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Throughout this problem sheet, k denotes an algebraically closed field.

Section A: Introductory

Question 1. Zariski topology

Verify that arbitrary intersections and finite unions of affine varieties are affine varieties. Deduce that the Zariski

topology on an affine variety is indeed a topology.

Proof. Let An
k be the n-dimensional affine space over k and R := k[x1, ..., xn].

• V(〈0〉) =An
k , V(〈1〉) =∅.

• Let I and J be two ideals in R. By definition it is clear that V(I )∪V(J ) ⊆ V(I J ). On the other hand, for

a ∉ V(I )∪V(J ), there exist f ∈ I and g ∈ J , such that f (a) �= 0 �= g (a) �= 0. Hence f g (a) = 0. As f g ∈ I J , we

deduce that a ∉V(I J ). Hence V(I J ) =V(I )∪V(J ).

• Let {Jα : α ∈ I } be a family of ideals of R. We have

a ∈V
��
α∈I

Jα

�
⇐⇒ ∀ f ∈

�
α∈I

Jα : f (a) = 0

⇐⇒ ∀α ∈ I ∀ f ∈ Jα : f (a) = 0

⇐⇒ a ∈
�
α∈I

V(Jα)

Hence V
��

α∈I Jα
�=�

α∈I V(Jα).

We conclude that the affine varieties satisfy the axioms of the closed sets of a topology on An
k .

Question 2. Irreducibility

(a) Show that affine n-space An
k is irreducible.

(b) Show that an affine variety X ⊆An
k is irreducible if and only if every non-empty open subset U ⊆ X is dense

in the Zariski topology.

(c) Let X be an irreducible affine variety. Show that any two non-empty open sets intersect in a non-empty open

dense set.

Proof. (a) Suppose that An
k is reducible. Then An

k = V(I )∪V(J ) = V(I J ) for non-zero ideals I , J ∈ R := k[x1, ..., xn]. By

Hilbert’s Nullstellensatz, �
{0} = I�An

k

�= I(V(I J )) =
�

I J

Since R is an integral domain, {0} is a prime ideal. Hence I J ⊆�
I J = {0}. We take f ∈ I \ {0} and g ∈ J \ {0}. So

f g ∈ I J \ {0}. This is a contradiction. Hence An
k is irreducible.

(b) Suppose that X has a non-empty open subset U that is not dense in X . Then U (taking closure with respect

to the subspace topology) is a non-trivial subvariety of X . Hence X is reducible. Conversely suppose that X

is reducible. Say X = X1 ∪X2. Then X1 = X \ X2 is open in X and its closure is equal to itself.

(c) Let U1,U2 be two non-empty open subsets of X . Then X \ (U1 ∪U2) = X \U1 ∪X \U2 is a union of two non-

empty closed subsets of X . Since X is irreducible, X �= X \U1 ∪X \U2. Hence U1 ∪X2 = X \ (X \U1 ∪X \U2)

is non-empty. By the previous result it is dense in X .
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Section B: Core

Question 3. The Zariski topology in low dimensions

(a) List the open and closed subsets of A1
k in the Zariski topology.

(b) Describe carefully the Zariski closed subsets of A2
k , proving your statements.

(c) Show that the Zariski topology on A2
k is not the product topology on A1

k ×A1
k .

Proof. (a) Let X be an algebraic variety of A1
k. Then X =V

��
f
��

for some f ∈ k[x], as k[x] is a principal ideal domain.

Hence X = {x1, ..., xn} is exactly the set of roots of f (if f �= 0). We deduce that the closed subsets of A1
k are

all finite subsets of A1
k, and A1

k itself. Correspondingly, the open subsets of A1
k are all co-finite subsets of A1

k,

and ∅.

(b) We say that C ⊆ A2
k is an irreducible affine plane curve, if C = V

��
f
��

, where f ∈ k[x, y] is irreducible. We

claim that the closed subsets of A2
k are generated by irreducible affine curves. More specifically, the closed

subsets are given by

(1) A2
k;

(2) finite subsets of A2
k;

(3) finite unions of finitely many irreducible affine plane curves;

(4) finite unions of the sets in (2) and (3).

Let X be a proper affine variety in A2
k. Let X =V(I ). Since k[x, y] is Noetherian, I = �

f1, ..., fn
�

for f1, ..., fn ∈
k[x, y] and hence

X =V��
f1, ..., fn

��=V
�

n�
i=1

�
fi

�
�
=

n�
i=1

V
��

fi
��

Since k[x, y] is a unique factorisation domain, fi =
�mi

j=1 g j for irreducible polynomials g1, ..., gmi ∈ k[x, y].

Then

X =
n�

i=1
V

��
fi

��=
n�

i=1
V

�
mi�
j=1

�
g j

�
�
=

n�
i=1

mi�
j=1

V
��

g j
��

where each V
��

g j
��

is an irreducible affine plane curve by definition.

Finally, if C and D are distinct irreducible affine plane curves, by the (weak form of) Bezóut’s Theorem, C∩D

is a finite set. Therefore we have proven that any closed subset of A2
k must have the form as claimed above.

Conversely, it is clear that all irreducible affine plane curves (and their finite unions) are closed in Zariski

topology. In addition, we take {(x0, y0)} =V��
x −x0, y − y0

��
and take finite unions to obtain all finite subsets

of A2
k. This proves the other direction of the claim.

(c) We consider the affine variety X = V
��

x − y
�� ⊆ A2

k. Suppose that it is closed under the product Zariski

topology of A1
k×A1

k. Then

A2
k \ X =

n�
i=1

(Yi ×Zi )

where Y1, ...,Yn and Z1, ..., Zn are co-finite subsets ofA1
k by the result in (a). As

�n
i=1(A1

k\Yi ∪A1
k\Zi ) is a finite

set, we can choose a ∈A1
k such that a ∉�n

i=1(A1
k \ Yi ∪A1

k \ Zi ). Then (a, a) ∈�n
i=1(Yi × Zi ). But (a, a) ∈ X by

definition. This is a contradiction. Hence A2
k \ X is open in the Zariski topology of A2

k but not in the product

Zariski topology of A1
k×A1

k. The two topologies on A2
k are distinct.
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Question 4. Reduced algebras as coordinate rings

(a) Show that
�

I ∩ J =
�

I ∩�
J for ideals I , J of a finitely generated k-algebra R.

(b) Show that the ideal (x y, xz) ⊆ k[x, y, z] is radical but not prime. Sketch the variety it defines in A3
k .

(c) Let X ⊆An
k be an affine variety. Show that a radical ideal in k[X ] is the intersection of all the maximal ideals

containing it.

(Hint: using methods of this course, it is easier to first translate this into a geometrical statement, and prove

that. For an algebraic proof, you might find helpful the following theorem due to Krull: the nilradical nil(A) =�
x : xm = 0 some m} of a ring A equals the intersection of all its prime ideals.)

Proof. (a) This is true for any CRI (commutative ring with identity) R.

For f ∈�
I ∩ J , f n ∈ I ∩ J for some n ∈N. Hence f ∈

�
I and f ∈�

J . We deduce that
�

I ∩ J ⊆
�

I ∩�
J .

Conversely, for f ∈
�

I ∩�
J , we have f n ∈ I and f m ∈ J for some n,m ∈ N. Then f n+m ∈ I ∩ J . Hence

f ∈�
I ∩ J . We deduce that

�
I ∩�

J ⊆�
I ∩ J .

(b) Note that
�

x y, xz
�= 〈x〉∩�

y, z
�

, where both 〈x〉 and
�

y, z
�

are prime, and hence and radical. We have

��
x y, xz

�=
�

〈x〉∩�
y, z

�=
�

〈x〉∩
��

y, z
�= 〈x〉∩�

y, z
�= �

x y, xz
�

Hence
�

x y, xz
�

is radical. But it is not prime, as x, y ∉ �
x y, xz

�
and x y ∈ �

x y, xz
�

.

The variety V
��

x y, xz
��

is just {x = 0}∪ {y = z = 0}.

(c) First we prove this when k is algebraically closed.

Let π : k[x1, ..., xn] → k[X ] := k[x1, ..., xn]/I be the canonical projection. Let �J be a radical ideal on k[X ] and

J := π−1(�J ) be its preimage in k[x1, ..., xn]. Then k[X ]/J = k[x1, ..., xn]/(I + J ). By an immediate corollary

of Hilbert’s weak Nullstellensatz, the maximal ideals of k[X ]/J are of the form 〈x1 −a1, ..., xn −an〉+ I + J ,

(a1, ..., an) ∈ An
k . Hence the Jacobson radical of k[X ]/J is {0}. This implies that J is the intersection of all

maximal ideals of k[X ] containing J .

Next we prove this for any general field k. We say that a CRI R is a Jacobson ring, if the radical and Jacobson

radical of any ideal I �R coincide. The result of (c) follows immediately from the following (in fact stronger)

lemma:

Lemma 1

Any finitely generated k-algebra is a Jacobson ring.

(See also Corollary 9.4 of B2.2 Commutative Algebra (2020-2021).)

Let R be a finitely generated k-algebra. It suffices to show that the nilradical N (R) and Jacobson radical J (R)
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of R coincide. Let f ∉ N (R). Consider the localisation R f on { f n : n ∈ N}, which is non-zero. Let M be a

maximal ideal of R f . Consider the composition of canonical homomorphisms:

R R f R f /M
ϕ π

Let ψ=π◦ϕ. Since R f is finitely generated k-algebra, so is R f /M . But R f /M is also a field. Then R f /M is a

finite field extension of k, by Hilbert’s weak Nullstellensatz1, and hence is integral over k. Then imψ is also

integral over k. Hence imψ is also a field. By first isomorphism theorem, kerψ is a maximal ideal of R. Note

that ϕ( f ) �= 0 because f /1 is a unit in R f . Hence f ∉ kerψ⊇ J(R). We conclude that J (R) = N (R).

Question 5. The pull-back map between coordinate rings

Suppose that F : X → Y is a morphism of affine varieties over a field k, associated to a map F∗ : k[Y ] → k[X ]

between their coordinate rings.

(a) Show that F∗ is injective if and only if F is dominant, i.e. the image set F (X ) is dense in Y .

(b) Show that F∗ is surjective if and only if F defines an isomorphism between X and some algebraic subvariety

of Y .

(c) Find an example where F is injective but F∗ is not surjective.

Proof. (a) Suppose that F (X ) is not dense in Y . Then F (X ) = Z � Y , where Z =V(I ) is a proper subvariety of Y =V(J ).

Take f ∈ I \ J and let f be the image of f in k[Y ]. Then F∗( f ) = 0 and f �= 0. Hence F∗ is injective.

Conversely, suppose that F∗ is not injective. Let f ∈ kerF∗ \ {0}. We note that U := {b ∈ Y : f (b) �= 0} is an

open set of Y . Moreover, for b= F (a) ∈ F (X ), f (b) = f ◦F (a) = F∗( f )(a) = 0. Hence F (X )∩U =∅. We deduce

that F (X ) is not dense in Y .

(b) Suppose that Z is a subvariety of Y such that F : X → Z ⊆ Y is an isomorphism. Then we know that k[X ] ∼=
k[Z ]. Then F∗ factors through k[Z ] via:

F∗ : k[Y ] k[Z ] k[X ]ι∗ �

Hence F∗ is surjective.

Conversely, suppose that F∗ is surjective. By first isomorphism theorem, k[X ] ∼= k[Y ]/kerF∗. Let J be the

preimage of kerF∗ in k[y1, ..., yn]. We claim that F defines an isomorphism from X to Z := Y ∩V(J ) ⊆ Y .

For f ∈ J , F∗( f ) = f ◦F = 0. Hence F (X ) ⊆ V(J ). So F indeed maps into Y ∩V(J ). Moreover, the pull-back
�F∗ : k[Z ] ∼= k[Y ]/kerF∗ → k[X ] is an isomorphism of rings. Hence �F : X → Z is an isomorphism of varieties.

(c) Let X = V
��

x y −1
�� ⊆ A2

k and Y = A1
k. Let F : X → Y be a morphism given by (x, y) �→ x. F is injective

because every point on X is of the form (x, x−1) for x ∉ {0}. But F (X ) =A1
k \{0} is not a subvariety of Y . By (b)

F∗ is not surjective.

Question 6. The affine normal curve

Consider the homomorphism of rings

F∗ : k [x0, . . . , xn−1] → k[t ]

given by xi �→ t i .

(a) Show that the corresponding morphism of affine varieties F :A1
k →An

k defines an isomorphism between A1
k

and its image under F .

1The version of weak Nullstellensatz we are using states that, if R is a finitely generated k-algebra and also a field, then R is finite over k.
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(b) Find generators for the ideal defining the image of F in An
k .

Proof. (a) It is clear that F∗ is surjective because

F∗
�

n�
k=0

ak xk
1 xn−k

0

�
=

n�
k=0

ak t k

By Question 5.(b), F is an isomorphism between A1
k and F (A1

k).

(b) We claim that I
�
F (A1

k)
�= �

x0 −1, x2 −x2
1, ..., xn−1 −xn−1

1

�= kerF∗. I believe that it is self-evident and there is

nothing non-trivial that needs to prove here...

Question 7. A reducible variety

Consider the ideal

J = �
uw − v2,u3 − v w

�

in the ring k[u, v, w], and the corresponding affine variety X =V(J ) ⊆A3
k .

(a) By taking suitable combinations of the generators, show that J is not prime.

(b) Show that X is a reducible variety, which decomposes as

X = X1 ∪X2

with one component, say X1 isomorphic to the affine line A1
k .

(c) Show that the other piece X2 is the image of a map A1
k → A3

k defined by t �→ �
t a , t b , t c

�
for some positive

integers a,b,c. Deduce that X2 is irreducible.

Proof. (a) We have v(w 2 −u2v) = u2(uw − v2)−w(u3 − v w) ∈ J . It is clear that v ∉ J , as any polynomial in J cannot

contain linear terms. Similarly, w 2−u2v ∉ J , as w2 cannot appear as a term in a polynomial in J . We deduce

that J is not a prime ideal.

(b) For (a,b,c) ∈ X =V(J ), we have ac −b2 = 0 and a3 −bc = 0. If a = 0, then a = b = 0. If a �= 0, then b �= 0. And

we have b6 = a3c3 = bc4 and hence b5 = c4. Then b8 = a4c4 = a4b5 and hence a4 = b3. In summary, we have

X = X1 ∪X2, where

X1 = {a = b = 0}, X2 =
�
(t 3, t 4, t 5) : t ∈ k

�

We note that A1
k
∼= X1, with the isomorphism given by t �→ (0,0, t ).

(c) We have found X2 in (b). The map t �→ (t 3, t 4, t 5) ∈ X2 is an isomorphism. Hence X2
∼=A1

k is irreducible.

Section C: Optional

Question 8. The disjoint union of affine varieties

Show that a variety X ⊆An
k is a union of two disjoint closed subvarieties if and only if its coordinate ring k[X ] may

be written as the product of two non-trivial finitely generated reduced k-algebras.

(Hint: recall the algebraic form of the Chinese Remainder Theorem: if I1, I2 are coprime ideals in a ring R, meaning

I1+I2 = R, then I1∩I2 = I1 ·I2 and there is a ring isomorphism R/(I1 ∩ I2) → R/I1×R/I2 given by f �→ �
f + I1, f + I2

�
.)

Proof. Let R := k[x1, .., xn]. Suppose that X =V(I )∪V(J ) such thatV(I )∩V(J ) =∅. ThenV(I + J ) =∅ and hence I + J = R.

The ideals I and J are coprime. Since I + J ⊆
�

I +�
J ,

�
I and

�
J are also coprime. By Chinese Remainder
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Theorem,

k[X ] = k[V(I )∪V(J )] = k[V(I J )] = k[V(I ∩ J )] = R�
I ∩ J

= R�
I ∩�

J
∼= R�

I
× R�

J
= k[V(I )]×k[V(J )]

We deduce that k[X ] is isomorphic to the product R/
�

I ×R/
�

J , and both R/
�

I and R/
�

J are reduced by the

definition of the radical ideal.

Conversely, suppose that k[X ] ∼= S ×T , where S,T are finitely generated reduced k-algebra. The inclusion S �→
k[X ] = k[x1, ..., xn]/I(X ) implies that S can be generated by n elements, and hence can be realised as a quotient of

k[x1, ..., xn]. That is, S ∼= k[x1, ..., xn]/I . Similarly, T ∼= k[x1, ..., xn]/J . Since S,T are reduced, I , J are radical ideals.

So S and T are in fact coordinate rings of V(I ) and V(J ). We claim that V(I ) and V(J ) are disjoint. Suppose that

a ∈V(I )∩V(J ). For f = (0,1) ∈ S×T , we have f (a) = 0 as a ∈V(I ). Similarly, g = (1,0) ∈ S×T satisfies that g (a) = 0.

But f (a)+ g (a) = 1(a) = 1 �= 0. This is a contradiction, which proves our claim. Now V(I )∩V(J ) =∅ implies that

I + J = R. By Chinese Remainder Theorem again, we have

k[X ] ∼= S ×T ∼= R

I ∩ J
= k[V(I )∪V(J )]

Hence X ∼=V(I )∪V(J ) is a disjoint union of two non-empty subvarieties.

Question 9. The variety of nilpotent matrices

We work in the affine space A4 parametrising 2×2 matrices over k, with variables being the matrix entries xi j .

(a) Prove that the following conditions are equivalent for a 2×2 matrix A over a field k :

(1) A is nilpotent: there exists an n � 1 such that An = 0;

(2) A2 = 0;

(3) det A = tr A = 0.

Let I �R = k [x11, x12, x21, x22] be the ideal formed by the polynomials d = det A, t = tr A, viewed as polynomials in

the matrix entries. Let J �R be the ideal formed by the entries of A2, as polynomials in the matrix entries. Show the

following.

(b) The ideal J is not radical: it contains a power of t but not t itself.

(c) The ideal I is radical.

(Hint: aim to show that I is prime and therefore radical. Show this by mapping R/I to an isomorphic ring

using the linear generator in I .)

(d) Deduce that X =V(I ) =V(J ) ⊆A4 with
�

J = I , and conversely I(X ) = I .

Proof. (a) We embed k into its algebraic closure k and make the identification A ∈ M2×2(k). Note that any non-zero

nilpotent matrix in M2×2(k) is similar to its Jordan normal form:

N =
�

0 1

0 0

�

So we have (1) ⇐⇒ (2) =⇒ (3).

Suppose that det A = tr A = 0. Then the characteristic polynomial of A is given by

χA(x) = x2 − (tr A)x +det A = x2
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Hence A2 = 0 by Cayley-Hamilton theorem. We have (3) =⇒ (2).

(b) We write x = x11.y = x12, z = x21, w = x22 for simplicity. Then

A2 =
�

x y

z w

�2

=
�

x2 + y z y(x +w)

z(x +w) w2 + y z

�

So J = �
x2 + y z, w 2 + y z, y(x +w), z(x +w)

�
. Note that

t 2 = (x +w)2 = (x2 + y z)+ (w 2 + y z)+2(xw − y z) = tr A2 +2det A

Hence

t 4 = (tr A2)2 +4tr A2 det A+4(det A)2 = (tr A2)2 +4tr A2 det A+4det A2

As tr A2,det A2 ∈ J , we deduce that t 4 ∈ J . It is clear that t ∉ J , as the generators of J are homogeneous of

degree 2. Hence J is not a radical ideal.

(c) We have I = 〈d , t〉= �
xw − y z, x +w

�
. We have the ring isomorphism

R/I ∼= k[s, t ,u]/
�

st −u2�

given by the map x �→ u, y �→ s, z �→ t , w �→ −u. Note that k[s, t ,u] is a unique factorisation domain, and

st −u2 is an irreducible polynomial. Hence
�

st −u2
�

is a prime ideal of k[s, t ,u]. Then R/I is an integral

domain. Hence I is a prime ideal of R. We deduce that I is radical.

(d) We have d 2 = det A2 ∈ J and t 4 ∈ J . Hence d , t ∈�
J and then I ⊆�

J . But by (c) I is radical. Therefore I =�
J .

We have V(I ) =V(J ). Finally, if k is algebraically closed, then by Hilbert’s strong Nullstellensatz, we have

I(X ) = I(V(()I )) =
�

I = I


