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In these problems K denotes an arbitrary field, K [x] denotes the ring of polynomials in one variable x over K and K (x) the ring
of rational functions in the variable x (i.e. the fraction field of K [x]). If p is a prime number, then Fp denotes the field of integers
modulo p. Recall the multiplicative group of Fp is cyclic.

Question 1

Let K be a finite field. Show that there exists a positive integer d and a prime number p such that |K | = pd .

Hint: what is the prime subfield of K ?

Proof. This is a standard Part A Rings & Modules question.

If charK = 0, then m1F 6= (n1F )−1 for m,n ∈Z\{0}. It follows that

{(m1F )(n1F )−1 ∈ F : m ∈Z,n ∈Z\{0}} =Q⊆ K

In particular K is not finite. Hence charK = p for some prime p > 0. Then

{0F ,1F ,1F +1F , · · · , (p −1)1F } = Fp ⊆ K

Since K is finite, K is a finite-dimensional vector space over Fp . Hence K ∼= Fd
p for some n ∈N. Then |K | = pd .

Question 2

Factorise f (x) = x6 +x3 +1 into irreducible factors over K for each of K = F2,F3,F19,Q.

Calculate the formal derivative D f . Over which of these fields K do the irreducible factors of f have distinct roots in any
splitting field for f ?

Proof. • First we factorise f over C:

Let t = x3. Then

x6 +x3 +1 = 0 =⇒ t 2 + t +1 = 0 =⇒ t1,2 = −1±p
3i

2
= e±

2π
3 i =⇒ x3 = e±

2π
3 i

The all 6 roots are
x1 = e

2π
9 i, x2 = e

4π
9 i, x3 = e

8π
9 i, x4 = e

10π
9 i, x5 = e

14π
9 i, x6 = e

16π
9 i

Hence f (x) = (x3 −e
2π
3 i)(x3 −e−

2π
3 i) = (x −e

2π
9 i)(x −e

4π
9 i)(x −e

8π
9 i)(x −e

10π
9 i)(x −e

14π
9 i)(x −e

16π
9 i) ∈C[x].

• Consider f ∈Q[x]. Let p(x) = f (x +1). Then f is irreducible overQ if and only if p is irreducible overQ. But

p(x) = (x +1)6 + (x +1)3 +1 = x6 +6x5 +15x4 +21x3 +18x2 +9x +3

is irreducible overQ be Eisenstein’s criterion with p = 3. Hence f is irreducible overQ.

• Consider f ∈ F3[x]. We note that p(x) = f (x +1) = x6 in F3[x]. Then f (x) = p(x −1) = (x −1)6 in F3[x].

• Consider f ∈ F2[x]. We factorise f by brute force:

The irreducible polynomial of degree 2 in F2[x] is x2+x+1. The irreducible polynomial of degree 3 in F2[x] are x3+x+1
and x3 +x2 +1. By division algorithm:

f (x) = (x2 +x +1)(x4 +x3)+1

f (x) = (x3 +x +1)2 +1

f (x) = (x3 +x2 +1)2 +1

Then f has no factor of degree 2 and 3. It is clear that f has no roots in F2. We deduce that f is irreducible over F2.

• Consider f ∈ F19[x]. First we analyse the structure of the multiplicative group F×19. We have the group isomorphism
F×19

∼=Z/18Z. We observe that 2 ∈ F×19 is a generator of F×19:

21 = 2 22 = 4 23 = 8 24 =−3 25 =−6 26 = 7 27 =−5 28 = 9 29 =−1
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210 =−2 211 =−4 212 =−8 213 = 3 214 = 6 215 =−7 216 = 5 217 =−9 218 = 1

So 2 has order 18 in F×19. It is a generator. In addition from the list above we can read out the elements of order 9 in F×19:
4, -3, 9, -2, 6, 5 and the elements of order 3: 7 and -8.

Let t = x3. Then t 2 + t + 1 = 0 implies that t is a third root of unity, which is a order 3 element in F×19. Hence t1 = 7,
t2 =−8. We have f (x) = (x3 −7)(x3 +8). It is clear that the set of roots of x3 −7 = 0 or x3 +8 = 0 is exactly the set of order
9 elements in F×19. We deduce that

f (x) = (x −4)(x +3)(x −9)(x +2)(x −6)(x −5)

• Now we consider the problem that if f is separable over F2, F3, F19 orQ.

We have factorise f into distinct linear factors on F19. So f ∈ F19[x] is separable.

Over the splitting field ofQ, f is factorised into distinct linear factors. So f ∈Q[x] is separable.

f is factorised into non-distinct linear factors in F3[x]. So f ∈ F3[x] is not separable.

The only remaining case is f ∈ F2[x]. The formal derivative D f (x) = 6x5 +3x2 = x2 ∈ F2[x]. The unique root of D f in
any extension field of F2[x] is x = 0, which is not a root of f in any extension field of F2[x]. Hence f has simple roots
only in the splitting field of f . So f is separable.

Question 3

Show that if f is a polynomial of degree n over K , then its splitting field has degree less than or equal to n! over K .

Proof. In fact this also serves as an existence lemma of splitting fields.

We use induction on deg f . Base case: If deg f = 1, f (x) = ax +b splits over K . Then F = K is the splitting field of K and
[F : K ] = 1.

Induction case: Suppose that the result holds for deg f < n. Suppose that f ∈ K [x] has degree n and does not split over K . Let
g be an irreducible factor of f (deg g > 1). There exists a simple extension K ⊆ K (u) such that g is the minimal polynomial of
u on K . Then [K (u) : K ] = deg g . f (x) = (x −u)h(x) for some h ∈ K [x]. As degh < n, by induction hypothesis, there exists a
splitting field F of h over K (u). Hence F is a splitting field of f over K . By Tower Law:

[F : K ] = [F : K (u)][K (u) : K ] É (n −1)! ·deg g É n!

which completes the induction.

Question 4

Find the degrees of the splitting fields of the following polynomials.

(a) x3 −1 overQ

(b) x3 −2 overQ

(c) x5 − t over F11(t )

Proof. (a) Let ω= −1+p
3i

2
be a root of x3 −1 = 0 over C. Then

x3 −1 = (x −1)(x −ω)(x −ω2) ∈C[x]

The splitting field of x3 −1 is Q(ω) = Q(
p

3i). Since the minimal polynomial of
p

3i is x2 +3 over Q, we have [Q(
p

3i) :
Q] = 2. We deduce that the degree of splitting field of x3 −1 overQ is 2.

(b) We have
x3 −2 = (x −21/3)(x −21/3ω)(x −21/3ω2) ∈C[x]
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The splitting field of x3 −2 is Q(21/3,ω) =Q(21/3,
p

3i). Since x3 −2 is the minimal polynomial of 21/3 over Q, [Q(21/3) :
Q] = 3. Since

p
3i ∉ R⊇Q(21/3), x2 +3 is the minimal polynomial of

p
3i over Q(21/3). Hence [Q(21/3,

p
3i) :Q(21/3)] = 3.

Finally by tower law,
[Q(21/3,

p
3i) :Q] = [Q(21/3,

p
3i) :Q(21/3)][Q(21/3) :Q] = 6

We deduce that the degree of splitting field of x3 −2 overQ is 6.

(c) Note that F11(t ) is a field so it is a UFD. By applying Eisenstein criterion 1 with the the prime p = t , we deduce that x5− t
is irreducible in F11(t )[x]. On the splitting field of x5 − t , we have

x5 − t = (x − t 1/5)(x − t 1/5ζ)(x − t 1/5ζ2)(x − t 1/5ζ3)(x − t 1/5ζ4)

where ζ is the primitive fifth root of unity. We note that F×11
∼= Z/10Z has elements of order 5. Then ζ ∈ F11 ⊆ F11(t ).

So the splitting field of x5 − t over F11(t ) is F11(t )(t 1/5). x5 − t is the minimal polynomial of t 1/5. We conclude that
[F11(t )(t 1/5) : F11(t )] = 5.

Question 5

Let L =Q(
21/3,31/4

)
. Compute the degree of L overQ.

Proof. x3 −2 is the minimal polynomial of 21/3 over Q (by Eisenstein’s criterion it is irreducible). So [Q(21/3) : Q] = 3. x4 −3 is the
minimal polynomial of 31/4 overQ (by Eisenstein’s criterion it is irreducible). So [Q(31/4) :Q] = 4. By tower law, we know that

[Q(21/3,31/4) :Q] = 4[Q(21/3,31/4) :Q(31/4)] = 3[Q(21/3,31/4) :Q(21/3)]

In particular, 12 divides [Q(21/3,31/4) :Q].

On the other hand, since x3−2 annihilates 21/3 overQ⊆Q(31/4), we have [Q(21/3,31/4) :Q(31/4)] É 3. So [Q(21/3,31/4) :Q] É 12.

We conclude that [Q(21/3,31/4) :Q] = 12.

Question 6

Recall that α ∈C is algebraic over Q if α satisfies a (monic) polynomial over Q, equivalently if [Q(α) :Q] <∞. Let A= {α ∈C :α
is algebraic overQ}

(a) Show thatA is the union of all the subfields L of Cwhich are finite extensions ofQ

(b) Prove thatA is a subfield of C. [ Hint: if α,β ∈A, consider the extensionQ(α,β) :Q·]
(c) Prove thatA :Q is not a finite extension.

Proof. This is a standard Part A Rings & Modules question. (In fact this is exactly Question 1 in Sheet 3 of Part A Rings & Modules.)

(a) Suppose that L|Q is a finite extension. Then it is algebraic. So every element in L is algebraic over Q. Hence L ⊆ A.
On the other hand, for α ∈ A, α is algebraic over Q. So Q(α)|Q is a finite extension with degree equal to the degree of
minimal polynomial of α overA. Then we deduce that

A=⋃
{L ⊆Q : L|Q is finite}

(b) First it is clear that 0,1 ∈A. For α,β ∈A, by tower law we have [Q(α,β) :Q] = [Q(α,β) :Q(α)][Q(α) :Q] É degmα ·degmβ.
So Q(α,β)|Q is finite and hence algebraic. Then α±β, αβ and α/β (β 6= 0) are all in Q(α,β) and hence in A. We then
deduce thatA is a subfield ofQ.

(c) Suppose that [A : Q] = k is finite. Take n > k. Note that by Eisenstein’s criterion xn −2 ∈ Q[x] is irreducible for n Ê 2.
Let α ∈A be a root of xn −2 ∈A[x]. Then we know that xn −2 is the minimal polynomial of α over Q. This implies that

1The version of Eisenstein’s criterion that I use here is: Suppose that R is a unique factorization domain. Let f (x) =
n∑

i=0
ai xi ∈ R[x] be a non-constant primitive

polynomial. If there exists a prime p ∈ R such that p 6 | an , p | a0, a1, ..., an−1, and p2 6 | a0, then f is irreducible in R[x].
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[A :Q] Ê [Q(α) :Q] = n > k, which is a contradiction. ThereforeA is not a finite extension ofQ.

Question 7

Which of the following fields are normal extensions ofQ?

1. Q(
p

2,
p

3)

2. Q
(
21/4

)
3. Q(α), where α4 −10α2 +1 = 0

Proof. 1. Q(
p

2,
p

3) is the splitting field of (x2 −2)(x2 −3) overQ. By Theorem 3.16,Q(
p

2,
p

3)|Q is a normal extension.

2. Q
(
21/4

) |Q is not a normal extension. The minimal polynomial of 21/4 over Q is x4 − 2 (by Eisenstein’s criterion it is
irreducible). But

x4 −2 = (x −21/4)(x +21/4)(x −21/4i)(x +21/4i) ∈C[x]

and 21/4i ∉R⊇Q(
21/4

)
. By definitionQ

(
21/4

) |Q is not normal.

3. Q(α)|Q is normal. Here is a method by brute force.

First we solve α4 −10α2 +1 = 0 in C:

α4 −10α2 +1 = 0 =⇒ (α2 −5)2 = 24 =⇒ α2 = 5±2
p

6 =⇒ α=±
√

5±2
p

6 =±
(p

2±p
3
)

We claim thatQ(α) =Q(
p

2,
p

3). We show this in the case that α=p
2+p

3. The other cases are similar.

One direction is clear:
p

2+p
3 ∈Q(

p
2,
p

3) =⇒ Q(
p

2+p
3) ⊆Q(

p
2,
p

3). Conversely, we observe that

(
p

2+p
3)3 = 11

p
2+9

p
3

Then we have

p
2 = 1

2

(
(
p

2+p
3)3 −9(

p
2+p

3)
)
∈Q(

p
2+p

3)
p

3 = 1

2

(
11(

p
2+p

3)− (
p

2+p
3)3

)
∈Q(

p
2+p

3)

HenceQ(
p

2,
p

3) ⊆Q(
p

2+p
3). We deduce thatQ(

p
2,
p

3) =Q(
p

2+p
3).

From the first part we have shown thatQ(
p

2,
p

3)|Q is normal. HenceQ(α)|Q is normal.


