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In these problems K denotes an arbitrary field, K[x] denotes the ring of polynomials in one variable x over K and K(x) the ring
of rational functions in the variable x (i.e. the fraction field of K[x]). If p is a prime number, then [, denotes the field of integers
modulo p. Recall the multiplicative group of [, is cyclic.

Question 1

Let K be a finite field. Show that there exists a positive integer d and a prime number p such that |K| = p<.

Hint: what is the prime subfield of K?

Proof. This is a standard Part A Rings & Modules question.

If charK = 0, then mlg # (nlg)~! for m, n € Z\{0}. It follows that
{(mlp)(nlp) '€ F: meZ,neZ\{0}} =Q<K
In particular K is not finite. Hence char K = p for some prime p > 0. Then
{Op, 1p, 1p+1p, -+, (p— D1t =Fp K

Since K is finite, K is a finite-dimensional vector space over F,. Hence K = [Fg for some n € N. Then |K| = pd. O
“®
Question 2

Factorise f(x) = x® + x% + 1 into irreducible factors over K for each of K = F5, Fs,F19,Q.

Calculate the formal derivative D f. Over which of these fields K do the irreducible factors of f have distinct roots in any
splitting field for f?

Proof. * First we factorise f over C:
Let ¢ = x3. Then
“1+VBi_ Loy 3 _ i

L+ +41=20= P+r+1=0 = Hhp=———=€¢"3 — x" =e" 3

The all 6 roots are
215 Eu41 815 107 ldny 1675
X1=e9,xx=€e9,x3=€e9,x34=€9 ,Xxsg=€e 9, Xg=¢€9

Hence f(x) = (x3—e3)(x*—e 30 = (x—e 31 (x—e 51 (x—e 51 (x—e 5 )(x—e's ) (x—e's ) eCx].

¢ Consider f € Q[x]. Let p(x) = f(x+1). Then f is irreducible over Q if and only if p is irreducible over Q. But
p) = (x+ D%+ (x+ 1> +1=x°+6x°+15x* +21x° + 18x* +9x+3

is irreducible over Q be Eisenstein’s criterion with p = 3. Hence f is irreducible over Q. /
* Consider f € F3[x]. We note that p(x) = f(x+1) = x%in F3[x]. Then f(x) = p(x—1) = (x-1)%in F3 [x]./
¢ Consider f € F,[x]. We factorise f by brute force:
The irreducible polynomial of degree 2 in [F»[x] is x*> + x+ 1. The irreducible polynomial of degree 3 in F[x] are x>+ x+1

and x° + x? + 1. By division algorithm:

f) =@ +x+Dxr+x%+1
fO =0 +x+1*+1

)= +x2+1)%+1

Then f has no factor of degree 2 and 3. It is clear that f has no roots in F». We deduce that f is irreducible over F». ./

* Consider f € [F1g[x]. First we analyse the structure of the multiplicative group Fj,. We have the group isomorphism
F}q = Z/18Z. We observe that 2 € [F], is a generator of F:



So 2 has order 18 in [F,. It is a generator. In addition from the list above we can read out the elements of order 9 in [F}:
4,-3,9, -2, 6,5 and the elements of order 3: 7 and -8.

Let t = x>. Then % + t + 1 = 0 implies that ¢ is a third root of unity, which is a order 3 element in Fly- Hence t; =7,
t, = —8. We have f(x) = (x> —7)(x3 +8). It is clear that the set of roots of x> —7 = 0 or x> + 8 = 0 is exactly the set of order
9 elements in [F}y. We deduce that

f)=x-49x+3)(x-9)(x+2)(x—-6)(x—5) J

* Now we consider the problem that if f is separable over [y, F3, F19 or Q.
We have factorise f into distinct linear factors on F;9. So f € F;9[x] is separable.
Over the splitting field of Q, f is factorised into distinct linear factors. So f € Q[x] is separable.
f is factorised into non-distinct linear factors in F3[x]. So f € F3[x] is not separable.

The only remaining case is f € Fo[x]. The formal derivative D f(x) = 6x° + 3x? = x? € F»[x]. The unique root of Df in
any extension field of F»[x] is x = 0, which is not a root of f in any extension field of F»[x]. Hence f has simple roots

only in the splitting field of f. So f is separable. \/ O
Greak. @)

Question 3

Show that if f is a polynomial of degree n over K, then its splitting field has degree less than or equal to n! over K.

Proof. In fact this also serves as an existence lemma of splitting fields.

We use induction on deg f. Base case: If degf =1, f(x) = ax + b splits over K. Then F = K is the splitting field of K and
[F:K]=1.

Induction case: Suppose that the result holds for deg f < n. Suppose that f € K[x] has degree n and does not split over K. Let
g be an irreducible factor of f (degg > 1). There exists a simple extension K < K(u) such that g is the minimal polynomial of
uon K. Then [K(u) : K] =degg. f(x) = (x—u)h(x) for some h € K[x]. As degh < n, by induction hypothesis, there exists a
splitting field F of h over K(u). Hence F is a splitting field of f over K. By Tower Law:

[F:K]=[F:K(u)][K(u):K]s(n—l)!'deggsn! .
/ Ve"b CONASR

which completes the induction. @ O

Question 4
Find the degrees of the splitting fields of the following polynomials.
(@ x®—1overQ
(b) x3 -2 over Q

(c) x°—toverF ()

—-1+v3

i
Proof. (a) Letw= — be aroot of x> —1 =0 over C. Then

¥ -1=x-1)(x-0)(x—0?) eClx]
The splitting field of x3 — 1 is Q(w) = Q(v/3i). Since the minimal polynomial of v/3i is x* + 3 over Q, we have [Q(+/3i) :
Q] = 2. We deduce that the degree of splitting field of x> — 1 over Q is 2. /

(b) We have
X-2= (x—21/3)(x—21/3w)(x—21/3w2) € C[x]



The splitting field of x> — 2 is Q(2'/3,w) = Q(2!'3, v/3i). Since x> -2 is the minimal polynomial of 2!/3 over Q, [Q(2!/3) :
QI = 3. Since V/3i ¢ R2 Q(2!/3), x? + 3 is the minimal polynomial of v/3i over Q@(2'/%). Hence [Q(2!/3,v/3i) : Q(2'/%)] = 8.
Finally by tower law,

[@2"?,V3D):Ql = (@', V3D : Q")) : QI = 6
We deduce that the degree of splitting field of x> — 2 over Q is 6.

(c) Note that[Fy;(¢) is a field so it is a UFD. By applying Eisenstein criterion ! with the the prime p = t, we deduce that x> — ¢
is irreducible in [y (¢)[x]. On the splitting field of x° — ¢, we have
Think yow MRoN
since F,[k] is a UFD
where ( is the primitive fifth root of unity. We note that F}; = Z/10Z has elements of order 5. Then { € Fy; € Fq1(2).
So the splitting field of x° — ¢ over Fy;(#) is F11(£)(£'/%). x° — t is the minimal polynomial of #!/5. We conclude that

[Fr1(6)(£%) :F11 ()] =5. J
Good. wolk @ _

x5 —t=(x- Z.1/5)()(/._ t1/5()(x_ [1/5(2)(.?6— t1/5(3)(x_ t1/5(4)

Question 5

Let L=Q(2'/3,314). Compute the degree of L over Q.

Proof. x® -2 is the minimal polynomial of 23 over Q (by Eisenstein’s criterion it is irreducible). So [Q(2'/%): Q] = 3. x* -3 is the

minimal polynomial of 3'/4 over @ (by Eisenstein’s criterion it is irreducible). So [Q(3!/4) : Q] = 4. By tower law, we know that
Q7,31 :Q1 =4[Q2"",3""") : Q@) =31Q2"7,3!") : Q2!)]

In particular, 12 divides [@(21/3,31/4) 1 Q.

On the other hand, since x3 —2 annihilates 2!/3 over Q € Q(3!/4), we have [Q(21/3,31/%): Q(31/4)] < 3. So [Q(21/3,31/%): Q] < 12.

We conclude that [Q(21/3,31/4): Q] = 12. J P N O

Question 6

Recall that a € C is algebraic over @ if a satisfies a (monic) polynomial over Q, equivalently if [Q(a): Q] <oco. Let A={aeC:a
is algebraic over Q}

(a) Show that A is the union of all the subfields L of C which are finite extensions of Q
(b) Prove that A is a subfield of C. [ Hint: if a, f € A, consider the extension Q(«, ) : Q-]

(c) Prove that A : Q is not a finite extension.

Proof. This is a standard Part A Rings & Modules question. (In fact this is exactly Question 1 in Sheet 3 of Part A Rings & Modules.)

(a) Suppose that L|Q is a finite extension. Then it is algebraic. So every element in L is algebraic over Q. Hence L € A.
On the other hand, for @ € A, a is algebraic over Q. So Q(a)|Q is a finite extension with degree equal to the degree of
minimal polynomial of a over A. Then we deduce that

A= JIL<Q: LIQis finite} J

(b) Firstitis clear that 0,1 € A. For a, § € A, by tower law we have [Q(«, §) : Q] = [Q(«, ) : Q(@)][Q(a) : Q] < degmg, - degmyg.
So Q(a, B)|Q is finite and hence algebraic. Then a + 8, aff and a/f (B # 0) are all in Q(«, ) and hence in A. We then
deduce that A is a subfield of Q. /

(c) Suppose that [A: Q] = k is finite. Take n > k. Note that by Eisenstein’s criterion x” — 2 € Q[x] is irreducible for n = 2.
Let @ € A be a root of x” —2 € A[x]. Then we know that x" —2 is the minimal polynomial of a over Q. This implies that

n .
1 The version of Eisenstein’s criterion that I use here is: Suppose that R is a unique factorization domain. Let f(x) = Z a;x' € R[x] be a non-constant primitive
i=0
polynomial. If there exists a prime p € Rsuch that p Yan, p|ag, ai,...,an—1, and p2 Y ap, then f is irreducible in R[x].



[A:Q] = [Q(a) : Q] = n > k, which is a contradiction. Therefore A is not a finite extension of Q. / G“Qob O
®
Question 7
Which of the following fields are normal extensions of 2
1. Q(v2,V3)
2. Q(2!4)
3. Q(a), where a*-10a®+1=0

Proof. 1. Q(v/2,v/3) is the splitting field of (x* — 2) (x? — 3) over Q. By Theorem 3.16, Q(v/2, v3)|Q is a normal extension. ./

2. @(2%)|Q is not a normal extension. The minimal polynomial of 2!/4 over @ is x* — 2 (by Eisenstein’s criterion it is
irreducible). But
xt—2= (-2 2 (-2 ) (e + 24D e Clx]

and 2'4i ¢ R2 Q (2!/4). By definition Q (2'/*)|Q is not normal.J
3. Q(a)|Q is normal. Here is a method by brute force.

First we solve a* —10a?2+1=0inC:

a'-100*+1=0 = (@* -5 =24 = a? =542V = a=+/5+2V6= (V23]
We claim that Q(a) = Q(v/2, v/3). We show this in the case that @ = v/2 + v/3. The other cases are similar.
One direction is clear: V2 +v/3 € Q(v/2,v/3) = Q(v2+v/3) € Q(v/2,v/3). Conversely, we observe that

WV2+v3)3=11vV2+9V3

Then we have
VE=((VE+V3P-90V2+VR)eQWEHVE)  VE=5(VE+VE-(VE+VEY)eQua+ V)

Hence Q(v2,v/3) € Q(v2 + v/3). We deduce that Q(v2,v/3) = Q(v2 + V/3).

From the first part we have shown that Q(v/2, v/3)|Q is normal. Hence Q(a)|Q is normal.

/ Nice MQ)H\OA\
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