat{X}(z) = \Phi_z^{-1}(X(\pi(z)))$$

If $\widehat{\nabla}$ is the Levi-Civita connection of g and ∇ is the Levi-Civita connection of h, show that, for all vector fields X, Y on \mathbb{CP}^n

$$\widehat{\nabla}_{\widehat{X}}\widehat{Y} = \widehat{\nabla_X Y} + \frac{1}{2}g([\widehat{X},\widehat{Y}], E)E$$

[Hint: Show that $[\widehat{X},\widehat{Y}] - [\widehat{X,Y}]$ and $[\widehat{X},E]$ are multiples of E.]

- (b) Show that $\gamma:(-\epsilon,\epsilon)\to(\mathbb{CP}^n,h)$ is a geodesic with $\gamma(0)=\pi(z)$ if and only if $\gamma=\pi\circ\widehat{\gamma}$ where $\widehat{\gamma}:(-\epsilon,\epsilon)\to(\mathcal{S}^{2n+1},g)$ is a geodesic with $\widehat{\gamma}(0)=z$ and $\widehat{\gamma}'(0)\in H_z$.
- (c) Since $X \in H_z$ if and only if $iX \in H_z$, we can define $J = J_{\pi(z)} : T_{\pi(z)}\mathbb{CP}^n \to T_{\pi(z)}\mathbb{CP}^n$ by

$$J(X) = \mathrm{d}\pi_z \left(i\Phi_z^{-1}(X) \right)$$

which then extends to a map J from vector fields to vector fields on \mathbb{CP}^n . Let $X,Y \in T_{\pi(z)}\mathbb{CP}^n$ be orthogonal unit vectors and write $Y = \cos \alpha Z + \sin \alpha J X$ where Z is orthogonal to JX and unit length. Show that the sectional curvature K of (\mathbb{CP}^n, h) satisfies

$$K(X,Y) = 1 + 3\sin^2\alpha$$

[Hint: Let γ be a geodesic in (\mathbb{CP}^n, h) with $\gamma(0) = \pi(z)$ and $\gamma'(0) = X$, and consider a variation f(s,t) of γ so that $\gamma_s(t) = f(s,t)$ is geodesic for all s such that $\gamma_s(0) = \pi(z)$ and $\gamma'_s(0) = \cos sX + \sin sY$. You may want to consider the cases $\sin \alpha = 0$ and $\cos \alpha = 0$ first.]