Peize Liu St. Peter's College University of Oxford

Problem Sheet 2
ASO: Group Theory

Question 1

Let A_{∞} denote the even permutations of \mathbb{N} , thought of as

$$A_{\infty} = \bigcup_{n=1}^{\infty} A_n.$$

Show that A_{∞} is an infinite simple group.

Proof. Suppose for contradiction that A_{∞} has a non-trivial normal subgroup N. Let $\sigma \in N$ be a non-identity element. Since the elements of A_{∞} are even permutations of finite subsets of \mathbb{N} , we may assume that σ is the permutation of a subset of \mathbb{N} with n elements. It follows that $\sigma \in A_n$. Let $m = \max\{5, n\}$. We have $\sigma \in A_m$, where A_m is known to be a simple group. $\langle \sigma \rangle$ is a subgroup of N, and hence is a normal subgroup of A_{∞} . But we also have $\langle \sigma \rangle \leqslant A_m \leqslant A_{\infty}$. Then $\langle \sigma \rangle$ is normal in A_m . Since A_m is simple, either $\langle \sigma \rangle = \{e\}$ or $\langle \sigma \rangle = A_m$. It is clear that A_m is not cyclic, and $\sigma \neq e$. This leads to a contradiction. In conclusion A_{∞} is simple.

Question 2

Let G be a group and G' denote its derived subgroup. We showed in lectures that $G' \triangleleft G$.

- (i) Show that if $H \triangleleft G$ and G/H is Abelian then $G' \leqslant H$.
- (ii) Conversely, show that if $G' \leq H \leq G$ then $H \triangleleft G$ and G/H is Abelian.

Proof. (i) For $g, h \in H$, since G/H is Abelian, we have

$$(gH)(hH) = (hH)(gH) \implies h^{-1}g^{-1}hgH = H \implies [h,g] = h^{-1}g^{-1}hg \in H$$

Hence $G' \leq H$.

(ii) For $g \in G$, $h \in H$, $[g,h] \in G' \leqslant H$. Then there exists $h' \in H$ such that $ghg^{-1}h^{-1} = h' \implies ghg^{-1} = h'h \in H$. Hence $H \triangleleft G$.

Next we note that for $q, h \in G$,

$$[g,h] \in G' \implies (gG')(hG') = (hG')(gG')$$

whence G/G' is Abelian. By third isomorphism theorem, we have

$$\frac{G/G'}{H/G'} \cong G/H$$

Then G/H is a quotient of G/G' and hence is also Abelian.

Question 3

Given two groups N, H and a homomorphism $\varphi : H \to \operatorname{Aut}(N)$, verify that the semi-direct product $N \rtimes_{\varphi} H$ does indeed satisfy the group axioms.

Proof. Associativity: For $n_1, n_2, n_3 \in N$ and $h_1, h_2, h_3 \in H$,

$$(n_1, h_1) \circ ((n_2, h_2) \circ (n_3, h_3)) = (n_1, h_1) \circ (n_2 \varphi(h_2)(n_3), h_2 h_3)$$

$$= (n_1 \varphi(h_1)(n_2 \varphi(h_2)(n_3)), h_1 h_2 h_3)$$

$$= (n_1 \varphi(h_1)(n_2) \varphi(h_1 h_2)(n_3), h_1 h_2 h_3)$$

$$= (n_1 \varphi(h_1)(n_2), h_1 h_2) \circ (n_3, h_3)$$

$$= ((n_1, h_1) \circ (n_2, h_2)) \circ (n_3, h_3)$$

Identity: $(e, e) \in N \rtimes_{\varphi} H$ is the identity. For $(n, h) \in N \rtimes_{\varphi} H$,

$$(n,h) \circ (e,e) = (n\varphi(h)(e), he) = (ne,he) = (n,h)$$

 $(e,e) \circ (n,h) = (e\varphi(e)(n), eh) = (e\operatorname{id}(n), h) = (n,h)$

Inverse: For $(n,h) \in N \rtimes_{\varphi} H$, h induces an automorphism $\varphi_h : N \to N$. Let $n' := \varphi_h^{-1}(n^{-1}) = \varphi_{h^{-1}}(n^{-1})$. We claim that $(n,h)^{-1} = (n',h^{-1})$. Indeed,

$$(n,h)\circ(n',h^{-1})=(n\varphi(h)(n'),\ hh^{-1})=(nn^{-1},\ hh^{-1})=(e,e)\\ (n',h^{-1})\circ(n,h)=(n'\varphi(h^{-1})(n),\ h^{-1}h)=(\varphi(h^{-1})(n^{-1})\varphi(h^{-1})(n),\ h^{-1}h)=(\varphi(h^{-1})(e),\ h^{-1}h)=(e,e)$$

In conclusion, the semi-diract product satisfies the group axioms.

Question 4

Verify directly Sylow's three theorems for the following groups:

$$S_3, \quad D_{12}, \quad A_4, \quad S_4.$$

Proof. 1. S_3 has order $6 = 2 \times 3$. We shall count the Sylow 2-subgroups and 3-subgroups of S_3 .

 S_3 has 3 2-subgroups, which are subgroups generated by transpositions:

$${e, (12)}, {e, (13)}, {e, (23)}$$

Since $3 \mid 3$ and $3 \equiv 1 \pmod{2}$, Sylow first and third theorem holds. It is obvious that these subgroups are conjugate with each other, so Sylow second theorem also holds.

 S_3 has a unique 3-subgroup, which is $\{e, (123), (132)\}$. Since $1 \mid 2$ and $1 \equiv 1 \pmod{3}$, Sylow first and third theorem holds. It is clear that $\{e, (123), (132)\}$ is normal in S_3 because the conjugation of a 3-cycle is also a 3-cycle. Therefore Sylow second theorem also holds.

2. $D_{12}=\langle \sigma, \tau \mid \sigma^2, \tau^6, \sigma \tau \sigma \tau \rangle$ has order $12=4\times 3$. We shall count the Sylow 2-subgroups and 3-subgroups of D_{12} .

 D_{12} has a unique 3-subgroup: $\{e, \tau^2, \tau^4\}$, because τ^2 and τ^4 are the only elements in D_{12} that have order 3. Since $1 \mid 4$ and $1 \equiv 1 \pmod{3}$, Sylow first and third theorem holds. $\{e, \tau^2, \tau^4\}$ is a subgroup of $\langle \tau \rangle$, which is normal in D_{12} . Therefore $\{e, \tau^2, \tau^4\} \triangleleft D_{12}$ and Sylow second theorem holds.

 D_{12} has 3 2-subgroups:

$$\{e, \sigma, \tau^3, \sigma \tau^3\}, \; \{e, \sigma \tau, \tau^3, \sigma \tau^4\}, \; \{e, \sigma \tau^2, \tau^3, \sigma \tau^5\}.$$

Since $3 \mid 3$ and $3 \equiv 1 \pmod{2}$, Sylow first and third theorem holds. Furthermore, these groups are conjugate with each other:

$$\begin{split} \tau^{-1}\{e,\sigma,\tau^3,\sigma\tau^3\}\tau &= \{e,\sigma\tau^2,\tau^3,\sigma\tau^5\};\\ \tau^{-1}\{e,\sigma\tau^2,\tau^3,\sigma\tau^5\}\tau &= \{e,\sigma\tau^4,\tau^3,\sigma\tau\}. \end{split}$$

Therefore Sylow second theorem holds.

3. A_4 has order $12 = 4 \times 3$. We shall count the Sylow 2-subgroups and 3-subgroups of A_4 .

We know that A_4 has an identity, 3 double transpositions, and 8 3-cycles. The identity and 3 double transpositions generates the unique 2-subgroup of A_4 : $\{e, (12)(34), (13)(24), (14)(23)\}$. Since $1 \mid 3$ and $1 \equiv 1 \pmod 2$, Sylow first and third theorem holds. It is known that $\{e, (12)(34), (13)(24), (14)(23)\}$ is normal in A_4 , so Sylow second theorem holds.

The 8 3-cycles and the identity can generates 4 different 3-subgroups of A_4 :

$$\{e, (123), (132)\}, \{e, (134), (143)\}, \{e, (124), (142)\}, \{e, (234), (243)\}.$$

Since $4 \mid 4$ and $4 \equiv 1 \pmod{3}$, Sylow first and third theorem holds. Furthermore, these groups are conjugate with each other:

$$(13)(24)\{e, (123), (132)\}(13)(24) = \{e, (134), (143)\};$$

 $(12)(34)\{e, (123), (132)\}(12)(34) = \{e, (134), (143)\};$
 $(14)(23)\{e, (123), (132)\}(14)(23) = \{e, (234), (243)\}.$

Therefore Sylow second theorem holds.

4. S_4 has order $24 = 8 \times 3$. We shall count the Sylow 2-subgroups and 3-subgroups of S_4 .

 S_4 has 4 3-subgroups, which are the same as in A_4 . Since $4 \mid 8$ and $4 \equiv 1 \pmod{3}$, Sylow first and third theorem holds. Sylow second theorem holds as we have shown above.

Now we consider the order 8 subgroups of S_4 . By Prelim Group Theory Sheet 7 Question 5, we know that S_4 does not contain a subgroup isomorphic to C_2^3 . Hence any order 8 subgroup of S_4 must contain some order 4 elements. We know that S_4 has six order 4 elements, namely the 4-cycles:

$$(1234), (1243), (1324), (1342), (1423), (1432)$$

and we know that

$$(1234)^2 = (1432)^2 = (13)(24);$$
 $(1243)^2 = (1342)^2 = (14)(23);$ $(1324)^2 = (1423)^2 = (12)(34).$

Next, from a brilliant observation by Shuwei, any two order 4 elements in a order 8 group must have the same square. We deduce that these 6 order 4 elements belong to 3 different order 8 subgroups of S_4 , each of which is isomorphic to D_8 . The 2-subgroups of S_4 are:

$$\langle (1234), (13) \rangle, \langle (1243), (14) \rangle, \langle (1324), (12) \rangle.$$

Since $3 \mid 3$ and $3 \equiv 1 \pmod{2}$, Sylow first and third theorem holds. Furthermore, these groups are conjugate with each other:

$$(34)\langle (1234), (13)\rangle (34) = \langle (1243), (14)\rangle;$$

 $(23)\langle (1234), (13)\rangle (23) = \langle (1324), (12)\rangle.$

Therefore Sylow second theorem holds.

Question 5

Let P be a non-trivial group of order p^m , where p is prime and m > 0.

By considering the conjugation action of P on itself prove that there is a non-identity element z such that xz = zx for all $x \in P$.

Show that $K = \langle z \rangle$ is a normal subgroup of P.

Deduce, by induction on m, or otherwise, that finite groups of prime power order are solvable.

Proof. Let P acts on itself by conjugation. Then xz=zx for each $x\in P$ implies that $\mathrm{Orb}(z)$ is a singleton. There at least one such singleton orbit, namely $\{e\}$. By Orbit-Stabilizer Theorem, all the orbits has size p^k for some $0\leqslant k\leqslant m$. Since the orbits of P partitions P, we have

$$N_0 + N_1 p + N_2 p^2 + \dots + N^{m-1} p^{m-1} = p^m$$

where N_i the number of orbits of size p^i . We deduce that $p \mid N_0$. So there exists at least p-1 non-trivial elements in the center of P.

It is trivial that if zx = xz for all $x \in P$, then $\langle z \rangle$ is normal in P.

We shall use induction on m to show that if $|P| = p^m$ then P is solvable.

If m=1, then $P\cong C_p$ is trivially solvable.

Suppose that for n < m, the groups of order p^n are solvable.

We have proven $Z(P) \neq \{e\}$. We pick $z \in Z(P) \setminus \{e\}$. If $\langle z \rangle = P$, then P is cyclic and hence is solvable. If $\langle z \rangle \neq P$, then we have

$$p^m = |P| = |\langle z \rangle| \cdot |P/\langle z \rangle|.$$

Therefore $|\langle z \rangle| = p^r$ and $|P/\langle z \rangle| = p^s$ for some r, s < m. By induction hypothesis $\langle z \rangle$ and $P/\langle z \rangle$ are both solvable. Then by Theorem 59 in the notes we know that P is solvable.

Question 6

Show that a group of order 1694 is solvable.

Proof. Note that $1694 = 2 \times 7 \times 11^2$. Let G be this group. Suppose that G has n Sylow 11-subgroups. Then by Sylow third theorem, we have $n \equiv 1 \pmod{11}$ and $n \mid 14$. Hence n = 1 and G has a unique Sylow 11-subgroup. Let H be this subgroup. By Sylow second theorem, $H \triangleleft G$. H is solvable by Question 5 above. In addition, |G/H| = 14. Since the only groups of order 14 are the cyclic group C_{14} or the dihedral group D_{14} , both of which are solvable, we know G/H is solvable. By Theorem 59 in the notes, G is solvable. □

Question 7

Let *G* be a group of order 30.

- (i) Explain why one of the following holds:
 - There is a normal subgroup N of order 5 and a subgroup H of order 3;
 - There is a normal subgroup *N* of order 3 and a subgroup *H* of order 5;

Deduce that G has a cyclic normal subgroup K of order 15.

(ii) Let y be a generator of K and x be an order 2 element. Show that

$$G = \{x^i y^j : 0 \leqslant i \leqslant 1, \ 0 \leqslant j \leqslant 14\}$$

and that $G \cong C_{15} \rtimes_{\varphi} C_2$ where $\varphi : C_2 \to \operatorname{Aut}(C_{15})$ is a homomorphism.

- (iii) Let ψ be an automorphism of K such that $\psi(\psi(y)) = y$. Show that $\psi(y) = y$ or y^4 or y^{11} or y^{14} .
- (iv) Deduce that there are (up to isomorphism) at most four groups of order 30. Show that there are precisely four by exhibiting four non-isomorphic groups of order 30.
- *Proof.* (i) Since G has order $30 = 2 \times 3 \times 5$, by Sylow first theorem, G has Sylow 3-subgroups and 5-subgroups. Suppose that G has n 3-subgroups and m 5-subgroups. By Sylow third theorem, we have $n \equiv 1 \pmod{3}$ and $n \mid 10$. Then n = 1 or $10 \cdot m \equiv 1 \pmod{5}$ and $m \mid 6$. Then m = 1 or 6.

Suppose for contradiction that G has no normal subgroups of order 3 and 5. Then G has 10 Sylow 3-subgroups and 6 Sylow 5-subgroups. It follows that G has at least 10(3-1)=20 order 3 elements and 6(5-1)=24 order 5 elements. But G has only 30 elements, which is a contradiction. Hence G has either a normal subgroup of order 3 or of order 5 (or both).

By third isomorphism theorem $K := HN \leqslant G$. Since $|HN| = |H||N|/|H \cap N| = 15$, HN is a index 2 subgroup in G, so it is normal. By Proposition 95 in the notes, any group of order 15 is cyclic. So HN is cyclic.

(ii) It suffices to show that x^iy^j are distinct for $0 \le i \le 1$, $0 \le j \le 14$. For $x^{i_1}y^{j_1} = x^{i_2}y^{j_2}$, we have $x^{i_1-i_2}y^{j_1-j_2} = e$. If $i_1 \ne i_2$, then $y^{j_1-j_2} = x$, which is contradictory since $K \cap \langle x \rangle = \{e\}$. Then $i_1 = i_2$ so that $y^{j_1-j_2} = e$. Since y generates $K \cong C_{15}$, $(j_1 - j_2) \mid 15$. It follows that $j_1 = j_2$. So the claim is proven. Since |G| = 30 and $|\{x^iy^j : 0 \le i \le 1, 0 \le j \le 14\}| = 30$, the result follows.

Since $K \triangleleft G$, $\langle x \rangle \triangleleft G$, and $K \cap \langle x \rangle = \{e\}$, by defintion $G = K \rtimes \langle x \rangle$. The internal semi-direct product induces $\varphi : \langle x \rangle \to \operatorname{Aut}(K)$ by $\varphi_x : g \mapsto xgx$ and $\varphi_e = \operatorname{id}$. This gives the isomorphism with the external semi-direct product: $G = C_{15} \rtimes_{\varphi} C_2$.

(iii) Suppose that $\psi(y) = y^n$. Then $\psi(\psi(y)) = y^{n^2}$. $\psi \circ \psi(y) = y \implies n^2 \equiv 1 \pmod{15}$. Then $15 \mid (n+1)(n-1)$. There are 4 possibilities:

$$\begin{cases} n \equiv -1 \pmod{3} \\ n \equiv 1 \pmod{5} \end{cases} \qquad \begin{cases} n \equiv 1 \pmod{3} \\ n \equiv -1 \pmod{5} \end{cases} \qquad n \equiv -1 \pmod{15} \end{cases} \qquad n \equiv 1 \pmod{15}$$

By Chinese Remainder Theorem the solutions of these equations are unique in C_{15} . The solutions are n=11, n=4, n=14 and n=1. Hence $\psi(y)=y$ or y^4 or y^{11} or y^{14} .

(iv) Since $C_{15} \rtimes_{\varphi} C_2$, and $\varphi: C_2 \to \operatorname{Aut}(C_{15})$ is a group homomorphism,

$$y = id(y) = \varphi(e)(y) = \varphi(x^2)(y) = \varphi(x) \circ \varphi(x)(y)$$

Then by part (iii), $\varphi(x)(y) = y$ or y^4 or y^{11} or y^{14} . There are at most 4 different homomorphisms φ , so there are at most 4 non-isomorphic groups of order 30. The four non-isomorphic groups of order 30 are:

$$C_{30}, \quad D_{30}, \quad D_{10} \times C_3, \quad S_3 \times C_5.$$