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QUESTION SHEET 6

Questions with an asterisk * beside them are optional.

1.

3.

Recall that G *« H denotes the free product of groups G and H. Let :G — G« H
be one of the canonical homomorphisms. Find a homomorphism 7: G * H — G such

that ma = idg. Deduce that « is injective.

. Any element of G x H is represented by a word in the alphabet G U H. We may

perform the following operations to such a word, without changing the element of

G * H that it represents:

(I) if successive letters g; and go belong to G (or they both belong to H), then

amalgamate them to form the letter g3, where g3 = g1g2 in G (or H);
(IT) if some letter is the identity in G or H, remove it.

Each of these operations shortens the word, and so eventually we will reach a stage a
where they cannot be performed any further. The resulting word is g1h1g2hs - . . gnhn,
where g; € G and h; € H, and each g; and each h; is non-trivial, except possibly g;
and/or h,. We then say that this word is reduced. Prove that each element of G * H
has a unique reduced representative. [Hint: emulate the proof of IV.8 by formulating

and proving a suitable version of IV.9.]

(i) Let T be the torus, which is obtained from the square by the usual side iden-
tifications. Let D be a small open disc at the centre of the square. Let X be
the space obtained from T by removing D. Let 0D be the boundary curve of
D, and let b be a basepoint on dD. Prove that w1 (X, b) is isomorphic to a free

group on two generators.
(ii) What word in these generators does the loop 9D spell?

(iii) Now let S be the ‘two-holed torus’ which is the surface shown on the following
page. Show that S can be obtained by taking two copies of X and gluing them
along the two copies of 0D.

(iv) Deduce that 71(S) is an amalgamated free product.



4. Construct simply-connected covering spaces of the following spaces:
(i) the Mobius band,
(i) S%v St

(iii) R? — {point}.
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