Topology & Groups Michaelmas 2016 Question Sheet 6

Questions with an asterisk * beside them are optional.

- 1. Recall that G*H denotes the free product of groups G and H. Let $\alpha: G \to G*H$ be one of the canonical homomorphisms. Find a homomorphism $\pi: G*H \to G$ such that $\pi\alpha = \mathrm{id}_G$. Deduce that α is injective.
- * 2. Any element of G * H is represented by a word in the alphabet $G \cup H$. We may perform the following operations to such a word, without changing the element of G * H that it represents:
 - (I) if successive letters g_1 and g_2 belong to G (or they both belong to H), then amalgamate them to form the letter g_3 , where $g_3 = g_1g_2$ in G (or H);
 - (II) if some letter is the identity in G or H, remove it.

Each of these operations shortens the word, and so eventually we will reach a stage a where they cannot be performed any further. The resulting word is $g_1h_1g_2h_2...g_nh_n$, where $g_i \in G$ and $h_i \in H$, and each g_i and each h_i is non-trivial, except possibly g_1 and/or h_n . We then say that this word is reduced. Prove that each element of G*H has a unique reduced representative. [Hint: emulate the proof of IV.8 by formulating and proving a suitable version of IV.9.]

- 3. (i) Let T be the torus, which is obtained from the square by the usual side identifications. Let D be a small open disc at the centre of the square. Let X be the space obtained from T by removing D. Let ∂D be the boundary curve of D, and let b be a basepoint on ∂D. Prove that π₁(X, b) is isomorphic to a free group on two generators.
 - (ii) What word in these generators does the loop ∂D spell?
 - (iii) Now let S be the 'two-holed torus' which is the surface shown on the following page. Show that S can be obtained by taking two copies of X and gluing them along the two copies of ∂D .
 - (iv) Deduce that $\pi_1(S)$ is an amalgamated free product.

- $4. \ \,$ Construct simply-connected covering spaces of the following spaces:
 - (i) the Möbius band,
 - (ii) $S^2 \vee S^1$,
 - (iii) $\mathbb{R}^2 \{\text{point}\}.$

```
Peize Liu
          Topology & Groups 6
0
         Let f: Suppose there are presentations
0
            G = < X, |R, > , H = < X2 | R2 > , X, N X2 = Ø.
0
         Let f: X_1 \cup X_2 \to G defined by:
0
              f(a) = a \cdot f(b) = e_G \forall a \in X_1, \forall b \in X_2.
0
         This includes group homomorphism: 12 120 120 120 1
D
              \varphi: F(X_1 \cup X_2) \to G.
0
           ∀r, ∈ Ri, φ(r, ) = r, = ea;
0
           ∀r, ∈R1, (q(r1) = eG
0
          By Lemma 5.11, 4 includes a group homomorphism:
0
              Π: <XIUX2 RIUR2> → G
          (By definition, G * H = < X, U X2 / R, UR2)
0
          We shall show that \pi \circ \alpha = idg:
0
          For geG, g is a word in the alphabet X1. The canonical
0
          inclusion sends g to origina G*H. Since flx = idx, , Tro a(g)
sends every word in X, to the
0
          For g \in G, g = \chi_1^{\epsilon_1} \cdots \chi_n^{\epsilon_n} with \chi_1, \dots, \chi_n \in X_1 and
0
           ε,.... εn∈ {1,-1}. α(g) = x1 ··· xn ∈ G * H.
0
          Since f(x) = idx, we have:
            \pi \circ \alpha(g) = f(x_1)^{\varepsilon_1} \cdots f(x_n)^{\varepsilon_n} = x_1^{\varepsilon_1} \times x_n^{\varepsilon_n} = g \in G
0
0
          \Rightarrow \pi \cdot \alpha = idG as required.
0
          For g, g2 EG; \(\alpha(g_1) = \alpha(g_1) = \pi \alpha(g_1) = \pi \alpha(g_2)
0
                                 =) 91=92
0
           Hence a is injective.
0
0
0
```

