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Question 1

Let A∞ denote the even permutations of N, thought of as

A∞ =

∞⋃
n=1

An.

Show that A∞ is an infinite simple group.

Proof. Suppose for contradiction that A∞ has a non-trivial normal subgroup N . Let σ ∈ N be a non-identity element. Since
the elements of A∞ are even permutations of finite subsets of N, we may assume that σ is the permutation of a subset
of N with n elements. It follows that σ ∈ An. Let m = max{5, n}. We have σ ∈ Am, where Am is known to be a simple
group. 〈σ〉 is a subgroup of N , and hence is a normal subgroup of A∞. But we also have 〈σ〉 6 Am 6 A∞. Then 〈σ〉 is
normal in Am. Since Am is simple, either 〈σ〉 = {e} or 〈σ〉 = Am. It is clear that Am is not cyclic, and σ 6= e. This leads
to a contradiction. In conclusion A∞ is simple.

Question 2

Let G be a group and G′ denote its derived subgroup. We showed in lectures that G′ / G.

(i) Show that ifH / G and G/H is Abelian then G′ 6 H.

(ii) Conversely, show that if G′ 6 H 6 G thenH / G and G/H is Abelian.

Proof. (i) For g, h ∈ H, since G/H is Abelian, we have

(gH)(hH) = (hH)(gH) =⇒ h−1g−1hgH = H =⇒ [h, g] = h−1g−1hg ∈ H

Hence G′ 6 H.

(ii) For g ∈ G, h ∈ H, [g, h] ∈ G′ 6 H. Then there exists h′ ∈ H such that ghg−1h−1 = h′ =⇒ ghg−1 = h′h ∈ H.
HenceH / G.

Next we note that for g, h ∈ G,

[g, h] ∈ G′ =⇒ (gG′)(hG′) = (hG′)(gG′)

whence G/G′ is Abelian. By third isomorphism theorem, we have

G/G′

H/G′
∼= G/H

Then G/H is a quotient of G/G′ and hence is also Abelian.

Question 3

Given two groups N,H and a homomorphism ϕ : H → Aut(N), verify that the semi-direct product N oϕ H does indeed
satisfy the group axioms.

Proof. Associativity: For n1, n2, n3 ∈ N and h1, h2, h3 ∈ H,

(n1, h1) ◦ ((n2, h2) ◦ (n3, h3)) = (n1, h1) ◦ (n2ϕ(h2)(n3), h2h3)

= (n1ϕ(h1)(n2ϕ(h2)(n3)), h1h2h3)

= (n1ϕ(h1)(n2)ϕ(h1h2)(n3), h1h2h3)

= (n1ϕ(h1)(n2), h1h2) ◦ (n3, h3)

= ((n1, h1) ◦ (n2, h2)) ◦ (n3, h3)
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Identity: (e, e) ∈ N oϕ H is the identity. For (n, h) ∈ N oϕ H,

(n, h) ◦ (e, e) = (nϕ(h)(e), he) = (ne, he) = (n, h)

(e, e) ◦ (n, h) = (eϕ(e)(n), eh) = (e id(n), h) = (n, h)

Inverse: For (n, h) ∈ N oϕH, h induces an automorphism ϕh : N → N . Let n′ := ϕ−1h (n−1) = ϕh−1(n−1). We claim that
(n, h)−1 = (n′, h−1). Indeed,

(n, h) ◦ (n′, h−1) = (nϕ(h)(n′), hh−1) = (nn−1, hh−1) = (e, e)

(n′, h−1) ◦ (n, h) = (n′ϕ(h−1)(n), h−1h) = (ϕ(h−1)(n−1)ϕ(h−1)(n), h−1h) = (ϕ(h−1)(e), h−1h) = (e, e)

In conclusion, the semi-diract product satisfies the group axioms.

Question 4

Verify directly Sylow’s three theorems for the following groups:

S3, D12, A4, S4.

Proof. 1. S3 has order 6 = 2× 3. We shall count the Sylow 2-subgroups and 3-subgroups of S3.

S3 has 3 2-subgroups, which are subgroups generated by transpositions:

{e, (12)}, {e, (13)}, {e, (23)}

Since 3 | 3 and 3 ≡ 1 (mod 2), Sylow first and third theorem holds. It is obvious that these subgroups are conjugate
with each other, so Sylow second theorem also holds.

S3 has a unique 3-subgroup, which is {e, (123), (132)}. Since 1 | 2 and 1 ≡ 1 (mod 3), Sylow first and third theorem
holds. It is clear that {e, (123), (132)} is normal inS3 because the conjugation of a 3-cycle is also a 3-cycle. Therefore
Sylow second theorem also holds.

2. D12 = 〈σ, τ | σ2, τ6, στστ〉 has order 12 = 4× 3. We shall count the Sylow 2-subgroups and 3-subgroups ofD12.

D12 has a unique 3-subgroup: {e, τ2, τ4}, because τ2 and τ4 are the only elements in D12 that have order 3. Since
1 | 4 and 1 ≡ 1 (mod 3), Sylow first and third theorem holds. {e, τ2, τ4} is a subgroup of 〈τ〉, which is normal inD12.
Therefore {e, τ2, τ4} / D12 and Sylow second theorem holds.

D12 has 3 2-subgroups:

{e, σ, τ3, στ3}, {e, στ, τ3, στ4}, {e, στ2, τ3, στ5}.

Since 3 | 3 and 3 ≡ 1 (mod 2), Sylow first and third theorem holds. Furthermore, these groups are conjugate with
each other:

τ−1{e, σ, τ3, στ3}τ = {e, στ2, τ3, στ5};
τ−1{e, στ2, τ3, στ5}τ = {e, στ4, τ3, στ}.

Therefore Sylow second theorem holds.

3. A4 has order 12 = 4× 3. We shall count the Sylow 2-subgroups and 3-subgroups of A4.

We know that A4 has an identity, 3 double transpositions, and 8 3-cycles. The identity and 3 double transpositions
generates the unique 2-subgroup of A4: {e, (12)(34), (13)(24), (14)(23)}. Since 1 | 3 and 1 ≡ 1 (mod 2), Sylow first
and third theorem holds. It is known that {e, (12)(34), (13)(24), (14)(23)} is normal inA4, so Sylow second theorem
holds.

The 8 3-cycles and the identity can generates 4 different 3-subgroups of A4:
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{e, (123), (132)}, {e, (134), (143)}, {e, (124), (142)}, {e, (234), (243)}.

Since 4 | 4 and 4 ≡ 1 (mod 3), Sylow first and third theorem holds. Furthermore, these groups are conjugate with
each other:

(13)(24){e, (123), (132)}(13)(24) = {e, (134), (143)};
(12)(34){e, (123), (132)}(12)(34) = {e, (134), (143)};
(14)(23){e, (123), (132)}(14)(23) = {e, (234), (243)}.

Therefore Sylow second theorem holds.

4. S4 has order 24 = 8× 3. We shall count the Sylow 2-subgroups and 3-subgroups of S4.

S4 has 4 3-subgroups, which are the same as in A4. Since 4 | 8 and 4 ≡ 1 (mod 3), Sylow first and third theorem
holds. Sylow second theorem holds as we have shown above.

Now we cconsider the order 8 subgroups of S4. By Prelim Group Theory Sheet 7 Question 5, we know that S4 does
not contain a subgroup isomorphic to C3

2 . Hence any order 8 subgroup of S4 must contain some order 4 elements.
We know that S4 has six order 4 elements, namely the 4-cycles:

(1234), (1243), (1324), (1342), (1423), (1432)

and we know that

(1234)2 = (1432)2 = (13)(24); (1243)2 = (1342)2 = (14)(23); (1324)2 = (1423)2 = (12)(34).

Next, from a brilliant observation by Shuwei, any two order 4 elements in a order 8 group must have the same
square. We deduce that these 6 order 4 elements belong to 3 different order 8 subgroups of S4, each of which is
isomorphic toD8. The 2-subgroups of S4 are:

〈(1234), (13)〉, 〈(1243), (14)〉, 〈(1324), (12)〉.

Since 3 | 3 and 3 ≡ 1 (mod 2), Sylow first and third theorem holds. Furthermore, these groups are conjugate with
each other:

(34)〈(1234), (13)〉(34) = 〈(1243), (14)〉;
(23)〈(1234), (13)〉(23) = 〈(1324), (12)〉.

Therefore Sylow second theorem holds.

Question 5

Let P be a non-trivial group of order pm, where p is prime andm > 0.

By considering the conjugation action of P on itself prove that there is a non-identity element z such that xz = zx for all
x ∈ P .

Show thatK = 〈z〉 is a normal subgroup of P .

Deduce, by induction onm, or otherwise, that finite groups of prime power order are solvable.

Proof. Let P acts on itself by conjugation. Then xz = zx for each x ∈ P implies that Orb(z) is a singleton. There at least one
such singleton orbit, namely {e}. By Orbit-Stabilizer Theorem, all the orbits has size pk for some 0 6 k 6 m. Since the
orbits of P partitions P , we have

N0 +N1p+N2p
2 + · · ·+Nm−1pm−1 = pm

whereNi the number of orbits of size pi. We deduce that p |N0. So there exists at least p− 1 non-trivial elements in the
center of P .

It is trivial that if zx = xz for all x ∈ P , then 〈z〉 is normal in P .
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We shall use induction onm to show that if |P | = pm then P is solvable.

Ifm = 1, then P ∼= Cp is trivially solvable.

Suppose that for n < m, the groups of order pn are solvable.

We have proven Z(P ) 6= {e}. We pick z ∈ Z(P )\{e}. If 〈z〉 = P , then P is cyclic and hence is solvable. If 〈z〉 6= P , then
we have

pm = |P | = |〈z〉| · |P/〈z〉|.

Therefore |〈z〉| = pr and |P/〈z〉| = ps for some r, s < m. By induction hypothesis 〈z〉 and P/〈z〉 are both solvable. Then
by Theorem 59 in the notes we know that P is solvable.

Question 6

Show that a group of order 1694 is solvable.

Proof. Note that 1694 = 2 × 7 × 112. Let G be this group. Suppose that G has n Sylow 11-subgroups. Then by Sylow third
theorem, we have n ≡ 1 (mod 11) and n | 14. Hence n = 1 and G has a unique Sylow 11-subgroup. Let H be this
subgroup. By Sylow second theorem, H / G. H is solvable by Question 5 above. In addition, |G/H| = 14. Since the
only groups of order 14 are the cyclic group C14 or the dihedral groupD14, both of which are solvable, we know G/H is
solvable. By Theorem 59 in the notes, G is solvable.

Question 7

Let G be a group of order 30.

(i) Explain why one of the following holds:

• There is a normal subgroup N of order 5 and a subgroupH of order 3;

• There is a normal subgroup N of order 3 and a subgroupH of order 5;

Deduce that G has a cyclic normal subgroupK of order 15.

(ii) Let y be a generator ofK and x be an order 2 element. Show that

G = {xiyj : 0 6 i 6 1, 0 6 j 6 14}

and that G ∼= C15 oϕ C2 where ϕ : C2 → Aut(C15) is a homomorphism.

(iii) Let ψ be an automorphism ofK such that ψ(ψ(y)) = y. Show that ψ(y) = y or y4 or y11 or y14.

(iv) Deduce that there are (up to isomorphism) at most four groups of order 30. Show that there are precisely four by
exhibiting four non-isomorphic groups of order 30.

Proof. (i) Since G has order 30 = 2× 3× 5, by Sylow first theorem, G has Sylow 3-subgroups and 5-subgroups. Suppose that
G has n 3-subgroups andm 5-subgroups. By Sylow third theorem, we have n ≡ 1 (mod 3) and n | 10. Then n = 1 or
10. m ≡ 1 (mod 5) andm | 6. Thenm = 1 or 6.

Suppose for contradiction that G has no normal subgroups of order 3 and 5. Then G has 10 Sylow 3-subgroups
and 6 Sylow 5-subgroups. It follows that G has at least 10(3 − 1) = 20 order 3 elements and 6(5 − 1) = 24 order 5
elements. But G has only 30 elements, which is a contradiction. Hence G has either a normal subgroup of order 3
or of order 5 (or both).

By third isomorphism theorem K := HN 6 G. Since |HN | = |H||N |/|H ∩ N | = 15, HN is a index 2 subgroup in
G, so it is normal. By Proposition 95 in the notes, any group of order 15 is cyclic. SoHN is cyclic.
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(ii) It suffices to show that xiyj are distinct for 0 6 i 6 1, 0 6 j 6 14. For xi1yj1 = xi2yj2 , we have xi1−i2yj1−j2 = e.
If i1 6= i2, then yj1−j2 = x, which is contradictory since K ∩ 〈x〉 = {e}. Then i1 = i2 so that yj1−j2 = e. Since y
generatesK ∼= C15, (j1− j2) | 15. It follows that j1 = j2. So the claim is proven. Since |G| = 30 and |{xiyj : 0 6 i 6

1, 0 6 j 6 14}| = 30, the result follows.

Since K / G, 〈x〉 / G, and K ∩ 〈x〉 = {e}, by defintion G = K o 〈x〉. The internal semi-direct product induces
ϕ : 〈x〉 → Aut(K) by ϕx : g 7→ xgx and ϕe = id. This gives the isomorphism with the external semi-direct product:
G = C15 oϕ C2.

(iii) Suppose that ψ(y) = yn. Then ψ(ψ(y)) = yn
2

. ψ ◦ ψ(y) = y =⇒ n2 ≡ 1 (mod 15). Then 15 | (n+ 1)(n− 1). There
are 4 possibilities:n ≡ −1 (mod 3)

n ≡ 1 (mod 5)

n ≡ 1 (mod 3)

n ≡ −1 (mod 5)
n ≡ −1 (mod 15) n ≡ 1 (mod 15)

By Chinese Remainder Theorem the solutions of these equations are unique inC15. The solutions are n = 11, n = 4,
n = 14 and n = 1. Hence ψ(y) = y or y4 or y11 or y14.

(iv) Since C15 oϕ C2, and ϕ : C2 → Aut(C15) is a group homomorphism,

y = id(y) = ϕ(e)(y) = ϕ(x2)(y) = ϕ(x) ◦ ϕ(x)(y)

Then by part (iii), ϕ(x)(y) = y or y4 or y11 or y14. There are at most 4 different homomorphisms ϕ, so there are at
most 4 non-isomorphic groups of order 30. The four non-isomorphic groups of order 30 are:

C30, D30, D10 × C3, S3 × C5.


