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Question 1

Let A, denote the even permutations of N, thought of as

A = ] An.
n=1
Show that A is an infinite simple group.

Proof. Suppose for contradiction that A, has a non-trivial normal subgroup N. Let o € N be a non-identity element. Since
the elements of A, are even permutations of finite subsets of N, we may assume that ¢ is the permutation of a subset
of N with n elements. It follows that 0 € A4,,. Let m = max{5,n}. We have ¢ € A,,, where A,, is known to be a simple
group. (o) is a subgroup of N, and hence is a normal subgroup of A.,. But we also have (¢) < A,, < Ay. Then (o) is
normal in A,,. Since A,, is simple, either () = {e} or (o) = A,,. It is clear that A,, is not cyclic, and o # e. This leads
to a contradiction. In conclusion A is simple. O

Question 2

Let G be a group and G’ denote its derived subgroup. We showed in lectures that G’ < G.
(i) Show that if H <G and G/H is Abelian then G’ < H.
(ii) Conversely, show that if G’ < H < G then H <G and G/ H is Abelian.

Proof. (i) For g,h € H, since G/H is Abelian, we have
(9H)(hH) = (hH)(gH) = h™'g"'hgH = H = |h,g]=h"'g 'hg € H
Hence G’ < H.

(ii) Forg € G, h € H, [g,h] € G’ < H. Then there exists ' € H such that ghg=*h=! = b/ = ghg~! = h'h € H.
Hence H < G.

Next we note that for g, h € G,
l9.h] € G' = (9G")(hG") = (hG')(9G")

whence G/G’ is Abelian. By third isomorphism theorem, we have

G/G’
H/G
Then G/H is a quotient of G/G’ and hence is also Abelian. O

~G/H

Question 3

Given two groups N, H and a homomorphism ¢ : H — Aut(N), verify that the semi-direct product N x, H does indeed
satisfy the group axioms.

Proof. Associativity: For ny,ny,n3 € N and hy, he, hs € H,

(n1, h1) o ((n2, he) o (n3, hs)) = (n1, k1) o (n2p(h2)(ns), hohs)

= (n1p(h1)(n2g(h2)(ns)), hihahs)
= (n1p(h1)(n2)e(hihs)(ns), hihahs)
= (n1p(h1)(n2), hiha) o (n3, h3)

= (

(n1, h1) o (n2, h)) o (n3, ha)



Identity: (e,e) € N x, H is the identity. For (n,h) € N x, H,

(n,h) o (e,€) = (np(h)(e), he) = (ne, he) = (n, h)
(e,€) o (n, h) = (ep(e)(n), eh) = (eid(n), h) = (n,h)

Inverse: For (n,h) € N x, H, h induces an automorphism ¢y, : N — N. Letn’ := ¢, '(n™!) = ¢},-1(n~'). We claim that
(n,h)~! = (n’,h71). Indeed,

(n,h)o (n/7h_1) = (ncp(h)(n/), hh_l) = (nn_l? hh_l) = (e,e€)
(', 1) o (n,h) = (Wo(h™1)(n), K™ h) = (p(h™ ") (™ p(h™1)(n), k™ h) = (p(h™)(e), K™ h) = (e.e)

In conclusion, the semi-diract product satisfies the group axioms. O

Question 4

Verify directly Sylow’s three theorems for the following groups:

Proof.

537 D127 A47 S4'

1. S5 has order 6 = 2 x 3. We shall count the Sylow 2-subgroups and 3-subgroups of Ss.

S3 has 3 2-subgroups, which are subgroups generated by transpositions:

{e,(12)}, {e, (13)}, {e, (23)}

Since 3|3 and 3 =1 (mod 2), Sylow first and third theorem holds. It is obvious that these subgroups are conjugate
with each other, so Sylow second theorem also holds.

S3 has a unique 3-subgroup, which is {e, (123), (132)}. Since 1 | 2and 1 = 1 (mod 3), Sylow first and third theorem
holds. Itis clear that {e, (123), (132)} isnormal in S5 because the conjugation of a 3-cycle is also a 3-cycle. Therefore
Sylow second theorem also holds.

2. Diy = (0,7 | 02,75 oro7) has order 12 = 4 x 3. We shall count the Sylow 2-subgroups and 3-subgroups of D5.

D15 has a unique 3-subgroup: {e, 72,74}, because 7% and 7* are the only elements in D;, that have order 3. Since
1|4and1 =1 (mod 3), Sylow first and third theorem holds. {e, 72, 7%} is a subgroup of (), which is normal in D;,.
Therefore {e, 7%, 7%} < D1 and Sylow second theorem holds.

D15 has 3 2-subgroups:

3

{e,o,73,073}, {e,o7, 73, 07}, {e,07%,73,075}.

Since 3 | 3and 3 = 1 (mod 2), Sylow first and third theorem holds. Furthermore, these groups are conjugate with
each other:

3 3

,or3yr = {e, 012,73, 07%};

4

T He, 0,7

e, 012,73, 075} = {e,07

, 73, 07}
Therefore Sylow second theorem holds.
3. A4 hasorder 12 = 4 x 3. We shall count the Sylow 2-subgroups and 3-subgroups of A,.

We know that A4 has an identity, 3 double transpositions, and 8 3-cycles. The identity and 3 double transpositions
generates the unique 2-subgroup of A,: {e, (12)(34), (13)(24), (14)(23)}. Since 1 | 3and 1 = 1 (mod 2), Sylow first
and third theorem holds. It is known that {e, (12)(34), (13)(24), (14)(23) } is normal in A4, so Sylow second theorem
holds.

The 8 3-cycles and the identity can generates 4 different 3-subgroups of A4:



{e,(123), (132)}, {e, (134), (143)}, {e, (124), (142)}, {e, (234),(243)}.

Since4 | 4and 4 = 1 (mod 3), Sylow first and third theorem holds. Furthermore, these groups are conjugate with
each other:

(13)(24){e, (123), (132)}(13)
(12)(34){e, (123),(132)}(12)
(14)(23){e, (123),(132)}(14)
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Therefore Sylow second theorem holds.
4. S, has order 24 = 8 x 3. We shall count the Sylow 2-subgroups and 3-subgroups of S;.

Sy has 4 3-subgroups, which are the same as in A,. Since 4 | 8 and 4 = 1 (mod 3), Sylow first and third theorem
holds. Sylow second theorem holds as we have shown above.

Now we cconsider the order 8 subgroups of S;. By Prelim Group Theory Sheet 7 Question 5, we know that S, does
not contain a subgroup isomorphic to C3. Hence any order 8 subgroup of S, must contain some order 4 elements.
We know that S4 has six order 4 elements, namely the 4-cycles:

(1234), (1243), (1324), (1342), (1423), (1432)
and we know that
(1234)% = (1432)2 = (13)(24);  (1243)2 = (1342)2 = (14)(23); (1324)2 = (1423)% = (12)(34).

Next, from a brilliant observation by Shuwei, any two order 4 elements in a order 8 group must have the same
square. We deduce that these 6 order 4 elements belong to 3 different order 8 subgroups of Sy, each of which is
isomorphic to Dg. The 2-subgroups of S, are:

((1234), (13)), ((1243), (14)), ((1324), (12)).

Since 3 |3 and 3 = 1 (mod 2), Sylow first and third theorem holds. Furthermore, these groups are conjugate with

each other:
(34)((1234), (13))(34) = ((1243), (14));
(23)((1234), (13))(23) = ((1324), (12)).
Therefore Sylow second theorem holds. O

Question 5
Let P be a non-trivial group of order p™, where p is prime and m > 0.

By considering the conjugation action of P on itself prove that there is a non-identity element z such that xz = zx for all
x € P.

Show that K = (z) is a normal subgroup of P.

Deduce, by induction on m, or otherwise, that finite groups of prime power order are solvable.

Proof. Let P acts on itself by conjugation. Then xz = zx for each « € P implies that Orb(z) is a singleton. There at least one
such singleton orbit, namely {e}. By Orbit-Stabilizer Theorem, all the orbits has size p* for some 0 < k < m. Since the
orbits of P partitions P, we have

No + Nip + Nop® + -+ N~ Tpm=t = pm

where N; the number of orbits of size p‘. We deduce that p | Ny. So there exists at least p — 1 non-trivial elements in the
center of P.

It is trivial that if zz = zz for all z € P, then (z) is normal in P.



We shall use induction on m to show that if | P| = p™ then P is solvable.
If m = 1, then P = C,, is trivially solvable.
Suppose that for n < m, the groups of order p™ are solvable.

We have proven Z(P) # {e}. We pick z € Z(P)\{e}. If (z) = P, then P is cyclic and hence is solvable. If (z) # P, then
we have
p" =[Pl =1[{z)|- |P/{z)|.

Therefore |(z)| = p” and |P/(z)| = p® for some r, s < m. By induction hypothesis (z) and P/(z) are both solvable. Then
by Theorem 59 in the notes we know that P is solvable. O

Question 6

Show that a group of order 1694 is solvable.

Proof. Note that 1694 = 2 x 7 x 112. Let G be this group. Suppose that G has n Sylow 11-subgroups. Then by Sylow third

theorem, we have n = 1 (mod 11) and » | 14. Hence n = 1 and G has a unique Sylow 11-subgroup. Let H be this
subgroup. By Sylow second theorem, H < G. H is solvable by Question 5 above. In addition, |G/H| = 14. Since the
only groups of order 14 are the cyclic group C}4 or the dihedral group D4, both of which are solvable, we know G/ H is
solvable. By Theorem 59 in the notes, G is solvable. O

Question 7

Let G be a group of order 30.

(i) Explain why one of the following holds:

e There is a normal subgroup N of order 5 and a subgroup H of order 3;
e There is a normal subgroup N of order 3 and a subgroup H of order 5;

Deduce that G has a cyclic normal subgroup K of order 15.

(ii) Let y be a generator of K and x be an order 2 element. Show that

G={zly/: 0<i<1,0<j<14}

and that G = C'5 x, Cy where ¢ : Co — Aut(C)5) is a homomorphism.

(iii) Let v be an automorphism of K such that () (y)) = y. Show that ¥)(y) = y or y* or y*! or y'4.

(iv) Deduce that there are (up to isomorphism) at most four groups of order 30. Show that there are precisely four by

Proof.

exhibiting four non-isomorphic groups of order 30.

(i) Since G has order 30 = 2 x 3 x 5, by Sylow first theorem, G has Sylow 3-subgroups and 5-subgroups. Suppose that
G has n 3-subgroups and m 5-subgroups. By Sylow third theorem, we have n = 1 (mod 3) and » | 10. Thenn = 1 or
10. m =1 (mod 5) and m | 6. Then m = 1 or 6.

Suppose for contradiction that G' has no normal subgroups of order 3 and 5. Then G has 10 Sylow 3-subgroups
and 6 Sylow 5-subgroups. It follows that G has at least 10(3 — 1) = 20 order 3 elements and 6(5 — 1) = 24 order 5
elements. But G has only 30 elements, which is a contradiction. Hence G has either a normal subgroup of order 3
or of order 5 (or both).

By third isomorphism theorem K := HN < G. Since |HN| = |H||N|/|H N N| = 15, HN is a index 2 subgroup in
G, so it is normal. By Proposition 95 in the notes, any group of order 15 is cyclic. So HN is cyclic.



(i)

(iii)

(iv)

It suffices to show that 2’y are distinct for 0 < i < 1, 0 < j < 14. For 219/t = 22972 we have 21 ~2y/1 772 = ¢,
If iy # io, then y/1772 = g, which is contradictory since K N (x) = {e}. Then i; = i, so that y/1772 = ¢. Since y
generates K = Cjs, (j1 — j2) | 15. It follows that j; = j>. So the claim is proven. Since |G| = 30 and |{z%y’ : 0 <i <
1, 0 < j < 14}] = 30, the result follows.

Since K <« G, (z) <G, and K N (z) = {e}, by defintion G = K x (x). The internal semi-direct product induces
@ : (z) = Aut(K) by ¢, : g — xgx and ¢, = id. This gives the isomorphism with the external semi-direct product:
G = 015 X CQ.

Suppose that /(y) = y™. Then ¢ (¥ (y)) = y™ . Yo b(y) =y = n® =1 (mod 15). Then 15 | (n + 1)(n — 1). There
are 4 possibilities:

n=—1 (mod 3) n =1 (mod 3)

n = —1 (mod 15) n =1 (mod 15)
n=1 (mod 5) n=—1 (mod 5)

By Chinese Remainder Theorem the solutions of these equations are unique in C;5. The solutions aren = 11, n = 4,
n = 14 and n = 1. Hence v(y) = y or y* or y'! or y'4.

Since Cy5 %, Cs, and ¢ : C; — Aut(C15) is a group homomorphism,
y = id(y) = p(e)(y) = p(=*)(y) = ¢(z) o p(z)(y)

Then by part (iii), o(z)(y) = y or y* or y'! or y'4. There are at most 4 different homomorphisms ¢, so there are at
most 4 non-isomorphic groups of order 30. The four non-isomorphic groups of order 30 are:

Cso, D3, D1 x Cs, S3 x Cs.



