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Conventions: Greek indices take values 0 through 3, while Latin indices take values 1 through 3. 3-vectors can also be indicated by
boldface, e.g. a. Minkowski metric g"¥ = diag(-1,1,1,1).

Remark. From my perspective, saying that "X* = (ct, x, , z) is a 4-vector" is an abuse of notation. X* should always mean the u-th
component of the 4-vector X (unless we are using the system of Abstract Index Notation, which should not be confused with the
component index notation).

Question 1
Show, using algebra, a spacetime diagram, or otherwise,

(i) the temporal order of two events is the same in all reference frames if and only if they are separated by a time-like
interval;

(ii) there exists a reference frame in which two events are simultaneous if and only if they are separated by a space-like
interval.

(iii) for any time-like vector there exists a frame in which its spatial part is zero;
(iv) any vector orthogonal to a time-like vector must be space-like;
(v) with one exception, any vector orthogonal to a null vector is space-like, and describe the exception.

(vi) the instantaneous 4-velocity of a particle is parallel to the worldline (i.e., demonstrate that you understand the meaning
of this claim - if you do then it is obvious);

(vii) ifthe 4-displacement between any two events is orthogonal to an observer’s worldline, then the events are simultaneous
in the rest frame of that observer.
Proof. 1shall use an algebraic approach in this question.
For 4-vectors X and Y, we use g(X, Y) to denote the bilinear form g,,, X KYV. Then a 4-vector X is
* space-like, if g(X, X) >0,
e light-like or null, if g(X, X) =0,
* time-like, if g(X, X) <0.

Any (proper orthochronous) Lorentz transformation L € SO* (1, 3) is a composition of spatial rotations and standard Lorentz
boosts (in x-direction). More specifically,

y Py 0 0
L:(l 0) -By y 0 0 (1 0)
0 H 0 0 1 oflo H

0 0 0 1

where H, H' € SO(3).

(i) The statement is incorrect. The correct statement is: the temporal order of two events is the same in all reference
frames if and only if they are separated by a time-like or light-like interval.

"<=": Let X be a future-pointing time-like or light-like vector between the two events. Write X = (ct, x, y, z) where ¢t >0
and g(X, X) <0. Itis clear that if L € SO*(1,3) is a spatial rotation, then (X")° = L%X“ >0, so X' is still future-pointing.
For a Lorentz boost L € SO* (1, 3):

(X" = L) X* =y(ct— px)

g(X, X) < 0 implies that c2t? = X*X, = x%, which implies that ct = |x| > Bx as |B| < 1. Hence (X"? > 0. X' is future-
pointing. We deduce that Lorentz transformations do not change the temporal sign of a 4-vector. In physics, this
implies that the temporal order of two events is the same in all reference frames.

"=": Suppose that X = (ct, x, y, z) is a future pointing 4-vector which is future pointing under any Lorentz transforma-
tions. There exists a spatial rotation L; such that X’ = L1 X = (ct, v/x? + y% + z2,0,0). Let L, be a standard Lorentz boost.
Then

X"’ = (Lz)ﬁ(x’)“:y(ct—ﬁ X2+y2+22|>0
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Then ¢?¢? > ﬁz(xz + y2 +22) for any |B| < 1. We deduce that g(X, X) = —2r2+x%+ y2 +z2 < 0. Hence X is either time-like \/
or light-like.

(i) "«<=": Let X be a future-pointing space-like vector between the two events. Write X = (ct,x,y,z) where ¢ > 0 and
g(X, X) > 0. As above there exists a spatial rotation L; such that X’ = L; X = (ct,v/x% + y* + z2,0,0). g(X, X) > 0 implies

that ot
fi= ————=€(0,1)

VX2 +y%+ 22 /

Hence the standard Lorentz boost with  transforms X’ to a 4-vector X" with (X")? = ct—f+/x% + y2 + z2 = 0. In physics,
it suggests that there exists an inertial frame such that the two events are simultaneous.

"=—": Suppose that there exists an inertial frame such that the two events are simultaneous. Then in that frame, the
4-vector between the two events is X = (0, x, , z). Since g(X, X) = x*> + y? + z2 > 0, X is space-like.

(iii) Let X = (ct,x,¥,2) = (ct,r) be a time-like vector. Write r = re,. There exists a,b € R3 such that {e,,a,b} forms an or-
thonormal basis of R3. Then the following 4-vectors

\/ﬁ(curer% \/ﬁm“er% O (OB /

form a pseudo-orthonormal basis of the Minkowski space. Hence it defines an inertial frame, in which

X'=(v/~g(X,%),0,0,0]

has zero spatial part.
(iv) This statement is true for non-zero 4-vectors.

Let X be a time-like 4-vector and Y # 0 be a 4-vector pseudo-orthogonal to X. By (iii) there exists an inertial frame in
which X = (1/-g(X,X),0,0,0). Let Y = (ct, x, y,2) in that frame. Then

gX,Y)=0 = ct\/-g(X,X)=0 = =0 \/

By (ii) we deduce that Y is space-like.

(v) Let X = (ct,x) be a null 4-vector and X’ = (ct,x’) be a 4-vector pseudo-orthogonal to X. We have
gX,X)=0 = Pt =x-x = *P1? = x-x)? < |x?||¥ “2 (Cauchy-Schwarz inequality) \/

Since X is null, [Ix[|2 = ¢22. We deduce that ¢?¢2 < |x/|*. So X' is either space-like or null,
If X' is null, then ¢? ¢ = || x’ ||2 and x is is colinear with x'. Then X and X' are colinear. This is the only exceptional case.

(vi) Letn:[0,1] — (R g) be a (not necessarily straight) worldline in the Minkowski space. Recall that the length element
(i.e. the metric tensor) in the Minkowski space is given by

d¢* = g, dXxHdx"

The proper time on the worldline is defined by

1 1 ¢ dXx* dxv
7(8) = —f vV —d¢2 = —f —8uv ds
C Jnlo,s ¢Jo

ds ds
Now we can reparametrize the worldline by proper time: 7 : [0,7(1)] — M, 7j = not~!. On the worldline, a tangent vector
V at p e Imn is given by

‘/ — _‘

where 7j(7) = (X’ (1), X' (1), X*(1), X3 (1)) /

zvﬂ()—di
p_dr

p p

which is exactly the definition of a 4-velocity at p. So 4-velocities are tangent vectors on the worldline. By definition
they are "parallel" to the worldline locally.

(vii) Assume that the observer is stationary in some inertial frame so the worldline of it is a straight line. Let y(r) = A+ Bt
be the parametrization of the worldline, where A, B € (R4, g). Let X be the 4-vector between the two events. We have
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g(X,B) =0. Let L be the Lorentz transformation to the frame of the observer. Since the observer is stationary in his rest
frame, we have B’ = LB = (/—g(B, B),0,0,0). Since Lorentz transformations preserves bilinear form g, we have

g(LX,LB)=g(X,B)=0 = (LX)°/-gB,B)=0 = (X)°=1Xx)°’=0

Hence in the rest frame of the observer, the two events are simultaneous. O

Question 2

Define proper time. A worldline (not necessarily straight) may be described as a locus of time-like separated events specified
by X* = (ct, x, , 2) in some inertial reference frame. Show that the increase of proper time 7 along a given worldline is related
to reference frame time t by dt/dt =7y.

Two particles have 3-velocities u and v in some reference frame. The Lorentz factor for their relative 3-velocity w is given by
Yw=YuYv(1-u-v/c?)

Prove this twice, by using each of the following two methods:

(i) In the given frame, the worldline of the first particle is X* = (ct,ut). Transform to the rest frame of the other particle to
obtain

t'=y,t(1-u-v/c?)
Obtain dt'/dt and apply the result of the first part of this question.

(i) Use the invariant U* Vyu, first showing that it is equal to —czy,,,.

Proof. In Question 1.(vi) I have defined the proper time before defining the 4-velocity. I copy it here:

Letn:[0,1] — (R4, g) be a worldline in the Minkowski space. The proper time on the worldline is defined by

1 15 [ dxedxv
== V-drz== f —g—— ——d
e ff}l(o,s) cho V78 as Tas ¢

dx4 dXx,
dr dt

Then ) . /
dr=—y/c?dr? - dX“dX, = E\/c2dt2 —v2d2 = V1-v2/c2dr =y 'dr

Hence dt/dr =v.

The 3-speed is given by

v=|v| = = dX“*dX, = v’dr?

(i) Let Y = (ct,vt) be the 4-vector of the second particle. The transformation L to the rest frame of the second particle is

given by N GSO(S lR) v vTe
/; I L= (’)/Z,VU/C Y’;I )

for some H € M3,3(R). Then
(xH° = LgX” =y,ct—y,u-vt/c=y,ct(l—u-v/c?)

Hence t' =y, t(1 —u-v/c?). Now
dr’  dt' dt ) /
Yw=——=—"—"—=YuYv(1-u-v/c?)

S dr drdr
(ii) The 4-velocities of the two particles are given by U =y, (c,uw) and V =y, (c,V).
gW,V)=yuyy(=c* +u-v)

In the rest frame of the second particle, V' = (¢,0) and U’ =y, (¢, w). By invariance of the bilinear form we have

~Ywc® =g, V) =g(U, V) =yuys(-c* +u-v) = yu =yuys(1-u-v/c?) O
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Question 3

Derive a formula for the frequency w of light waves from a moving source, in terms of the proper frequency wy in the source
frame and the angle in the observer’s frame, 8, between the direction of observation and the velocity of the source.

A galaxy with a negligible speed of recession from Earth has an active nucleus. It has emitted two jets of hot material with the
same speed v in opposite directions, at an angle 0 to the direction to the Earth. A spectral line in singly-ionised Mg (proper
wavelength Ay =448.1nm) is emitted from both jets. Show that the wavelengths 1. observed on Earth from the two jets are
given by

Ar =Ly £ (v/c)cosO)

(you may assume the angle subtended at Earth by the jets is negligible). If 1. = 420.2nm and A_ = 700.1nm, find v and 6.

In some cases, the receding source is difficult to observe. Suggest a reason for this.

Proof. The wave 4-vector K = (w/c,k) is a 4-vector in the Minkowski space. In the lab frame, suppose that the light source travels in
the x-direction and emits light at an angle 8. Then the wave 4-vector in the lab frame is given by

w
K=—(,cos6,sin6,0)
c
Consider the Lorentz transformation to the rest frame of the light source, we have

wo 0w Vo w 1
—zy(————cos@) - —=—
wy Y(Q-vcosh/c)

The corresponding rule for the wavelength is given by

A
— =y -wvcosf/c)
Ao

For the emission problem, the angles of the two jets are 6 and 6 +  respectively. So their wavelengths observed on the Earth
are 1. = Agy(1F vcosf/c).

From the given data, we find that

A+ A
T2

A -,

2Mo By

=125 = v=0.6¢ 0= arccos( ) =65.4°

Question 4

The 4-angular momentum of a single particle about the origin is defined as
¥ = xHpY - XV pH

(i) Prove that, in the absence of forces, dL*"/dt = 0.
(ii) Exhibit the relationship between the space-space part L'/ and the 3-angular momentum vector L = X A p.

(ili) The total angular momentum of a collection of particles about the pivot R is defined as
A
Ligt(RY) = X (X!~ R¥) P} - (X}~ R") P!
1

where the sum runs over the particles (that is, X# and P* are 4-vectors, not 2nd-rank tensors; i here labels the particles).
Show that the 3-angular momentum in the CM frame is independent of the pivot.

pH i pH

d dx
Proof. (i) Inthe absence of force, we have conservation of momentum: ar =0.Since — =VH=—,
m

dL®v  dxt . dx"
= P —

dr dr dr

pr=t (P*PY-P"P*)=0
m
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(ii) L=xAp = Ly = El'ijin. L'J forms an anti-symmetric type (2,0) tensor:

0 Ly -L
L=|-1; o L
L, -Li 0

The corresponding between L and LY/ is due to the isomorphism of vector spaces: R® = A\'R3 = A2 R,

(iii) In the CM frame(y; Pf = 0.\Hence the spatial parts _,? N\QNA:_.
yok = O

L850 X (¢ ) Y (0~ R ) = - (P X0PE) - RO+ RO P - " (0 — xPE) - 18400
1 1

i i i

are independent of R. \/ O

Question 5

The 4-vector field F* is given by F* = 2x* + k" (xVx,) where k" is a constant 4-vector and x* = (ct, x, y, z) is the 4-vector
displacement in spacetime. Evaluate the following:

(i) 9,x*

(i) O (xpxt)

(iii) 0H0yux" xy

(iv) 9,F*

(v) OH(0,FY)

(vi) 0Hdysin (kyx?t)

(vii) oHxY
Proof. (i) 0yxt = axtoxt = 4. \/

ax’ 0
(i) OHxpxt = x 0FxM + xMotxy = x, gV, xt + xMokxy = xlgﬁwa—zv + x’lﬁ = x,lg'wéé + x’lé‘ﬁ = xH + xH =2xH. \/
i

(iii) 0H0ux" xy = 6“gﬂ,167LxVxV = Gl‘gM(Zx’l) =20,x" =8. \/

(iv) 03F* =20, x! + kMo xVx, =8+2khx,.

(v) MO FM = 0H(8 + 2KkMxy) = 2k Aok xy = 2kM6H = 2k,

(vi) 0¥, sin(kyx?) = oH (ka cos(k,lxﬂ)dux’l) =0tk cos(kﬁxl)éﬁ = k0% cos(kyxt) = k*a, cos(kyxt) = —kMky sin(k,lx’l)éft

= —kFkysin(kyxh). /

ax”
(vii) oFxY = g:“la)txv = g#aﬁ = g/MéX = gl“’. / -

Question 6

A particle of rest mass m and kinetic energy 3mc? strikes a stationary particle of rest mass 2m and combines with it while still
conserving energy and momentum. Find the rest mass and speed of the composite particle.

Proof. The first particle has energy E = mc?>+3mc? = 4mc? and hence momentum p = VE2/c? — m?c? = v/15mec. So its 4-momentum
is P; = (4mc,vV15mc,0,0). The second particle has 4-momentum P, = (2mc,0,0,0). By conservation of 4-momentum, the
composite particle has 4-momentum:

Py + P = (6mc, V15mc,0,0) /
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The rest mass of the composite particle is m3 = \/ (6m)2 — (v15m)? = v/21m. The speed of the particle is given by

2
mgyv = \/ﬁmcL = v= £c

1- B2 4

\b. 7

et BT o @
= T e~ b

Question 7 \)&e B € g

Two photons may collide to produce an electron-positron pair. If one photon has energy Ej and the other has energy E, find
the threshold value of E for this reaction, in terms of Ey and the electron rest mass m.

High energy photons of galactic origin pass through the cosmic microwave background radiation which can be regarded as a
gas of photons of energy 2.3 x 10~4eV. Calculate the threshold energy of the galactic photons for the production of electron-
positron pairs.

Proof. Let e and e; be the direction of the two photons respectively. Then they have 4-momenta:
Ep E
Pi=—(,e1), P2=—(1,e2)
c c

In the CM frame of the electron-positron pair, the total 4-momenta of the system:

9]
pP=|1—,0
c

By conservation of 4-momentum and invariance of the pseudo-norm, we have
(Eo + B)* - || Ege; + Eey||” = E? = (2mc?)?

Hence
4

(2mc?)? - m2c

= = sincee;-ex € [—1,1
2Eo(l—er ) B, ( 1-€2 € D
The threshold energy is E = m?c*/Ej.

For Ey = 2.3 x 10™%eV and m, = 0.511 MeV/c?, we have E = 1.14 x 10'° eV.

Question 8
A particle Y decays into three other particles, with labels indicated by Y — 1 + 2 + 3. Working throughout in the CM frame:
(i) Show that the 3-momenta of the decay products are coplanar.
(ii) Show that the energy of particle 3 is given by

(m3, + m§ —m{ —m3) c* = 2E1 E; + 2py - pac?

Ea =
3 2myc?

(iii) Show that the maximum value of Ej3 is

m2 + m? — (my + m2)2
Y 3 2

E3 max =
’ 2my

and explain under what circumstances this maximum is attained.

(iv) Show that, when particle 3 has its maximum possible energy, particle 1 has the energy

g™ (my* - E3 max)

my + mp
[Hint: first argue that 1 and 2 have the same speed in this situation.]

(v) Now let’s return to the more general circumstance, with E3 not necessarily maximal. Let X be the system composed of
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particles 1 and 2. Show that its rest mass is given by

2 _ 2 2 2
my =my+mz—2myEs/c

(vi) Write down an expression for the energy E* of particle 2 in the rest frame of X, in terms of my, my, and my.

(vii) Show that, when particle 3 has an energy of intermediate size, ms 2 <Es3< Es3 max , the energy of particle 2 in the original
frame (the rest frame of Y ) is in the range

y(E*-Bp c)<Ex<y(E"+Bp*c)

where E* and p* are the energy and momentum of particle 2 in the X frame, and y and S refer to the speed of that frame
relative to the rest frame of Y.

Proof. (i) Let p1, p2, p3 be the 3-momenta of the decay products in the CM frame. By conservation of momentum, we have
P1+Pp2+p3 = 0. In particular p3 € span{p;, p}. So the 3-momenta span a subspace of R? of dimension at most 2, which
means they are coplanar.

(i) Starting from p; +p2 + ps =0, we have
Ipsl* = 1 +p2]” = [p1]|* + [2])* + 21 - p2

4 we obtain

Using the energy-momentum relation El2 = Hp i ||2 2+ m?c
E§ - m§c4 = Ef + E% - mfc4 - mgc4 +2p; - pac?
By conservation of energy we have
myc® = Ej + Ey + B3 = E?+Ej = (myc? - E3)*> —2E B,
Substitution this relation into the above equation, we have
E§ - mgc4 = (myc® - E3)? —2E1 Ep - mfc4 - m§c4 +2p; -pac?

Hence
(m% + m§ — mf —m3) c* —2E1 E; +2p; - pac” /

Ex=
3 2myc?

(iii) We shall prove that
mymact +p1-p2c? <E B,

with equality holds if and only if m;p, = mop;.
(mymac® +p1-p2 Cz)Z < (mimac® + || p1] P2 02)2 (Cauchy-Schwarz inequality)
=mimsc® + [p1|* [p2]|* * + 2mimz [ pu] [ p2 | °
<mimic® +||p ||2 [ p2 ||2 ¢+ (m | p2 03)2 +(ma | p1|| c3)2 (AM-GM inequality) \/
= (mic*+ [pull* ) (mbe* + Ipa]* )
= E’ES
The two inequality become equality if and only if p; and p; are in the same direction, and m ||pz|| ¢3 = m, ||p1| ¢. So

the overall equality holds if and only if m;p, = map;.

So the energy of the third particle

2 22 2\ .4 2 2 22 2\ .4 2 2 2
(m3, + m3 —m% —m3) c* —2E\ E; +2p; - p2c _ (m3, +ms—mi—m3)c —2mimy _ mi +ms—(mi+mp)” ,

Es= ¢” = E3max

2myc? 2myc? 2my

And E3 = E3 max iff mip2 = mop;. /
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(iv) When E3 = E3 max, m1p2 = m2p1, S0 Vi = V. In particular, E1/E> = m;/my. Hence
m my 2 \/
Ey=—(E1 + EB)) = ————(my¢” — E3max)
my + my my + my

(v) Using the energy-momentum relation,

m% = (B + E2)?/¢* = |p1 +p2 | /2

= (myc?—E3)?ict - |ps|° /¢ \/
= (myc® - E3)?/c* — (B3 /c* — m3)

= m§,+ m§—2my1€3/c2

(vi) Suppose that the 4-momenta of particle 1 and 2 in the rest frame of X are given by
Py =(E{,p1), P;=(E;,p))
Then P + P; = (mx c2,0). Using the energy-momentum relation,
(1) —mict=pi | = o " = (£5)" - m3e*

Substituting into the equation of conservation of energy:

myc® = Ef +E; /
2 4

2
= (mxc® - E})* = (E;)" - mjc* + mic

2 2myx ¢

(vii) In fact this inequality has nothing to do with the collision problem. The Lorentz transformation from the rest frame of
X to the rest frame of Y satisfies
Ep (E;

pa— _+ .*
Pl s sz)

So we have J

Y(E; = Bpsc) < E2 <y(E; +fp;0)

Question 9

Obtain the formula for the Compton effect using 4-vectors, starting from the usual energy-momentum conservation P* + P =
(P)"+ (P~

[Hint: we would like to eliminate the final electron 4-momentum (P;)” , so make this the subject of the equation and square.]

A collimated beam of X-rays of energy 17.52keV is incident on an amorphous carbon target. Sketch the wavelength spectrum
you would expect to be observed at a scattering angle of 90°, including a quantitative indication of the scale.

hw
Proof. The incident photon has 4-momentum P = — (1, e;). The stationary electron has 4-momentum P, = (m,c,0). The scattered
c
w/
photon has 4-momentum P’ = —(1, ez). The scattered electron has 4-momentum P, = (E,/c,pl,).
c

Conservation of 4-momentum:
P+P,=P'+P,

Taking the pseudo-norm:

g(P.,P)=g(P+P,~P,P+P,—P)
=g(PP)+g(P',P")+g(P,,P,) +2g(PP,) —2g(PP)—2g(P,, P
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Since P and P’ are 4-momenta of photons, g(P,P) = g(P',P') = 0. The scattered electron has unchanged rest mass, so
g(P,, P,) = g(P,, P,). The remaining terms are

g(PP;)-g(PP)~g(P,,P)=0

Substituting the expressions

2

homyc® — o' myc® = FPow'(1-e; -e))

Rearranging the expression:

1 1 h
— == (1-e;-ep)= (1-cos0)
w 0 mec? MeC2
where 6 is the scattering angle. The expression for wavelength is /
2nh
AN-a==E (1-cos®)
MmeC
2nh  2mhc 2mh
At0=90° "=+ = + =7.33x10"" m. m

MmecC E mecC
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