Peize Liu St. Peter's College University of Oxford

Problem Sheet 2 B3.1: Galois Theory

A Brilliant work! Basically no problems. In these problems K denotes an arbitrary field, K[x] denotes the ring of polynomials in one variable x over K and K(x) the ring of rational functions in the variable x (i.e. the fraction field of K[x]). If p is a prime number, then \mathbb{F}_p denotes the field of integers modulo p. Recall the multiplicative group of \mathbb{F}_p is cyclic.

Question 1

Let *K* be a finite field. Show that there exists a positive integer *d* and a prime number *p* such that $|K| = p^d$.

Hint: what is the prime subfield of *K*?

Proof. This is a standard Part A Rings & Modules question.

If char K = 0, then $m1_F \neq (n1_F)^{-1}$ for $m, n \in \mathbb{Z} \setminus \{0\}$. It follows that

$$\{(m1_F)(n1_F)^{-1} \in F : m \in \mathbb{Z}, n \in \mathbb{Z} \setminus \{0\}\} = \mathbb{Q} \subseteq K$$

In particular K is not finite. Hence char K = p for some prime p > 0. Then

$$\{0_F, 1_F, 1_F + 1_F, \cdots, (p-1)1_F\} = \mathbb{F}_p \subseteq K$$

Since K is finite, K is a finite-dimensional vector space over \mathbb{F}_p . Hence $K \cong \mathbb{F}_p^d$ for some $n \in \mathbb{N}$. Then $|K| = p^d$.

Ouestion 2

Factorise $f(x) = x^6 + x^3 + 1$ into irreducible factors over K for each of $K = \mathbb{F}_2, \mathbb{F}_3, \mathbb{F}_{19}, \mathbb{Q}$.

Calculate the formal derivative Df. Over which of these fields K do the irreducible factors of f have distinct roots in any splitting field for *f*?

• First we factorise f over \mathbb{C} : Proof.

Let $t = x^3$. Then

$$x^6 + x^3 + 1 = 0 \implies t^2 + t + 1 = 0 \implies t_{1,2} = \frac{-1 \pm \sqrt{3}i}{2} = e^{\pm \frac{2\pi}{3}i} \implies x^3 = e^{\pm \frac{2\pi}{3}i}$$

The all 6 roots are

$$x_1 = e^{\frac{2\pi}{9}i}, \ x_2 = e^{\frac{4\pi}{9}i}, \ x_3 = e^{\frac{8\pi}{9}i}, \ x_4 = e^{\frac{10\pi}{9}i}, x_5 = e^{\frac{14\pi}{9}i}, \ x_6 = e^{\frac{16\pi}{9}i}$$

Hence
$$f(x) = (x^3 - e^{\frac{2\pi}{3}i})(x^3 - e^{-\frac{2\pi}{3}i}) = (x - e^{\frac{2\pi}{9}i})(x - e^{\frac{4\pi}{9}i})(x - e^{\frac{8\pi}{9}i})(x - e^{\frac{10\pi}{9}i})(x - e^{\frac{14\pi}{9}i})(x - e^{\frac{16\pi}{9}i}) \in \mathbb{C}[x].$$

• Consider $f \in \mathbb{Q}[x]$. Let p(x) = f(x+1). Then f is irreducible over \mathbb{Q} if and only if p is irreducible over \mathbb{Q} . But

$$p(x) = (x+1)^6 + (x+1)^3 + 1 = x^6 + 6x^5 + 15x^4 + 21x^3 + 18x^2 + 9x + 3$$

is irreducible over \mathbb{Q} be Eisenstein's criterion with p=3. Hence f is irreducible over \mathbb{Q} . $\sqrt{}$

- Consider $f \in \mathbb{F}_3[x]$. We note that $p(x) = f(x+1) = x^6$ in $\mathbb{F}_3[x]$. Then $f(x) = p(x-1) = (x-1)^6$ in $\mathbb{F}_3[x]$.
- Consider $f \in \mathbb{F}_2[x]$. We factorise f by brute force:

The irreducible polynomial of degree 2 in $\mathbb{F}_2[x]$ is $x^2 + x + 1$. The irreducible polynomial of degree 3 in $\mathbb{F}_2[x]$ are $x^3 + x + 1$ and $x^3 + x^2 + 1$. By division algorithm:

$$f(x) = (x^2 + x + 1)(x^4 + x^3) + 1$$
$$f(x) = (x^3 + x + 1)^2 + 1$$
$$f(x) = (x^3 + x^2 + 1)^2 + 1$$

Then f has no factor of degree 2 and 3. It is clear that f has no roots in \mathbb{F}_2 . We deduce that f is irreducible over \mathbb{F}_2 .

• Consider $f \in \mathbb{F}_{19}[x]$. First we analyse the structure of the multiplicative group \mathbb{F}_{19}^{\times} . We have the group isomorphism $\mathbb{F}_{19}^{\times}\cong\mathbb{Z}/18\mathbb{Z}$. We observe that $2\in\mathbb{F}_{19}^{\times}$ is a generator of \mathbb{F}_{19}^{\times} :

$$2^{1} = 2$$
 $2^{2} = 4$ $2^{3} = 8$ $2^{4} = -3$ $2^{5} = -6$ $2^{6} = 7$ $2^{7} = -5$ $2^{8} = 9$ $2^{9} = -1$

$$2^{10} = -2$$
 $2^{11} = -4$ $2^{12} = -8$ $2^{13} = 3$ $2^{14} = 6$ $2^{15} = -7$ $2^{16} = 5$ $2^{17} = -9$ $2^{18} = 1$

So 2 has order 18 in \mathbb{F}_{19}^{\times} . It is a generator. In addition from the list above we can read out the elements of order 9 in \mathbb{F}_{19}^{\times} : 4, -3, 9, -2, 6, 5 and the elements of order 3: 7 and -8.

Let $t = x^3$. Then $t^2 + t + 1 = 0$ implies that t is a third root of unity, which is a order 3 element in \mathbb{F}_{19}^{\times} . Hence $t_1 = 7$, $t_2 = -8$. We have $f(x) = (x^3 - 7)(x^3 + 8)$. It is clear that the set of roots of $x^3 - 7 = 0$ or $x^3 + 8 = 0$ is exactly the set of order 9 elements in \mathbb{F}_{19}^{\times} . We deduce that

$$f(x) = (x-4)(x+3)(x-9)(x+2)(x-6)(x-5)$$

• Now we consider the problem that if f is separable over \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_{19} or \mathbb{Q} .

We have factorise f into distinct linear factors on \mathbb{F}_{19} . So $f \in \mathbb{F}_{19}[x]$ is separable.

Over the splitting field of \mathbb{Q} , f is factorised into distinct linear factors. So $f \in \mathbb{Q}[x]$ is separable.

f is factorised into non-distinct linear factors in $\mathbb{F}_3[x]$. So $f \in \mathbb{F}_3[x]$ is not separable.

The only remaining case is $f \in \mathbb{F}_2[x]$. The formal derivative $Df(x) = 6x^5 + 3x^2 = x^2 \in \mathbb{F}_2[x]$. The unique root of Df in any extension field of $\mathbb{F}_2[x]$ is x = 0, which is not a root of f in any extension field of $\mathbb{F}_2[x]$. Hence f has simple roots only in the splitting field of f. So f is separable.

Question 3

Show that if f is a polynomial of degree n over K, then its splitting field has degree less than or equal to n! over K.

Proof. In fact this also serves as an existence lemma of splitting fields.

We use induction on deg f. Base case: If deg f = 1, f(x) = ax + b splits over K. Then F = K is the splitting field of K and F: K = 1.

Induction case: Suppose that the result holds for $\deg f < n$. Suppose that $f \in K[x]$ has degree n and does not split over K. Let g be an irreducible factor of f ($\deg g > 1$). There exists a simple extension $K \subseteq K(u)$ such that g is the minimal polynomial of u on K. Then $[K(u):K] = \deg g$. f(x) = (x-u)h(x) for some $h \in K[x]$. As $\deg h < n$, by induction hypothesis, there exists a splitting field F of h over K(u). Hence F is a splitting field of f over K. By Tower Law:

$$[F:K] = [F:K(u)][K(u):K] \le (n-1)! \cdot \deg g \le n!$$

which completes the induction.

"/ Very concise

Question 4

Find the degrees of the splitting fields of the following polynomials.

- (a) $x^3 1$ over \mathbb{Q}
- (b) $x^3 2$ over \mathbb{Q}
- (c) $x^5 t$ over $\mathbb{F}_{11}(t)$

Proof. (a) Let $\omega = \frac{-1 + \sqrt{3}i}{2}$ be a root of $x^3 - 1 = 0$ over \mathbb{C} . Then

$$x^{3} - 1 = (x - 1)(x - \omega)(x - \omega^{2}) \in \mathbb{C}[x]$$

The splitting field of x^3-1 is $\mathbb{Q}(\omega)=\mathbb{Q}(\sqrt{3}i)$. Since the minimal polynomial of $\sqrt{3}i$ is x^2+3 over \mathbb{Q} , we have $[\mathbb{Q}(\sqrt{3}i):\mathbb{Q}]=2$. We deduce that the degree of splitting field of x^3-1 over \mathbb{Q} is 2.

(b) We have

$$x^3 - 2 = (x - 2^{1/3})(x - 2^{1/3}\omega)(x - 2^{1/3}\omega^2) \in \mathbb{C}[x]$$

The splitting field of $x^3 - 2$ is $\mathbb{Q}(2^{1/3}, \omega) = \mathbb{Q}(2^{1/3}, \sqrt{3}i)$. Since $x^3 - 2$ is the minimal polynomial of $2^{1/3}$ over \mathbb{Q} , $[\mathbb{Q}(2^{1/3}): \mathbb{Q}] = 3$. Since $\sqrt{3}i \notin \mathbb{R} \supseteq \mathbb{Q}(2^{1/3})$, $x^2 + 3$ is the minimal polynomial of $\sqrt{3}i$ over $\mathbb{Q}(2^{1/3})$. Hence $[\mathbb{Q}(2^{1/3}, \sqrt{3}i): \mathbb{Q}(2^{1/3})] = \frac{9}{2}$. Finally by tower law,

$$[\mathbb{Q}(2^{1/3},\sqrt{3}\mathrm{i}):\mathbb{Q}] = [\mathbb{Q}(2^{1/3},\sqrt{3}\mathrm{i}):\mathbb{Q}(2^{1/3})][\mathbb{Q}(2^{1/3}):\mathbb{Q}] = 6$$

We deduce that the degree of splitting field of $x^3 - 2$ over \mathbb{Q} is 6.

(c) Note that $\mathbb{F}_{11}(t)$ is a field so it is a UFD. By applying Eisenstein criterion 1 with the prime p = t, we deduce that $x^5 - t$ is irreducible in $\mathbb{F}_{11}(t)[x]$. On the splitting field of $x^5 - t$, we have

Think you mean since IF₁₁[t] is a UFD

$$x^5 - t = (x - t^{1/5})(x - t^{1/5}\zeta)(x - t^{1/5}\zeta^2)(x - t^{1/5}\zeta^3)(x - t^{1/5}\zeta^4)$$

where ζ is the primitive fifth root of unity. We note that $\mathbb{F}_{11}^{\times} \cong \mathbb{Z}/10\mathbb{Z}$ has elements of order 5. Then $\zeta \in \mathbb{F}_{11} \subseteq \mathbb{F}_{11}(t)$. So the splitting field of $x^5 - t$ over $\mathbb{F}_{11}(t)$ is $\mathbb{F}_{11}(t)(t^{1/5})$. $x^5 - t$ is the minimal polynomial of $t^{1/5}$. We conclude that $[\mathbb{F}_{11}(t)(t^{1/5}):\mathbb{F}_{11}(t)] = 5$.

Good work A

Question 5

Let $L = \mathbb{Q}(2^{1/3}, 3^{1/4})$. Compute the degree of L over \mathbb{Q} .

Proof. $x^3 - 2$ is the minimal polynomial of $2^{1/3}$ over \mathbb{Q} (by Eisenstein's criterion it is irreducible). So $[\mathbb{Q}(2^{1/3}):\mathbb{Q}] = 3$. $x^4 - 3$ is the minimal polynomial of $3^{1/4}$ over \mathbb{Q} (by Eisenstein's criterion it is irreducible). So $[\mathbb{Q}(3^{1/4}):\mathbb{Q}] = 4$. By tower law, we know that

$$[\mathbb{Q}(2^{1/3},3^{1/4}):\mathbb{Q}] = 4[\mathbb{Q}(2^{1/3},3^{1/4}):\mathbb{Q}(3^{1/4})] = 3[\mathbb{Q}(2^{1/3},3^{1/4}):\mathbb{Q}(2^{1/3})]$$

In particular, 12 divides $[\mathbb{Q}(2^{1/3},3^{1/4}):\mathbb{Q}]$.

On the other hand, since $x^3 - 2$ annihilates $2^{1/3}$ over $\mathbb{Q} \subseteq \mathbb{Q}(3^{1/4})$, we have $[\mathbb{Q}(2^{1/3}, 3^{1/4}) : \mathbb{Q}(3^{1/4})] \le 3$. So $[\mathbb{Q}(2^{1/3}, 3^{1/4}) : \mathbb{Q}] \le 12$.

We conclude that $[\mathbb{Q}(2^{1/3},3^{1/4}):\mathbb{Q}]=12.$

Question 6

Recall that $\alpha \in \mathbb{C}$ is algebraic over \mathbb{Q} if α satisfies a (monic) polynomial over \mathbb{Q} , equivalently if $[\mathbb{Q}(\alpha) : \mathbb{Q}] < \infty$. Let $\mathbb{A} = \{\alpha \in \mathbb{C} : \alpha \text{ is algebraic over } \mathbb{Q}\}$

- (a) Show that \mathbb{A} is the union of all the subfields L of \mathbb{C} which are finite extensions of \mathbb{Q}
- (b) Prove that \mathbb{A} is a subfield of \mathbb{C} . [Hint: if $\alpha, \beta \in \mathbb{A}$, consider the extension $\mathbb{Q}(\alpha, \beta) : \mathbb{Q} \cdot \mathbb{P}$]
- (c) Prove that $A : \mathbb{Q}$ is not a finite extension.

Proof. This is a standard Part A Rings & Modules question. (In fact this is exactly Question 1 in Sheet 3 of Part A Rings & Modules.)

(a) Suppose that $L|\mathbb{Q}$ is a finite extension. Then it is algebraic. So every element in L is algebraic over \mathbb{Q} . Hence $L \subseteq \mathbb{A}$. On the other hand, for $\alpha \in \mathbb{A}$, α is algebraic over \mathbb{Q} . So $\mathbb{Q}(\alpha)|\mathbb{Q}$ is a finite extension with degree equal to the degree of minimal polynomial of α over \mathbb{A} . Then we deduce that

$$\mathbb{A} = \bigcup \{ L \subseteq \mathbb{Q} : L | \mathbb{Q} \text{ is finite} \}$$

- (b) First it is clear that $0, 1 \in \mathbb{A}$. For $\alpha, \beta \in \mathbb{A}$, by tower law we have $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}] = [\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}] \leq \deg m_{\alpha} \cdot \deg m_{\beta}$. So $\mathbb{Q}(\alpha, \beta)|\mathbb{Q}$ is finite and hence algebraic. Then $\alpha \pm \beta$, $\alpha\beta$ and α/β ($\beta \neq 0$) are all in $\mathbb{Q}(\alpha, \beta)$ and hence in \mathbb{A} . We then deduce that \mathbb{A} is a subfield of \mathbb{Q} .
- (c) Suppose that $[A:\mathbb{Q}]=k$ is finite. Take n>k. Note that by Eisenstein's criterion $x^n-2\in\mathbb{Q}[x]$ is irreducible for $n\geq 2$. Let $\alpha\in A$ be a root of $x^n-2\in A[x]$. Then we know that x^n-2 is the minimal polynomial of α over \mathbb{Q} . This implies that

¹The version of Eisenstein's criterion that I use here is: Suppose that R is a unique factorization domain. Let $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$ be a non-constant primitive polynomial. If there exists a prime $p \in R$ such that $p \nmid a_n, p \mid a_0, a_1, ..., a_{n-1}$, and $p^2 \nmid a_0$, then f is irreducible in R[x].

 $[\mathbb{A}:\mathbb{Q}] \geqslant [\mathbb{Q}(\alpha):\mathbb{Q}] = n > k$, which is a contradiction. Therefore \mathbb{A} is not a finite extension of \mathbb{Q} .

Question 7

Which of the following fields are normal extensions of Q?

- 1. $\mathbb{Q}(\sqrt{2}, \sqrt{3})$
- 2. $\mathbb{Q}(2^{1/4})$
- 3. $\mathbb{Q}(\alpha)$, where $\alpha^4 10\alpha^2 + 1 = 0$

Proof.

- 1. $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is the splitting field of $(x^2 2)(x^2 3)$ over \mathbb{Q} . By Theorem 3.16, $\mathbb{Q}(\sqrt{2}, \sqrt{3})|\mathbb{Q}$ is a normal extension.
- 2. $\mathbb{Q}(2^{1/4})|\mathbb{Q}$ is not a normal extension. The minimal polynomial of $2^{1/4}$ over \mathbb{Q} is $x^4 2$ (by Eisenstein's criterion it is irreducible). But

$$x^4 - 2 = (x - 2^{1/4})(x + 2^{1/4})(x - 2^{1/4}\mathbf{i})(x + 2^{1/4}\mathbf{i}) \in \mathbb{C}[x]$$

and $2^{1/4}$ i $\notin \mathbb{R} \supseteq \mathbb{Q}(2^{1/4})$. By definition $\mathbb{Q}(2^{1/4}) \mid \mathbb{Q}$ is not normal.

3. $\mathbb{Q}(\alpha)|\mathbb{Q}$ is normal. Here is a method by brute force.

First we solve $\alpha^4 - 10\alpha^2 + 1 = 0$ in \mathbb{C} :

$$\alpha^4 - 10\alpha^2 + 1 = 0 \implies (\alpha^2 - 5)^2 = 24 \implies \alpha^2 = 5 \pm 2\sqrt{6} \implies \alpha = \pm \sqrt{5 \pm 2\sqrt{6}} = \pm \left(\sqrt{2} \pm \sqrt{3}\right)$$

We claim that $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. We show this in the case that $\alpha = \sqrt{2} + \sqrt{3}$. The other cases are similar.

One direction is clear: $\sqrt{2} + \sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3}) \implies \mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Conversely, we observe that

$$(\sqrt{2} + \sqrt{3})^3 = 11\sqrt{2} + 9\sqrt{3}$$

Then we have

$$\sqrt{2} = \frac{1}{2} \left((\sqrt{2} + \sqrt{3})^3 - 9(\sqrt{2} + \sqrt{3}) \right) \in \mathbb{Q}(\sqrt{2} + \sqrt{3}) \qquad \qquad \sqrt{3} = \frac{1}{2} \left(11(\sqrt{2} + \sqrt{3}) - (\sqrt{2} + \sqrt{3})^3 \right) \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$$

Hence $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2} + \sqrt{3})$. We deduce that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$.

From the first part we have shown that $\mathbb{Q}(\sqrt{2}, \sqrt{3})|\mathbb{Q}$ is normal. Hence $\mathbb{Q}(\alpha)|\mathbb{Q}$ is normal.

Nice method

