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Question 1
Let C be the projective curve with equation

2ay?=z?

Show that the projective line through the points [0,1,1] and [¢,0, 1] meets C in the two points [0,1,1] and [2 L2 —1,1%+ 1].
Show that there is a bijection between the projective line y = 0 and C given by:

[£,0,1]— [28, 2 - 1,£* +1]
(1,0,0] —[0,1,1]

Proof. Let A=[0:1:1] and B=[¢:0:1]. Note that A€ C. The projective line AB is
{lut: A: A2+ pul: A#0o0r p#0}

Suppose that P € ABNC. Then:
W+ A2 =A+w? = Pt -1)-2Au=0

If 1 =0, then we can take A = 1. Hence P= A= [0:1:1]. If u # 0, then p(¢?> — 1) = 2A. We can take g =2 and A = t> — 1. Then
P=(#=D[0:1:1]+2[t:0:1] = [2¢: 2~ 1: £ +1]
The projective line {y = 0} is parametrised by
{[£:0:1]: te€ Ffu{[1:0:0]}

Leta:{y=0} — Cgivenby[£:0:1] — [2¢: t2—1:1%+1],[1:0:0] — [0:1:1]. To show that a is bijective. We need to construct
its inverse. For Y € Cwith Y # A, AY is a projective line so it intersects {y = 0} at a unique point X.

IfX=[1:0:0],then AY = {[A:p:pul: A#0oru#0}. If Pe AY NC, then A + ? = u?, which implies that A = 0. Then P = A,
contradicting that AY n C contains at least two points. Hence X = [¢:0: 1] for some ¢ € F. From the discussion above we see
that Y = [27: 2 -1: 2 +1] = a(X).

Now we have defined a~! on C\{A}. For Awe simply let a 1(A) =[1:0:0]. Therefore ! is the inverse of a. « is bijective. O

Question 2

Show that a homogeneous polynomial in two variables x, y may be factored into linear polynomials over C.

Proof. Suppose that P(x, y) is a homogeneous polynomial of degree n. Then there exists ay, ..., a, € C such that

n . .
P(x,y)=) aix'y""
i=0

n
Let m be the largest integer such that a;, # 0. Let Q(x) = Z a;x'. By the fundamental theorem of algebra, Q factorises into
i=0

m
linear factors: Q(x) = amH (x—A;). For y #0, we have
i=1
m X i m (5 m
Px,y=y"Y a (—) =y"Qx/y) = amy" [] (— —Ai) =amy" " [Jx-2iy)
i=0 \Y i=1\Y i=1
If m < n, then both sides of the equation is zero when y = 0; if m = n, then

m
P(x,0) = anx" = amy™ " [ (x-2Aiy)

i=1

y=0



We deduce that for any x, y € C,
m
P(x,y) = amy" " [[(x=Aiy)
i=1
Since C is an infinite field, the equation also holds in C[x, y]. Hence we have factorised P(x, y) into linear polynomials over
C. O

Question 3

This question deals with how to define tangent lines at singular points. Let C be a curve in C? defined by Q(x,y) =0: x, y € C.
Define the multiplicity m of C at a point (a, b) € C to be the smallest positive integer m such that some m-th partial derivative
of Q at (a, b) is nonzero (so (a, b) is a singularity of C iff m > 1) Consider the polynomial

0"Q (x—a)'(y-b)J
< _(a,b
Z ax’ayf(a )

i+j=m

ilj!
As in question 2, we can factorise this as a product of m linear polynomials of the form
a(x—a)+pB(y—>b)

The lines defined by the vanishing of these linear polynomials are called the m tangent lines to C at (a, b).
(i) Show that if m = 1 this definition agrees with the definition given in lectures for the tangent line at a nonsingular point.

(ii) Find the multiplicities and tangent lines of the singularities for the nodal cubic y?> = x® + x? and the cuspidal cubic

¥ =28,

Proof. (i) When m =1, we have

amQ (x-a)(y-b) 0Q 0Q _
> 3x70y] (a,b) i =5 @hE-a+ 3y (a,b)(y—b)=0

i+j=m

We extend Q to a curve in CP? by considering P(x, y, z) := z?Q(x/z, y/ z) for sufficiently large d € N. Then we have

op _ d-10Q (x y _ a-10Q (x y
ax(x,y,z)—z ax(z,z), ay(x,y,z)—z ay(z,z)
op _ad-1n(* Y d—z(anJ’ anJ/)
6Z(x,y,z)—dz Q(z’z) “ | Yox (Z'Z)er()y (z’z)
We embed C? into CP? via (x, ¥)— [x:y:1]. Observe that
opP 0Q oP 0Q opP ( 0Q 0Q
= )byl == )b) ~ 7b)1 = ,b, - ,b,l Zd ,b_ - ,b b— ,b
ax(a ) ax(a ) 6y(a ) ay(a ) az(a )=dQ(a,b) aax(a ) + ay(a )
Since [a: b: 1] € C, we have Q(a, b) = 0. Now the equation
0 0
g(a,b)(x—aH %(a,b)(y—b) =0
is equivalent to
xap(a b, 1)+ aP(a b 1)+aP(a b1)=0
Gx »y Uy yay » My 6Z » Iy -
which is the definition of the tangent line at a non-singular point of a projective curve.
(ii) Firse we identify the singular points.
For Q(x,y) = y2 —x3-x%a singular point is where
0 0
y2=x3+x2, &=—3x2—2x=0, &=2y=0

0x oy



Then Q; has a singular point at (0,0). The point (0,0) has multiplicity m = 2, because

0?Q
0x?

5 (0,00=-2#0

The tangent lines of Q; at (0,0) are determined by

2 2
ozlthome QHom - Ql

2 2y
792 O E 2 (OO)y xX“+y (y=x)(y+x)

Hence the tangent lines are x = y and x = —y.

For Q»(x,y) = y* — x3, a singular point is where

an aQZ
2 3 3 2 0 2 0
) X - Yy -
Y 0x o0y y

Then Q; has a singular point at (0,0). The point (0,0) has multiplicity m = 2, because

62
Qﬂom 2#0
The tangent lines of Q; at (0,0) are determined by
1 0 Ql 2 62Q 2Q1 2 _
0=~ 0,0 0,0
> o 0,00x 0 3y 50,0y
Hence the tangent line is y = 0 (with a repeated factor of 2). O

Question 4

Show that if a1,..., a, are distinct, then the affine curve
=(x-a))x—az)...(x—ay)

is nonsingular. What can you say about the associated projective curve?
r
Proof. Let p(x):= ]_[ (x — a;). Suppose that (a, b) € F? is a singular point on the affine curve y*> = p(x). Then
i=1

b =p@, 2b=0, pa=

which implies that p(a) = p'(a) = 0. Hence a is a repeated root of the polynomial p. But we know that the roots of p are
distinct, which is a contradiction.

Now we embed F? into FP? via (x,y) — [x:y:1].

* For r > 2, the extension of y?> = p(x) on FP? is given by

_ I Z 2 _ f _ =22 a ) —
Plx,y,2)=z ((z) p(z))—z ¥ i:l_ll(x a;z) =
We observe that z = 0 implies that x = 0. Therefore the curve passes through [0: 1: 0]. At this point, we have

opr

H(x az))z =0, =22z""2y=0, g—P:(r—Z)zr3 2 (H(x az))
i=1 z

1X—-a;z ay

=(r-2)z"3y?

Ox

1 l

opr opr
If r =3, then 2 #0.[0:1:0] is not a singularity. The projective curve is non-singular. If r > 3, then P 0.[0:1:0]is
z
a singularity. The projective curve is singular.

* For r =2, the extension of y?> = p(x) on FP? is given by

P(x,3,2) =y — (x—a12) (X — ap2) =



z =0 implies that y2 = x2. Therefore the curve passes through [1:1:0] and [1:-1:0].

At these points, we observe that
opr
— =—(x—a12)— (x—a22) =-2x#0
0x
Hence [1:1:0] and [1:—1:0] are not singularities. The projective curve is non-singular.

* For r =1, the extension of y?> = p(x) on FP? is given by
P(x) y) Z) = yz - Z(x_ alz)

z =0 implies that y = 0. Therefore the curve passes through [1:0:0].

At this point, we have

op 0 ob 2 0 op +2 1#0
—_— === , _—= =0, —_— ==X a1z =—
ox ay Y oz !
Hence [1:0:0] is not a singularity. The projective curve is non-singular. O

Question 5

(i) Show that the affine curve y* = x> + x in C? is nonsingular.
(i) Now consider this curve over the finite field Z,, where p is a prime. That is, we consider the curve in (Z p)z with equation

y? = x* + x. For which p is this nonsingular?

3

Proof. (i) x®+ x = x(x+i)(x —1i) has no repeated roots. By the discussion in Question 4, we know that the affine curve y* = x> + x

in C? is non-singular.

(ii) Since x3+x=x(x%+1),and x*+1#0in any Z,, we know that y2 =x3+xis non-singular if x%2+1hasno repeated roots
inZ,.lfaeZ,isaroot of x2+1, then x2+1 = (x— a)(x + «). We see that & = —« if and only if p = 2. We deduce that for
p>2, y* = x* + x is non-singular in Z5,

For p=2, y* = x>+ x = x(x— 1). Let P(x, y) = y* — x(x — 1)2. We find that
opP opP

P(1,0) =0, —(1,0) =0, —(1,00=0
0x o0y

Hence (1,0) is a singularity of y* = x(x—1). The curve is singular in Z5, O



