Peize Liu St. Peter's College University of Oxford

Problem Sheet 1 C3.4: Algebraic Geometry

3.A+ 4 · A+

1

5. Kt

6. At

7. At

Section A: Introductory

Question 1. Zariski topology

Verify that arbitrary intersections and finite unions of affine varieties are affine varieties. Deduce that the Zariski topology on an affine variety is indeed a topology.

Proof. Let \mathbb{A}^n_k be the *n*-dimensional affine space over k and $R := k[x_1, ..., x_n]$.

Throughout this problem sheet, k denotes an algebraically closed field.

- $\mathbb{V}(\langle 0 \rangle) = \mathbb{A}^n_{\mathsf{k}}, \, \mathbb{V}(\langle 1 \rangle) = \varnothing.$
- Let *I* and *J* be two ideals in *R*. By definition it is clear that $\mathbb{V}(I) \cup \mathbb{V}(J) \subseteq \mathbb{V}(IJ)$. On the other hand, for $a \notin \mathbb{V}(I) \cup \mathbb{V}(J)$, there exist $f \in I$ and $g \in J$, such that $f(a) \neq 0 \neq g(a) \neq 0$. Hence f(a) = 0. As $f(a) \neq 0$, we deduce that $a \notin V(IJ)$. Hence $V(IJ) = V(I) \cup V(J)$. Proceed by induction to prove it for finitely

 • Let $\{J_{\alpha} : \alpha \in I\}$ be a family of ideals of R. We have

$$a \in \mathbb{V}\left(\sum_{\alpha \in I} J_{\alpha}\right) \iff \forall f \in \sum_{\alpha \in I} J_{\alpha} \colon f(a) = 0$$
$$\iff \forall \alpha \in I \ \forall f \in J_{\alpha} \colon f(a) = 0$$
$$\iff a \in \bigcap_{\alpha \in I} \mathbb{V}(J_{\alpha}) \checkmark$$

Hence $\mathbb{V}(\sum_{\alpha \in I} J_{\alpha}) = \bigcap_{\alpha \in I} \mathbb{V}(J_{\alpha})$.

We conclude that the affine varieties satisfy the axioms of the closed sets of a topology on \mathbb{A}^n_k .

Question 2. Irreducibility

- (a) Show that affine n-space \mathbb{A}^n_k is irreducible.
- (b) Show that an affine variety $X \subseteq \mathbb{A}^n_k$ is irreducible if and only if every non-empty open subset $U \subseteq X$ is dense in the Zariski topology.
- (c) Let X be an irreducible affine variety. Show that any two non-empty open sets intersect in a non-empty open dense set.
- (a) Suppose that \mathbb{A}^n_k is reducible. Then $\mathbb{A}^n_k = \mathbb{V}(I) \cup \mathbb{V}(J) = \mathbb{V}(IJ)$ for non-zero ideals $I, J \in \mathbb{R} := k[x_1, ..., x_n]$. By Proof. Hilbert's Nullstellensatz,

$$\sqrt{\{0\}} = \mathbb{I}(\mathbb{A}^n_{\mathsf{k}}) = \mathbb{I}(\mathbb{V}(IJ)) = \sqrt{IJ}$$

Since *R* is an integral domain, $\{0\}$ is a prime ideal. Hence $IJ \subseteq \sqrt{IJ} = \{0\}$. We take $f \in I \setminus \{0\}$ and $g \in J \setminus \{0\}$. So $fg \in IJ \setminus \{0\}$. This is a contradiction. Hence \mathbb{A}^n_k is irreducible.

- (b) Suppose that X has a non-empty open subset U that is not dense in X. Then \overline{U} (taking closure with respect to the subspace topology) is a non-trivial subvariety of *X*. Hence *X* is reducible. Conversely suppose that *X* is reducible. Say $X = X_1 \cup X_2$. Then $X_1 = X \setminus X_2$ is open in X and its closure is equal to itself.
- (c) Let U_1, U_2 be two non-empty open subsets of X. Then $X \setminus (U_1 \cup U_2) = X \setminus U_1 \cup X \setminus U_2$ is a union of two nonempty closed subsets of X. Since X is irreducible, $X \neq X \setminus U_1 \cup X \setminus U_2$. Hence $U_1 \cup X_2 = X \setminus (X \setminus U_1 \cup X \setminus U_2)$ Which one is X22 is non-empty. By the previous result it is dense in X.

Section B: Core

Question 3. The Zariski topology in low dimensions

- (a) List the open and closed subsets of \mathbb{A}^1_k in the Zariski topology.
- (b) Describe carefully the Zariski closed subsets of \mathbb{A}^2_k , proving your statements.
- (c) Show that the Zariski topology on \mathbb{A}^2_k is not the product topology on $\mathbb{A}^1_k \times \mathbb{A}^1_k$.
- *Proof.* (a) Let X be an algebraic variety of \mathbb{A}^1_k . Then $X = \mathbb{V}(\langle f \rangle)$ for some $f \in k[x]$, as k[x] is a principal ideal domain. Hence $X = \{x_1, ..., x_n\}$ is exactly the set of roots of f (if $f \neq 0$). We deduce that the closed subsets of \mathbb{A}^1_k are all finite subsets of \mathbb{A}^1_k , and \mathbb{A}^1_k itself. Correspondingly, the open subsets of \mathbb{A}^1_k are all co-finite subsets of \mathbb{A}^1_k , and \emptyset .
 - (b) We say that $C \subseteq \mathbb{A}^2_k$ is an **irreducible affine plane curve**, if $C = \mathbb{V}(\langle f \rangle)$, where $f \in \mathbb{k}[x, y]$ is irreducible. We claim that the closed subsets of \mathbb{A}^2_k are generated by irreducible affine curves. More specifically, the closed subsets are given by
 - (1) \mathbb{A}^2_{k} ;
 - (2) finite subsets of \mathbb{A}^2_k ;
 - (3) finite unions of finitely many irreducible affine plane curves;
 - (4) finite unions of the sets in (2) and (3).

Let X be a proper affine variety in \mathbb{A}^2_k . Let $X = \mathbb{V}(I)$. Since k[x, y] is Noetherian, $I = \langle f_1, ..., f_n \rangle$ for $f_1, ..., f_n \in k[x, y]$ and hence

$$X = \mathbb{V}(\langle f_1, ..., f_n \rangle) = \mathbb{V}\left(\sum_{i=1}^n \langle f_i \rangle\right) = \bigcap_{i=1}^n \mathbb{V}(\langle f_i \rangle)$$

Since k[x, y] is a unique factorisation domain, $f_i = \prod_{j=1}^{m_i} g_j$ for irreducible polynomials $g_1, ..., g_{m_i} \in k[x, y]$. Then

$$X = \bigcap_{i=1}^{n} \mathbb{V}(\langle f_i \rangle) = \bigcap_{i=1}^{n} \mathbb{V}\left(\prod_{i=1}^{m_i} \langle g_j \rangle\right) = \bigcap_{i=1}^{n} \bigcup_{j=1}^{m_i} \mathbb{V}(\langle g_j \rangle) \checkmark$$

where each $\mathbb{V}(\langle g_j \rangle)$ is an irreducible affine plane curve by definition.

Finally, if C and D are distinct irreducible affine plane curves, by the (weak form of) Bezóut's Theorem, $C \cap D$ is a finite set. Therefore we have proven that any closed subset of \mathbb{A}^2_k must have the form as claimed above.

Conversely, it is clear that all irreducible affine plane curves (and their finite unions) are closed in Zariski topology. In addition, we take $\{(x_0, y_0)\} = \mathbb{V}(\langle x - x_0, y - y_0 \rangle)$ and take finite unions to obtain all finite subsets of \mathbb{A}^2_k . This proves the other direction of the claim.

(c) We consider the affine variety $X = \mathbb{V}(\langle x - y \rangle) \subseteq \mathbb{A}^2_k$. Suppose that it is closed under the product Zariski topology of $\mathbb{A}^1_k \times \mathbb{A}^1_k$. Then

$$\mathbb{A}_{\mathsf{k}}^2 \setminus X = \bigcup_{i=1}^n (Y_i \times Z_i) \sim$$

where $Y_1,...,Y_n$ and $Z_1,...,Z_n$ are co-finite subsets of \mathbb{A}^1_k by the result in (a). As $\bigcup_{i=1}^n (\mathbb{A}^1_k \setminus Y_i \cup \mathbb{A}^1_k \setminus Z_i)$ is a finite set, we can choose $a \in \mathbb{A}^1_k$ such that $a \notin \bigcup_{i=1}^n (\mathbb{A}^1_k \setminus Y_i \cup \mathbb{A}^1_k \setminus Z_i)$. Then $(a,a) \in \bigcup_{i=1}^n (Y_i \times Z_i)$. But $(a,a) \in X$ by definition. This is a contradiction. Hence $\mathbb{A}^2_k \setminus X$ is open in the Zariski topology of \mathbb{A}^2_k but not in the product Zariski topology of $\mathbb{A}^1_k \times \mathbb{A}^1_k$. The two topologies on \mathbb{A}^2_k are distinct.

Question 4. Reduced algebras as coordinate rings

- (a) Show that $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$ for ideals I, J of a finitely generated k-algebra R.
- (b) Show that the ideal $(xy, xz) \subseteq k[x, y, z]$ is radical but not prime. Sketch the variety it defines in \mathbb{A}^3_k .
- (c) Let $X \subseteq \mathbb{A}^n_k$ be an affine variety. Show that a radical ideal in k[X] is the intersection of all the maximal ideals containing it.

(Hint: using methods of this course, it is easier to first translate this into a geometrical statement, and prove that. For an algebraic proof, you might find helpful the following theorem due to Krull: the nilradical nil(A) = $\{x: x^m = 0 \text{ some } m\}$ of a ring A equals the intersection of all its prime ideals.)

(a) This is true for any CRI (commutative ring with identity) R. Proof.

For $f \in \sqrt{I \cap J}$, $f^n \in I \cap J$ for some $n \in \mathbb{N}$. Hence $f \in \sqrt{I}$ and $J \in \sqrt{J}$, we have $f^n \in I$ and $f^m \in J$ for some $n, m \in \mathbb{N}$. Then $f^{n+m} \in I \cap J$. Hence $f^n \in I$ and $f^m \in J$ for some $f^n \in I$ and $f^m \in I$ for some $f^n \in I$ for some $f^n \in I$. Then $f^n \in I \cap J$ for some $f^n \in I$ for some

(b) Note that $\langle xy, xz \rangle = \langle x \rangle \cap \langle y, z \rangle$, where both $\langle x \rangle$ and $\langle y, z \rangle$ are prime, and hence and radical. We have

$$\sqrt{\left\langle xy,xz\right\rangle} = \sqrt{\left\langle x\right\rangle \cap \left\langle y,z\right\rangle} = \sqrt{\left\langle x\right\rangle} \cap \sqrt{\left\langle y,z\right\rangle} = \left\langle x\right\rangle \cap \left\langle y,z\right\rangle = \left\langle xy,xz\right\rangle \checkmark$$

Hence $\langle xy, xz \rangle$ is radical. But it is not prime, as $x, y \notin \langle xy, xz \rangle$ and $xy \in \langle xy, xz \rangle$.

The variety $\mathbb{V}(\langle xy, xz \rangle)$ is just $\{x = 0\} \cup \{y = z = 0\}$.

(c) First we prove this when k is algebraically closed.

Let $\pi: \mathsf{k}[x_1,...,x_n] \to \mathsf{k}[X] := \mathsf{k}[x_1,...,x_n]/I$ be the canonical projection. Let \widetilde{J} be a radical ideal on k[X] and $J := \pi^{-1}(\widetilde{J})$ be its preimage in $k[x_1,...,x_n]$. Then $k[X]/J = k[x_1,...,x_n]/(I+J)$. By an immediate corollary of Hilbert's weak Nullstellensatz, the maximal ideals of k[X]/J are of the form $\langle x_1 - a_1, ..., x_n - a_n \rangle + I + J$, $(a_1,...,a_n) \in \mathbb{A}^n_k$. Hence the Jacobson radical of k[X]/J is $\{0\}$. This implies that J is the intersection of all maximal ideals of k[X] containing J.

Next we prove this for any general field k. We say that a CRI R is a **Jacobson ring**, if the radical and Jacobson radical of any ideal $I \triangleleft R$ coincide. The result of (c) follows immediately from the following (in fact stronger) lemma:

Lemma 1

Any finitely generated k-algebra is a Jacobson ring.

(See also Corollary 9.4 of B2.2 Commutative Algebra (2020-2021).)

Let R be a finitely generated k-algebra. It suffices to show that the nilradical N(R) and Jacobson radical J(R)

of R coincide. Let $f \notin N(R)$. Consider the localisation R_f on $\{f^n : n \in \mathbb{N}\}$, which is non-zero. Let M be a maximal ideal of R_f . Consider the composition of canonical homomorphisms:

$$R \xrightarrow{\varphi} R_f \xrightarrow{\pi} R_f/M$$

Let $\psi = \pi \circ \varphi$. Since R_f is finitely generated k-algebra, so is R_f/M . But R_f/M is also a field. Then R_f/M is a finite field extension of k, by Hilbert's weak Nullstellensatz¹, and hence is integral over k. Then im ψ is also integral over k. Hence im ψ is also a field. By first isomorphism theorem, $\ker \psi$ is a maximal ideal of R. Note that $\varphi(f) \neq 0$ because f/1 is a unit in R_f . Hence $f \notin \ker \psi \supseteq J(R)$. We conclude that J(R) = N(R).

Question 5. The pull-back map between coordinate rings

Suppose that $F: X \to Y$ is a morphism of affine varieties over a field k, associated to a map $F^*: k[Y] \to k[X]$ between their coordinate rings.

- (a) Show that F^* is injective if and only if F is dominant, i.e. the image set F(X) is dense in Y.
- (b) Show that F^* is surjective if and only if F defines an isomorphism between X and some algebraic subvariety of Y.
- (c) Find an example where F is injective but F^* is not surjective.
- *Proof.* (a) Suppose that F(X) is not dense in Y. Then $\overline{F(X)} = Z \subsetneq Y$, where $Z = \mathbb{V}(I)$ is a proper subvariety of $Y = \mathbb{V}(J)$. Take $f \in I \setminus J$ and let \overline{f} be the image of f in k[Y]. Then $F^*(\overline{f}) = 0$ and $\overline{f} \neq 0$. Hence F^* is injective.

Conversely, suppose that F^* is not injective. Let $f \in \ker F^* \setminus \{0\}$. We note that $U := \{b \in Y : f(b) \neq 0\}$ is an open set of Y. Moreover, for $b = F(a) \in F(X)$, $f(b) = f \circ F(a) = F^*(f)(a) = 0$. Hence $F(X) \cap U = \emptyset$. We deduce that F(X) is not dense in Y.

(b) Suppose that Z is a subvariety of Y such that $F: X \to Z \subseteq Y$ is an isomorphism. Then we know that $k[X] \cong k[Z]$. Then F^* factors through k[Z] via:

$$F^*: k[Y] \xrightarrow{\iota^*} k[Z] \xrightarrow{\simeq} k[X] \qquad \left(Z \xrightarrow{i} Y \text{ closed embedding} \right)$$

Hence F^* is surjective.

Conversely, suppose that F^* is surjective. By first isomorphism theorem, $k[X] \cong k[Y]/\ker F^*$. Let J be the preimage of $\ker F^*$ in $k[y_1,...,y_n]$. We claim that F defines an isomorphism from X to $Z:=Y\cap \mathbb{V}(J)\subseteq Y$. For $f\in J$, $F^*(f)=f\circ F=0$. Hence $F(X)\subseteq \mathbb{V}(J)$. So F indeed maps into $Y\cap \mathbb{V}(J)$. Moreover, the pull-back $\widetilde{F}^*:k[Z]\cong k[Y]/\ker F^*\to k[X]$ is an isomorphism of rings. Hence $\widetilde{F}:X\to Z$ is an isomorphism of varieties.

(c) Let $X = \mathbb{V}(\langle xy - 1 \rangle) \subseteq \mathbb{A}^2_k$ and $Y = \mathbb{A}^1_k$. Let $F : X \to Y$ be a morphism given by $(x, y) \mapsto x$. F is injective because every point on X is of the form (x, x^{-1}) for $x \notin \{0\}$. But $F(X) = \mathbb{A}^1_k \setminus \{0\}$ is not a subvariety of Y. By (b) F^* is not surjective.

Question 6. The affine normal curve

Consider the homomorphism of rings

$$F^*: k[x_0, ..., x_{n-1}] \to k[t]$$

given by $x_i \mapsto t^i$.

(a) Show that the corresponding morphism of affine varieties $F: \mathbb{A}^1_k \to \mathbb{A}^n_k$ defines an isomorphism between \mathbb{A}^1_k and its image under F.

 V^{-1} The version of weak Nullstellensatz we are using states that, if R is a finitely generated k-algebra and also a field, then R is finite over k.

(b) Find generators for the ideal defining the image of F in \mathbb{A}^n_k .

(a) It is clear that F^* is surjective because

$$F^* \left(\sum_{k=0}^n a_k x_1^k x_0^{n-k} \right) = \sum_{k=0}^n a_k t^k$$
 \checkmark

nothing non-trivial that needs to prove here...

Question 7. A reducible variety

Consider the ideal

$$J = \langle uw - v^2, u^3 - vw \rangle$$

in the ring k[u, v, w], and the corresponding affine variety $X = \mathbb{V}(J) \subseteq \mathbb{A}^3_{\iota}$.

- (a) By taking suitable combinations of the generators, show that *J* is not prime.
- (b) Show that X is a reducible variety, which decomposes as

$$X = X_1 \cup X_2$$

with one component, say X_1 isomorphic to the affine line \mathbb{A}^1_k .

- (c) Show that the other piece X_2 is the image of a map $\mathbb{A}^1_k \to \mathbb{A}^3_k$ defined by $t \mapsto (t^a, t^b, t^c)$ for some positive integers a, b, c. Deduce that X_2 is irreducible.
- (a) We have $v(w^2 u^2v) = u^2(uw v^2) w(u^3 vw) \in J$. It is clear that $v \notin J$, as any polynomial in J cannot contain linear terms. Similarly, $w^2 u^2v \notin J$, as w^2 cannot appear as a term in a polynomial in J. We deduce Proof. that *I* is not a prime ideal.
 - (b) For $(a, b, c) \in X = \mathbb{V}(J)$, we have $ac b^2 = 0$ and $a^3 bc = 0$. If a = 0, then a = b = 0. If $a \neq 0$, then $b \neq 0$. And we have $b^6 = a^3c^3 = bc^4$ and hence $b^5 = c^4$. Then $b^8 = a^4c^4 = a^4b^5$ and hence $a^4 = b^3$. In summary, we have $X = X_1 \cup X_2$, where

$$X_1 = \{a = b = 0\}, \qquad X_2 = \{(t^3, t^4, t^5) \colon t \in k\}$$

We note that $\mathbb{A}^1_k \cong X_1$, with the isomorphism given by $t \mapsto (0,0,t)$.

(c) We have found X_2 in (b). The map $t \mapsto (t^3, t^4, t^5) \in X_2$ is an isomorphism. Hence $X_2 \cong \mathbb{A}^1_k$ is irreducible.

Section C: Optional King up The excellent work. Jeck charifications if any.

Question 8. The disjoint union of affine varieties

Show that a variety $X \subseteq \mathbb{A}^n_k$ is a union of two disjoint closed subvarieties if and only if its coordinate ring k[X] may be written as the product of two non-trivial finitely generated reduced k-algebras.

(Hint: recall the algebraic form of the Chinese Remainder Theorem: if I_1 , I_2 are coprime ideals in a ring R, meaning $I_1 + I_2 = R$, then $I_1 \cap I_2 = I_1 \cdot I_2$ and there is a ring isomorphism $R/(I_1 \cap I_2) \to R/I_1 \times R/I_2$ given by $f \mapsto (f + I_1, f + I_2)$.)

Proof. Let $R := k[x_1, ..., x_n]$. Suppose that $X = \mathbb{V}(I) \cup \mathbb{V}(J)$ such that $\mathbb{V}(I) \cap \mathbb{V}(J) = \emptyset$. Then $\mathbb{V}(I+J) = \emptyset$ and hence I+J=R. The ideals I and J are coprime. Since $I + J \subseteq \sqrt{I} + \sqrt{J}$, \sqrt{I} and \sqrt{J} are also coprime. By Chinese Remainder Theorem,

$$k[X] = k[\mathbb{V}(I) \cup \mathbb{V}(J)] = k[\mathbb{V}(IJ)] = k[\mathbb{V}(I \cap J)] = \frac{R}{\sqrt{I} \cap J} = \frac{R}{\sqrt{I}} \times \frac{R}{\sqrt{J}} \times \frac{R}{\sqrt{J}} = k[\mathbb{V}(I)] \times k[\mathbb{V}(J)]$$

We deduce that k[X] is isomorphic to the product $R/\sqrt{I} \times R/\sqrt{J}$, and both R/\sqrt{I} and R/\sqrt{J} are reduced by the definition of the radical ideal.

Conversely, suppose that $k[X] \cong S \times T$, where S, T are finitely generated reduced k-algebra. The inclusion $S \hookrightarrow k[X] = k[x_1, ..., x_n]/\mathbb{I}(X)$ implies that S can be generated by n elements, and hence can be realised as a quotient of $k[x_1, ..., x_n]$. That is, $S \cong k[x_1, ..., x_n]/I$. Similarly, $T \cong k[x_1, ..., x_n]/J$. Since S, T are reduced, I, J are radical ideals. So S and T are in fact coordinate rings of $\mathbb{V}(I)$ and $\mathbb{V}(J)$. We claim that $\mathbb{V}(I)$ and $\mathbb{V}(J)$ are disjoint. Suppose that $a \in \mathbb{V}(I) \cap \mathbb{V}(J)$. For $f = (0, 1) \in S \times T$, we have f(a) = 0 as $a \in \mathbb{V}(I)$. Similarly, $g = (1, 0) \in S \times T$ satisfies that g(a) = 0. But f(a) + g(a) = 1 and g(a) = 1 and g(a) = 1 are radical ideals.

$$k[X] \cong S \times T \cong \frac{R}{I \cap J} = k[\mathbb{V}(I) \cup \mathbb{V}(J)]$$

Hence $X \cong V(I) \cup V(J)$ is a disjoint union of two non-empty subvarieties.

Question 9. The variety of nilpotent matrices

We work in the affine space \mathbb{A}^4 parametrising 2×2 matrices over k, with variables being the matrix entries x_{ij} .

- (a) Prove that the following conditions are equivalent for a 2×2 matrix A over a field k:
 - (1) *A* is nilpotent: there exists an $n \ge 1$ such that $A^n = 0$;
 - (2) $A^2 = 0$;
 - (3) $\det A = \operatorname{tr} A = 0$.

Let $I \triangleleft R = k[x_{11}, x_{12}, x_{21}, x_{22}]$ be the ideal formed by the polynomials $d = \det A$, $t = \operatorname{tr} A$, viewed as polynomials in the matrix entries. Let $J \triangleleft R$ be the ideal formed by the entries of A^2 , as polynomials in the matrix entries. Show the following.

- (b) The ideal *J* is not radical: it contains a power of *t* but not *t* itself.
- (c) The ideal *I* is radical.

(Hint: aim to show that I is prime and therefore radical. Show this by mapping R/I to an isomorphic ring using the linear generator in I.)

- (d) Deduce that $X = \mathbb{V}(I) = \mathbb{V}(J) \subseteq \mathbb{A}^4$ with $\sqrt{J} = I$, and conversely $\mathbb{I}(X) = I$.
- *Proof.* (a) We embed k into its algebraic closure \overline{k} and make the identification $A \in M_{2\times 2}(\overline{k})$. Note that any non-zero nilpotent matrix in $M_{2\times 2}(\overline{k})$ is similar to its Jordan normal form:

$$N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

So we have $(1) \iff (2) \implies (3)$.

Suppose that $\det A = \operatorname{tr} A = 0$. Then the characteristic polynomial of A is given by

$$\chi_A(x) = x^2 - (\operatorname{tr} A)x + \det A = x^2$$

Hence $A^2 = 0$ by Cayley-Hamilton theorem. We have (3) \implies (2).

(b) We write $x = x_{11}$, $y = x_{12}$, $z = x_{21}$, $w = x_{22}$ for simplicity. Then

$$A^{2} = \begin{pmatrix} x & y \\ z & w \end{pmatrix}^{2} = \begin{pmatrix} x^{2} + yz & y(x+w) \\ z(x+w) & w^{2} + yz \end{pmatrix}$$

So $J = \langle x^2 + yz, w^2 + yz, y(x + w), z(x + w) \rangle$. Note that

$$t^2 = (x + w)^2 = (x^2 + yz) + (w^2 + yz) + 2(xw - yz) = \operatorname{tr} A^2 + 2 \det A$$

Hence

$$t^4 = (\operatorname{tr} A^2)^2 + 4\operatorname{tr} A^2 \det A + 4(\det A)^2 = (\operatorname{tr} A^2)^2 + 4\operatorname{tr} A^2 \det A + 4\det A^2$$

As $\operatorname{tr} A^2$, $\det A^2 \in J$, we deduce that $t^4 \in J$. It is clear that $t \notin J$, as the generators of J are homogeneous of degree 2. Hence J is not a radical ideal.

(c) We have $I = \langle d, t \rangle = \langle xw - yz, x + w \rangle$. We have the ring isomorphism

$$R/I \cong k[s, t, u]/\langle st - u^2 \rangle$$

given by the map $x \mapsto u$, $y \mapsto s$, $z \mapsto t$, $w \mapsto -u$. Note that k[s,t,u] is a unique factorisation domain, and $st - u^2$ is an irreducible polynomial. Hence $\langle st - u^2 \rangle$ is a prime ideal of k[s,t,u]. Then R/I is an integral domain. Hence I is a prime ideal of I. We deduce that I is radical.

(d) We have $d^2 = \det A^2 \in J$ and $t^4 \in J$. Hence $d, t \in \sqrt{J}$ and then $I \subseteq \sqrt{J}$. But by (c) I is radical. Therefore $I = \sqrt{J}$. We have $\mathbb{V}(I) = \mathbb{V}(J)$. Finally, if k is algebraically closed, then by Hilbert's strong Nullstellensatz, we have

$$\mathbb{I}(X) = \mathbb{I}(\mathbb{V}((I))) = \sqrt{I} = I$$