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Question 1

Let C be the projective curve with equation

x2 + y2 = z2

Show that the projective line through the points [0,1,1] and [t ,0,1] meets C in the two points [0,1,1] and
[
2t , t 2 −1, t 2 +1

]
.

Show that there is a bijection between the projective line y = 0 and C given by:

[t ,0,1] 7→ [
2t , t 2 −1, t 2 +1

]
[1,0,0] 7→ [0,1,1]

Proof. Let A = [0 : 1 : 1] and B = [t : 0 : 1]. Note that A ∈C . The projective line AB is{
[µt :λ :λ+µ] : λ 6= 0 or µ 6= 0

}
Suppose that P ∈ AB ∩C . Then:

µ2t 2 +λ2 = (λ+µ)2 =⇒ µ2(t 2 −1)−2λµ= 0

If µ= 0, then we can take λ= 1. Hence P = A = [0 : 1 : 1]. If µ 6= 0, then µ(t 2 −1) = 2λ. We can take µ= 2 and λ= t 2 −1. Then

P = (t 2 −1)[0 : 1 : 1]+2[t : 0 : 1] = [2t : t 2 −1 : t 2 +1]

The projective line {y = 0} is parametrised by

{[t : 0 : 1] : t ∈ F }∪ {[1 : 0 : 0]}

Letα : {y = 0} →C given by [t : 0 : 1] 7→ [2t : t 2−1 : t 2+1], [1 : 0 : 0] 7→ [0 : 1 : 1]. To show thatα is bijective. We need to construct
its inverse. For Y ∈C with Y 6= A, AY is a projective line so it intersects {y = 0} at a unique point X .

If X = [1 : 0 : 0], then AY = {[λ : µ : µ] : λ 6= 0 or µ 6= 0}. If P ∈ AY ∩C , then λ2 +µ2 = µ2, which implies that λ= 0. Then P = A,
contradicting that AY ∩C contains at least two points. Hence X = [t : 0 : 1] for some t ∈ F . From the discussion above we see
that Y = [2t : t 2 −1 : t 2 +1] =α(X ).

Now we have definedα−1 on C \{A}. For A we simply letα−1(A) = [1 : 0 : 0]. Thereforeα−1 is the inverse ofα. α is bijective.

Question 2

Show that a homogeneous polynomial in two variables x, y may be factored into linear polynomials over C.

Proof. Suppose that P (x, y) is a homogeneous polynomial of degree n. Then there exists a0, ..., an ∈C such that

P (x, y) =
n∑

i=0
ai xi yn−i

Let m be the largest integer such that am 6= 0. Let Q(x) =
n∑

i=0
ai xi . By the fundamental theorem of algebra, Q factorises into

linear factors: Q(x) = am

m∏
i=1

(x −λi ). For y 6= 0, we have

P (x, y) = yn
m∑

i=0
ai

(
x

y

)i

= ynQ(x/y) = am yn
m∏

i=1

(
x

y
−λi

)
= am yn−m

m∏
i=1

(x −λi y)

If m < n, then both sides of the equation is zero when y = 0; if m = n, then

P (x,0) = an xn = am yn−m
m∏

i=1
(x −λi y)

∣∣∣∣∣
y=0
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We deduce that for any x, y ∈C,

P (x, y) = am yn−m
m∏

i=1
(x −λi y)

Since C is an infinite field, the equation also holds in C[x, y]. Hence we have factorised P (x, y) into linear polynomials over
C.

Question 3

This question deals with how to define tangent lines at singular points. Let C be a curve in C2 defined by Q(x, y) = 0 : x, y ∈C.
Define the multiplicity m of C at a point (a,b) ∈C to be the smallest positive integer m such that some m-th partial derivative
of Q at (a,b) is nonzero (so (a,b) is a singularity of C iff m > 1) Consider the polynomial

∑
i+ j=m

∂mQ

∂xi∂y j
(a,b)

(x −a)i (y −b) j

i ! j !

As in question 2, we can factorise this as a product of m linear polynomials of the form

α(x −a)+β(y −b)

The lines defined by the vanishing of these linear polynomials are called the m tangent lines to C at (a,b).

(i) Show that if m = 1 this definition agrees with the definition given in lectures for the tangent line at a nonsingular point.

(ii) Find the multiplicities and tangent lines of the singularities for the nodal cubic y2 = x3 + x2 and the cuspidal cubic
y2 = x3.

Proof. (i) When m = 1, we have

∑
i+ j=m

∂mQ

∂xi∂y j
(a,b)

(x −a)i (y −b) j

i ! j !
= ∂Q

∂x
(a,b)(x −a)+ ∂Q

∂y
(a,b)(y −b) = 0

We extend Q to a curve in CP2 by considering P (x, y, z) := zdQ(x/z, y/z) for sufficiently large d ∈N. Then we have

∂P

∂x
(x, y, z) = zd−1 ∂Q

∂x

( x

z
,

y

z

)
,

∂P

∂y
(x, y, z) = zd−1 ∂Q

∂y

( x

z
,

y

z

)
∂P

∂z
(x, y, z) = d zd−1Q

( x

z
,

y

z

)
− zd−2

(
x
∂Q

∂x

( x

z
,

y

z

)
+ y

∂Q

∂y

( x

z
,

y

z

))
We embed C2 into CP2 via (x, y) 7→ [x : y : 1]. Observe that

∂P

∂x
(a,b,1) = ∂Q

∂x
(a,b),

∂P

∂y
(a,b,1) = ∂Q

∂y
(a,b),

∂P

∂z
(a,b,1) = dQ(a,b)−

(
a
∂Q

∂x
(a,b)+b

∂Q

∂y
(a,b)

)
Since [a : b : 1] ∈C , we have Q(a,b) = 0. Now the equation

∂Q

∂x
(a,b)(x −a)+ ∂Q

∂y
(a,b)(y −b) = 0

is equivalent to

x
∂P

∂x
(a,b,1)+ y

∂P

∂y
(a,b,1)+ ∂P

∂z
(a,b,1) = 0

which is the definition of the tangent line at a non-singular point of a projective curve.

(ii) Firse we identify the singular points.

For Q1(x, y) = y2 −x3 −x2, a singular point is where

y2 = x3 +x2,
∂Q1

∂x
=−3x2 −2x = 0,

∂Q1

∂y
= 2y = 0
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Then Q1 has a singular point at (0,0). The point (0,0) has multiplicity m = 2, because

∂2Q1

∂x2 (0,0) =−2 6= 0

The tangent lines of Q1 at (0,0) are determined by

0 = 1

2

∂2Q1

∂x2 (0,0)x2 + ∂2Q1

∂x∂y
(0,0)x y + 1

2

∂2Q1

∂y2 (0,0)y2 =−x2 + y2 = (y −x)(y +x)

Hence the tangent lines are x = y and x =−y .

For Q2(x, y) = y2 −x3, a singular point is where

y2 = x3,
∂Q2

∂x
=−3x2 = 0,

∂Q2

∂y
= 2y = 0

Then Q2 has a singular point at (0,0). The point (0,0) has multiplicity m = 2, because

∂2Q2

∂y2 (0,0) = 2 6= 0

The tangent lines of Q2 at (0,0) are determined by

0 = 1

2

∂2Q1

∂x2 (0,0)x2 + ∂2Q1

∂x∂y
(0,0)x y + 1

2

∂2Q1

∂y2 (0,0)y2 = y2

Hence the tangent line is y = 0 (with a repeated factor of 2).

Question 4

Show that if α1, . . . ,αr are distinct, then the affine curve

y2 = (x −α1) (x −α2) . . . (x −αr )

is nonsingular. What can you say about the associated projective curve?

Proof. Let p(x) :=
r∏

i=1
(x −αi ). Suppose that (a,b) ∈ F 2 is a singular point on the affine curve y2 = p(x). Then

b2 = p(a), 2b = 0, p ′(a) = 0

which implies that p(a) = p ′(a) = 0. Hence a is a repeated root of the polynomial p. But we know that the roots of p are
distinct, which is a contradiction.

Now we embed F 2 into FP2 via (x, y) 7→ [x : y : 1].

• For r > 2, the extension of y2 = p(x) on FP2 is given by

P (x, y, z) = zr
(( y

z

)2
−p

( x

z

))
= zr−2 y2 −

r∏
i=1

(x −αi z) = 0

We observe that z = 0 implies that x = 0. Therefore the curve passes through [0 : 1 : 0]. At this point, we have

∂P

∂x
=−

(
r∏

i=1
(x −αi z)

)
r∑

i=1

1

x −αi z
= 0,

∂P

∂y
= 2zr−2 y = 0,

∂P

∂z
= (r−2)zr−3 y2+

(
r∏

i=1
(x −αi z)

)
r∑

i=1

αi

x −αi z
= (r−2)zr−3 y2

If r = 3, then
∂P

∂z
6= 0. [0 : 1 : 0] is not a singularity. The projective curve is non-singular. If r > 3, then

∂P

∂z
= 0. [0 : 1 : 0] is

a singularity. The projective curve is singular.

• For r = 2, the extension of y2 = p(x) on FP2 is given by

P (x, y, z) = y2 − (x −α1z)(x −α2z) = 0
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z = 0 implies that y2 = x2. Therefore the curve passes through [1 : 1 : 0] and [1 : −1 : 0].

At these points, we observe that
∂P

∂x
=−(x −α1z)− (x −α2z) =−2x 6= 0

Hence [1 : 1 : 0] and [1 : −1 : 0] are not singularities. The projective curve is non-singular.

• For r = 1, the extension of y2 = p(x) on FP2 is given by

P (x, y, z) = y2 − z(x −α1z)

z = 0 implies that y = 0. Therefore the curve passes through [1 : 0 : 0].

At this point, we have
∂P

∂x
=−z = 0,

∂P

∂y
= 2y = 0,

∂P

∂z
=−x +2α1z =−1 6= 0

Hence [1 : 0 : 0] is not a singularity. The projective curve is non-singular.

Question 5

(i) Show that the affine curve y2 = x3 +x in C2 is nonsingular.

(ii) Now consider this curve over the finite fieldZp where p is a prime. That is, we consider the curve in
(
Zp

)2 with equation
y2 = x3 +x. For which p is this nonsingular?

Proof. (i) x3 + x = x(x + i)(x − i) has no repeated roots. By the discussion in Question 4, we know that the affine curve y2 = x3 + x
in C2 is non-singular.

(ii) Since x3+x = x(x2+1), and x2+1 6= 0 in any Zp , we know that y2 = x3+x is non-singular if x2+1 has no repeated roots
in Zp . If α ∈Zp is a root of x2 +1, then x2 +1 = (x −α)(x +α). We see that α=−α if and only if p = 2. We deduce that for
p > 2, y2 = x3 +x is non-singular in Z2

p .

For p = 2, y2 = x3 +x = x(x −1)2. Let P (x, y) = y2 −x(x −1)2. We find that

P (1,0) = 0,
∂P

∂x
(1,0) = 0,

∂P

∂y
(1,0) = 0

Hence (1,0) is a singularity of y2 = x(x −1)2. The curve is singular in Z2
p .


