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Throughout this problem sheet, k denotes an algebraically closed field. @ P\ X

Section A: Introductory T NK

Question 1. Zariski topology

Verify that arbitrary intersections and finite unions of affine varieties are affine varieties. Deduce that the Zariski
topology on an affine variety is indeed a topology.

Proof. Let Af be the n-dimensional affine space over k and R :=k[x, ..., X,].
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Hence V(X gerJa) =Naer VUa).

We conclude that the affine varieties satisfy the axioms of the closed sets of a topology on A’. v O

Question 2. Irreducibility
(a) Show that affine n-space A} is irreducible.

(b) Show that an affine variety X < A} is irreducible if and only if every non-empty open subset U < X is dense
in the Zariski topology.

(c) Let X be an irreducible affine variety. Show that any two non-empty open sets intersect in a non-empty open
dense set.

Proof. (a) Suppose that Af is reducible. Then AE = V) uV(J) = V(1)) for non-zero ideals I, J € R := k[xy, ..., x,]. By
Hilbert’s Nullstellensatz,

VIO =1(AY) =1vU ) = V1T

Since R is an ‘}'ntegral domain, {0} is a prime ideal. Hence 1] < VIJ ={0}. We take feI\{0}and ge J\{0}. So
fg e IJ\{0}. This is a contradiction. Hence AE is irreducible.

(b) Suppose that X has a non-empty open subset U that is not dense in X. Then U (taking closure with respect
to the subspace topology) is a non-trivial subvariety of X. Hence X is reducible. Conversely suppose that X
isreducible. Say X = X; U X». Then X; = X\ X5 is open in X and its closure is equal to itself.

(c) Let Uy, U, be two non-empty open subsets of X. Then X\ (U; uU,) = X\ U; U X \ Us is a union of two non-
empty closgg, subsets of X. Since X is irreducible, X # X\ U; UX\ U,. Hence U1 U X, = X\ (X\U 1 U X\ U>)
is non-empty. By the previous result it is dense in X. WW N 2w 8 X, 10



Section B: Core

Question 3. The Zariski topology in low dimensions

(a) List the open and closed subsets of Ai in the Zariski topology.

(b) Describe carefully the Zariski closed subsets of A2, proving your statements.

(c) Show that the Zariski topology on AZ is not the product topology on A} x A’

Proof.

(a

(b)

(©

Let X be an algebraic varlety of Al Then X = V((f)) for some f € k[x], as k[x] is a principal ideal domain.

Hence X = {x3, ... xn} 1s exactly the set of roots of f (if f # 0). We deduce that the closed subsets of Al are
all finite subsets of A}, and A} itself, Correspondingly, the open subsets of A are all co- -finife subsets of A},

and @.

We say that C < Aﬁ is an irreducible affine plane curve, if C = \/(( f >), where f € k[x, y] is irreducible. We
claim that the closed subsets of Aﬁ are generated by irreducible affine curves. More specifically, the closed
subsets are given by

M AY
; 2.
(2) finite subsets of AZ; /
(3) finite unions of finitely many irreducible affine plane curves;
(4) finite unions of the sets in (2) and (3).

Let X be a proper affine variety in Aﬁ. Let X = V(). Since k[x, y] is Noetherian, I = (fi, ..., ) for fi,... fn €
k[x, y] and hence

i=1

o fi)) = v(i <ﬁ->) - Ayun

Since k[x, y] is a unique factorisation domain, f; = H;.":"l gj for irreducible polynomials gi,..., gm; € klx, y].
Then

=ﬁ\/(<ﬁ) r’ﬁ

lrf[ gj>) = ﬁ Clj\/(<gj>) v

i=1j=1
where each V((g;)) is({n irreducible affine plane curve by definition.

Finally, if C and D are distinct irreducible affine plane curves, by the (weak form of) Bezéut’s Theorem, CnD
is a finite set, Therefore we have proven that any closed subset of Aﬁ must have the form as claimed above.

Conversely, it is clear that all irreducible affine plane curves (and their finite unions) are closed in Zariski
topology. In addition, we take {(xo, y0)} = V({x - x0, ¥ — y0)) 'ﬁld take finite unions to obtain all finite subsets
of Ai. This proves the other direction of the claim.

We consider the affine variety X = V((x—-y)) < AZ. Suppose that it is closed under the product Zariski
topology of A} x A. Then
n
ANX =i x zy~
i=1
where Y1, ..., Y, and Zi, ..., Z, are co-finite subsets of A by the result in (a). As U”_, (A} \ Y;UA}\ Z;) is a finite
set, we can choose a € A such that a¢ UL (A \Y; uAl \ Z;) Then (a, a) € UL (Y, x Z;)But (a, a) € X by
definition. This is a contradlctlon Hence AZ \ X is open in the Zariski topology of Az but not in the product
Zariski topology of A} x Al. The two topologles on A? are distinct. O



Question 4. Reduced algebras as coordinate rings

(@) Show that TnJ=+vIn+/Jforideals I, ] of a finitely generated k-algebra R.

(b) Show that the ideal (xy, xz) < k[x, y, z] is radical but not prime. Sketch the variety it defines in A*z.

(c) Let X < A} be an affine variety. Show that a radical ideal in k[X] is the intersection of all the maximal ideals
containing it.

Proof.

(Hint: using methods of this course, it is easier to first translate this into a geometrical statement, and prove
that. For an algebraic proof, you might find helpful the following theorem due to Krull: the nilradical nil(A) =

{x:

(a

(b)

(©

x™ =0 some m} of aring A equals the intersection of all its prime ideals.)

This is true for any CRI (commutative ring with identity) R.
For fe In], f"e€In]forsome neN. Hence f € VIand f € v/J. We deduce that VInJ<vVInVJ]. v

v

Conversely, for f € VIn+/J, we have f" € I and f™ € J for some n,m € N. Then f"/*?m € InJ. Hence
fevInJ. Wededuce that vVInvJ<VINJ.

OV N o v (,\/\A\

Note that (xy, xz) = (x) N (y, z), where both (x) and (y, z) are prime, and hence and radical. We have

Vinaz) = \Jn(n2) = vVmn(ne) = wn(nz) = (xyxz) ©

Hence (xy, xz) is radical. But it is not prime, as x, y ¢ {xy, xz) and xy € (xy,xz).~”

The variety V({xy, xz)) is just {x = 0} U {y = z = 0}.

v v
ZJ—’K

First we prove this when k is algebraically closed.

Let  : k[x1,..., x4] — k[X] := k[x1,..., x,]/I be the canonical projection. Let J be a radical ideal on k[X] and
J := n~1(J) be its preimage in k[xy,..., x,]. Then k[X]/J = k[x1,...,x,]1/(I + J)Y By an immediate corollary
of Hilbert’s weak Nullstellensatz, the maximal ideals of k[X]/J are of the form (x; —ay,..., x, — an)ﬁ I+]7,
(ay,...,an) € A}. Hence the Jacobson radical of k[X]/J is {0}. This implies that J is the intersection 5f all
maximal ideals of k[ X] containing J.

Next we prove this for any general field k. We say that a CRI R is a Jacobson ring, if the radical and Jacobson

v
radical of any ideal I <R coincide. The result of (c) follows immediately from the following (in fact stronger)
lemma:

Lemmal ~

Any finitely generated k-algebra is a Jacobson ring.

(See also Corollary 9.4 of B2.2 Commutative Algebra (2020-2021).)

N
Let R be a finitely generated k-algebra. It suffices to show that the nilradical N(R) and Jacobson radical J(R)



of R coincide. Let f ¢ N(R). Consider the localisation Ry on { f": n €N}, which is non-zero. Let M be a
maximal ideal of R¢. Consider the composition of canonical homomorphisms:

R L4 > Ry 7

» Rf/M

Let ¢ = wo . Since Ry is finitely ge'r{erated k-algebra, so is R¢/M. But R¢/ M is also a field. Then R rIMisa
finite field extension of k, by Hilbert’s weak‘ﬁullstellensatzl, and hence is integral over k. Then im is also
integral over k. Hence im is also a field. By first isomorp\f}ism theorem, ker is a maximal ideal of R. Note
that ¢ (f) # 0 because f/1is a unitin R¢. Hence f ¢kery 2 J(R). We conclude that J(R) = N(R). O

Question 5. The pull-back map between coordinate rings

Suppose that F : X — Y is a morphism of affine varieties over a field k, associated to a map F* : k[Y] — k[X]
between their coordinate rings.

(a) Show that F* is injective if and only if F is dominant, i.e. the image set F(X) is dense in Y.

(b) Show that F* is surjective if and only if F defines an isomorphism between X and some algebraic subvariety
of Y.

(c) Find an example where F is injective but F* is not surjective.

Proof. (a) Suppose that F(X)isnotdensein Y. Then F(X)=ZCY, wher‘e/Z =V(I) is a proper subvariety of Y = V().
Take f € I\ J and let f be the image of f in k[Y]. Then F*(f) =0 and f # 0. Hence F* is injective.

Conversely, sulEpose that F* is not injective. Let f € ker F* \ {0}. We no‘t/e that U:={be Y : f(b) # 0} is an
open set of Y. Moreover, for b= F(a) € F(X), f(b) = foF(a) = F*(f)(a) =0. Hence F(X)NnU = &. We deduce
that F(X) isnotdensein Y.

(b) Suppose that Z is a subvariety of Y such that F: X — Z € Y is an isomorphism. Then we know that k[X] =
k[Z]. Then F* factors through k[ 7] via:

. B L ‘
F*: kY] ——— k[Z] —= k[X] (Zﬁf%‘( \osed mx.,m%

/
Hence F* is surjective.

Conversely, suppose that F* is surjective. By first isomorphism tfle/orem, k[X] = k[Y]/ker F*. Let J be the
preimage of ker F* in k[ylj..., ¥nl. We claim that F defines an isomorphism from X to Z:=YnV(J) €Y.
For f e J, F*(f) = foF =0. Hence F(X) < V(J). So F indeed maps into Y N V(J). Moreover, the pull-back
F*:k[Z] = k[Y]/ker F* — k[X] is an isomorphism of rings. Hence F : X — Z is‘an isomorphism of varieties.

(c) Let X = \/((xy— 1>) c Ai and Y = Ai. Let F: L)}—» Y be a morphism given by (x,y) — x.‘/F is injective
because every poir&on X is of the form (x, x™!) for x ¢ {0}. But F(X) = All( \ {0} is not a subvariety of Y. By (b)
F* is not surjective. O

Question 6. The affine normal curve

Consider the homomorphism of rings
F* :klxg,...,Xp-1] — k[t

given by x; — t'.

(a) Show that the corresponding morphism of affine varieties F : Alk — A} defines an isomorphism between Ai
and its image under F.

V' 1The version of weak Nullstellensatz we are using states that, if R is a finitely generated k-algebra and also a field, then R is finite over k.



(b) Find generators for the ideal defining the image of F in A}..

Proof. (a) Itisclear that F* is surjective because

F*

n
> apxfxg
k=0

n
= Z aktk v
k=0

[V
By Question 5.(b), F is an isomorphism between Ai and F (Ai).‘—' { _— Il

(b) We claim that I](F(Ai)) = (xg —-1,x— xf, vy Xp_1— x{l’1> =ker F*. I believe that it is self-evident and there is
nothing non-trivial that needs to prove here... O

Question 7. A reducible variety

Consider the ideal

]=<uw—v2,u3—vw>

in the ring k[u, v, w], and the corresponding affine variety X = V(J) A?C.
(a) By taking suitable combinations of the generators, show that J is not prime.

(b) Show that X is a reducible variety, which decomposes as
X=XjUX,

with one component, say X; isomorphic to the affine line A}C.

(c) Show that the other piece X is the image of a map Alk — Ai defined by ¢ — (9, t?, t¢) for some positive
integers a, b, c. Deduce that X, is irreducible.

Proof. (a) We have v(w? - u?v) = v*(uw - v - wud L/l/ w) € J. Itis clear that v ¢ J, as any polynomial in J cannot
contain linear terms. Similarly, w?—u?v ¢ J,as w? cannot appear as a term in a polynomial in J. We deduce
that J is not a prime ideal.
(b) For (a,b,c) e X = V(]),Wghave ac— b? =051nd a®—bc=0.Ifa= Ol,/then a=b=0. Ifg;éo, then b # 0. And
we have b® = a®c3 = bc* and hence b° = ¢*. Then b® = a*c?* = a*b® and hence a* = b3. In summary, we have
X = X UX,, where

Xi={a=b=0}, Xp={t4¢):tek}
1 ~ v/ . . . . v
We note that A =X, with the isomorphism given by ¢ — (0,0, 1).

‘L/ _
(c) We have found X> in (b). The map ¢ — (13, ¢4, °) € Xy is an isomorphism. Hence X, = A}( isirreducible. O

Section C: Optional Koo w9 T @recVpas alt e Ser® clavkflcadlons FEPT
Question 8. The disjoint union of affine varieties

Show that a variety X € A}’ is a union of two disjoint closed subvarieties if and only if its coordinate ring k[ X] may
be written as the product of two non-trivial finitely generated reduced k-algebras.

(Hint: recall the algebraic form of the Chinese Remainder Theorem: if I}, I, are coprime ideals in a ring R, meaning
L+ =R, thenynI = I - I, and there is a ring isomorphism R/ (I N I,) — R/Ty xR/ I, given by f — (f + I, f + I2).)

Proof. LetR:= k[xy,..,x]. Suppose that X = V() uV(J) such that V(I)nV(J) = &. Then V(I + J) = & and hence I+ ] = R.
The ideals I and J are coprime. Since [+ ] < VI++7J, VI and /7T are also coprime. By Chinese Remainder



Theorem,

R R :ﬂxi—k[\/(n]xk[\/(})]
vin] VInvi VI VI

We deduce that k[X] is isomorphic to the product R/vT x R/+/J, and both R/v/T and R/+/J are reduced by the
definition of the radical ideal.

kX1 =kIV(DUVD] =kIVUD]=kIVUIN D] =

Conversely, suppose that k[X] = S x T, where S, T are finitely generated reduced k-algebra. The inclusion S —
k[X] = k[x1,..., x5]/1(X) implies that S can be generated by n elements, and hence can be realised as a quotient of
klxi,...,xy]. Thatis, S = k[x;,..., x5/ 1. Similarly, T = k[x,...,x,]/J. Since S, T are reduced, I, J are radical ideals.
So S and T are in fact coordinate rings of V(I) and V(J). We claim that V(I) and V(J) are disjoint. Suppose that
acV({I)nV(J). For f=(0,1) € SxT,wehave f(a)=0as a e V(I). Similarly, g = (1,0) € S x T satisfies that g(a) = 0.
But f(a)+ gla) = 1(a) =1 # 0. This is a contradiction, which proves our claim. Now V(I) N V(J) = & implies that
I+ ] =R. By Chinese Remainder Theorem again, we have

kIX]=SxT= B kiV(hDuv()l
Inj

Hence X = V(I) u V(J) is a disjoint union of two non-empty subvarieties. O

Question 9. The variety of nilpotent matrices

We work in the affine space A* parametrising 2 x 2 matrices over k, with variables being the matrix entries x; i

(a) Prove that the following conditions are equivalent for a 2 x 2 matrix A over a field k :

(1) Aisnilpotent: there exists an 7 = 1 such that A” = 0;
2) A*=0;

(3) detA=trA=0.

Let I <R = k[x11, X12, X21, X22] be the ideal formed by the polynomials d = det A, t = tr A, viewed as polynomials in
the matrix entries. Let J <R be the ideal formed by the entries of A%, as polynomials in the matrix entries. Show the
following.

(b)
()

(d)

Proof.

The ideal J is not radical: it contains a power of ¢ but not ¢ itself.
The ideal I is radical.

(Hint: aim to show that I is prime and therefore radical. Show this by mapping R/ to an isomorphic ring
using the linear generator in I.)

Deduce that X = V(I) = V(J) € A* with /T = I, and conversely [(X) = I.

(a) We embed k into its algebraic closure k and make the identification A € M2 (k). Note that any non-zero
nilpotent matrix in M., (k) is similar to its Jordan normal form:

o

Suppose that det A = tr A = 0. Then the characteristic polynomial of A is given by

So we have (1) < (2) = (3).

xAX) = x° - (trA)x+detA= x?



(b)

(©

(d)

Hence A%2=0 by Cayley-Hamilton theorem. We have (3) = (2).

We write x = x11.Y = X12, 2 = X21, W = X2 for simplicity. Then

JOE: y)z_(x2+yz y(x+w))

z w| \zlx+w) w?+yz

So J = (x*+yz, w?+yz,y(x+ w), z(x + w)). Note that
2 _ 2_ .2 2 Y
rF=x+w) =x"+y2)+(w +yzx)+2(xw—-yz)=tr A“+2detA
Hence
' = (trA%)? +4tr A%det A+ 4(det A)? = (tr A%)?> + 4tr A det A+ 4 det A?

As tr A%, det A% € ], we deduce that t* € J. It is clear that ¢ ¢ J, as the generators of J are homogeneous of
degree 2. Hence J is not a radical ideal.

We have I = (d, t) = (xw — yz, x + w). We have the ring isomorphism
RIT= ks, t,ull {st—u?)

given by the map x — u, y— s, z— t, w — —u. Note that k[s, ¢, u] is a unique factorisation domain, and
st — u? is an irreducible polynomial. Hence <st— u2> is a prime ideal of k[s, t,u]. Then R/I is an integral
domain. Hence I is a prime ideal of R. We deduce that [ is radical.

We have d? = det A% € Jand t* € J. Hence d, t € /J and then I < \/J. But by (c) I is radical. Therefore I = /7.
We have V(I) = V(J). Finally, if k is algebraically closed, then by Hilbert’s strong Nullstellensatz, we have

IX) =0VOD) =VI=1 O



