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Question 1

Let a be the positive integer and suppose that in its decimal expansion it has 7 digits: a = a0 + 10a1 + · · ·+ 106a6. Show
that a is divisible by 7 if and only if a0 + 3a1 + 2a2 � a3 � 3a4 � 2a5 + a6 is divisible by 7.

Proof. We have:

10 ⌘ 3 (mod 7)

102 ⌘ 32 ⌘ 2 (mod 7)

103 ⌘ 2 · 3 = 6 ⌘ �1 (mod 7)

104 ⌘ 22 = 4 ⌘ �3 (mod 7)

105 ⌘ 4 · 3 ⌘ �2 (mod 7)

106 ⌘ 2 · 4 ⌘ 1 (mod 7)

Hence a ⌘ 0 () a0 + 10a1 + · · ·+ 106a6 ⌘ 0 () a0 + 3a1 + 2a2 � a3 � 3a4 � 2a5 + a6 ⌘ 0 (mod 7).

Question 2

Find a positive integer x such that x ⌘ 3 (mod 4), 2x ⌘ 5 (mod 9) and 7x ⌘ 1 (mod 11).

Proof. Observe that 2x ⌘ 5 (mod 9) =) 10x ⌘ 25 (mod 9) =) x ⌘ 7 (mod 9) and 7x ⌘ 1 (mod 11) =) 21x ⌘ 3 (mod 11) =)
�x ⌘ 3 (mod 11) =) x ⌘ 8 (mod 11).

We have x ⌘ 3 (mod 4), x ⌘ 7 (mod 9) and x ⌘ 8 (mod 11), where 4, 9 and 11 are pairwise coprime. By Chinese
Remainder Theorem x exists and is unique up to congruence class of 396Z. We shall follow the procedure described in
the notes below Theorem 2.2.

Let Q1 = 99, Q2 = 44 and Q3 = 36. Since Q1 ⌘ �1 (mod 4), we have m1Q1 ⌘ 1 (mod 4) where m1 = 3. Since
Q2 ⌘ �1 (mod 9), we have m2Q2 ⌘ 1 (mod 9) where m2 = 8. Since Q3 ⌘ 3 (mod 11), we have m3Q3 ⌘ 1 (mod 11)

wherem3 = 4.

Hence we can put x = 3m1Q1 + 7m2Q2 + 8m3Q3 = 4507. The smallest positive x is x = 151.

Question 3

Find the smallest positive integer x such that x ⌘ 11 (mod 59) and x ⌘ 29 (mod 71).

Proof. Let Q1 = 71 and Q2 = 59. Q1 and Q2 are coprime. We shall find the inverse of Q1 in Q2Z by Euclidean Algorithm and
hence the inverse of Q2 in Q1Z.

71 = 1 · 59 + 12

59 = 4 · 12 + 11

12 = 1 · 11 + 1

11 = 11 · 1

Hence

1 = 12� 11

= 12� (59� 4 · 12) = 5 · 12� 59

= 5 · (71� 59)� 59 = 5 · 71� 6 · 59
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And we obtain that 5Q1 ⌘ 1 (mod 59) and �6Q2 ⌘ 1 (mod 71). We can put x = 11 · 5 · 71 + 29 · (�6) · 59 = �6361. Such
x is unique up to congruence class of 4189Z. The smallest positive x is x = �6361 + 2 · 4189 = 2017.

Question 4

Show that 2340 ⌘ 1 (mod 341). Comment on this in connection with Fermat’s Little Theorem.

Proof. Observe that 210 = 1024 = 1 + 3 · 341. Hence 2340 ⌘ (210)34 ⌘ 134 = 1 (mod 341).

It is tempting to apply Fermat’s Little Theorem directly to obtain the result. This is incorrect, however, since 341 = 11·31
is not prime. An indirect way to prove the result using Fermat’s Little Theorem is as follows:

Let x1 = 211. Since x1 /2 31Z and 31 2 Z is prime, by Fermat’s Little Theorem we have 2340 = 210x30
1 ⌘ 1 (mod 31).

We have used the fact that 25 = 32 ⌘ 1 (mod 31). Let x2 = 234. Since x1 /2 11Z and 11 2 Z is prime, by Fermat’s
Little Theorem 2340 = x10

2 ⌘ 1 (mod 11). By Chinese Remainder Theorem, there is a well-defined ring isomorphism
' : Z/11Z ⇥ Z/31Z ! Z/341Z given by (x + 11Z, x + 31Z) 7! x + 341Z for x 2 Z. Hence we conclude that 2340 ⌘
1 (mod 341).

Question 5

Let n := (6t+ 1)(12t+ 1)(18t+ 1) with 6t+ 1, 12t+ 1 and 18t+ 1 all prime numbers. Prove that

an�1 ⌘ 1 (mod n)

whenever (a, n) = 1. Comment on this in connection with Fermat’s Little Theorem.

Proof. Since gcd(a, n) = 1, a is comprime with 6t+ 1, 12t+ 1, and 18t+ 1. By Fermat’s Little Theorem, we have:

a6t ⌘ 1 (mod 6t+ 1) a12t ⌘ 1 (mod 12t+ 1) a18t ⌘ 1 (mod 18t+ 1)

Notice that n� 1 = (6t+ 1)(12t+ 1)(18t+ 1)� 1 = (6 · 12 · 18)t3 + (6 · 12 + 6 · 18 + 12 · 18)t2 + (6 + 12 + 18)t is divisible
by 18t. Therefore we have

an�1 ⌘ 1 (mod 6t+ 1) an�1 ⌘ 1 (mod 12t+ 1) an�1 ⌘ 1 (mod 18t+ 1)

By Chinese Remainder Theorem, we conclude that an�1 ⌘ 1 (mod n).

Question 6

Show that if x is an integer then x10 2 {�1, 0, 1} (mod 25).

Proof. By Lemma 3.6 in the notes, (Z/25Z)⇥ is a cyclic group, whose order is |(Z/25Z)⇥| = �(25) = 20. For x 2 Z, let x̄ be the
image under the projection Z ⇣ Z/25Z.

If x̄10 = 0̄, then x10 ⌘ 0 (mod 25). If x̄10 = 1̄, then x10 ⌘ 1 (mod 25). If x̄10 6= 1̄ and x̄10 6= 0̄, then (x̄10)2 = 1̄ implies that
x̄10 has order 2 in (Z/25Z)⇥. As a cyclic group, (Z/25Z)⇥ has a unique element of order 2, which is �1̄. It follows that
x10 ⌘ �1 (mod 25).

Question 7

For which N is the following true: if you take an N digit number, reverse its digits and then add the result to the original
number, you always get a mutiple of 11?
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Proof. This is true if only if N is even.

For aN-digit number a, we can express it as a =
N�1X

n=0

an10n. Let ã =
N�1X

n=0

an10N�1�n be the number obtained by reversing

its digits. We have:

a+ ã =
N�1X

n=0

an(10
n + 10N�1�n)

Therefore

a+ ã =
N�1X

n=0

an((�1)n + (�1)N�1�n) (mod 11)

IfN is even, then n andN �1�n differ in parity. It follows that (�1)n+(�1)N�1�n = 0. Hence a+ ã 2 11Z. Conversely,
if N is odd, we consider a = 10N�1. Then a+ ã = 10N�1 + 1 ⌘ (�1)N�1 + 1 = 2 (mod 11). a+ ã /2 11Z.

Question 8

Find all primes p for which the map � : Z/pZ ! Z/pZ defiend by �(x) = x13 is a group homomorphism.

Proof. The map � satisfies that �(0) = 0 and �(1) = 1. It follows that � 2 End(Z/pZ) is a group homomorphism if and only if
� = idZ/pZ.

Since p is prime, Z/pZ is a field. Then x13 ⌘ x (mod p) implies that x12 ⌘ 1 (mod p). Hence op(x) | 12. Since (Z/pZ)⇥ is
the cyclic group Cp�1, it follows that (p� 1) | 12. The primes satisfying this condition are 2, 3, 5, 7, 13.

Question 9

Find all four-digit numbers N such that, when written in decimal, the last four digits of any power of N are the same as
the digits of N .

Proof. Suppose that Nm and N have the same last four digits. In particular N2 and N have the same last four digits. Hence
N2 ⌘ N

�
mod 104

�
or 104 | N(N � 1). 104 = 24 · 54. Exactly one of N and N � 1 is divisible by 2 and one divisible by 5.

There are only two possibilities:
8
<

:
N ⌘ 0 (mod 16)

N ⌘ 1 (mod 625)
or

8
<

:
N ⌘ 1 (mod 16)

N ⌘ 0 (mod 625)

Notice that 625 = 39 · 16 + 1. By Chinese Remainder Theorem, the second case implies thatN ⌘ 625
�
mod 104

�
. This is

impossible since N has exactly four digits. For the first case, N is given by:

N = 1 · (625� 39) · 16 + 0 · 1 · 625 = 9376

For N = 9376, N2 ⌘ N
�
mod 104

�
. Inductively we have Nm ⌘ N

�
mod 104

�
form 2 Z+.

Question 10

For each of the following properties, show that there are infinitely many positive integers n which do not have that prop-
erty.

(i) n is the sum of at most 3 squares;
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(ii) n is the sum of at most 8 sixth powers;

(iii) n is the sum of at most 11 tenth powers;

(iv) n is the sum of at most 15 fourth powers;

(v) n is the sum of at most 7 positive seventh powers.

Proof. (i) We claim that n does not satisfy the property if n 2 8Z+ 7.

Suppose that n =
P3

i=1 n
2
i for some ni 2 Z. Notice that n2 2 {0, 1, 4} (mod 8) for any n 2 Z. Hence

P3
i=1 ni 2

{0, 1, 2, 3, 4, 5, 6} (mod 8). But n ⌘ 7 (mod 8), which is a contradiction. Hence n does not satisfy the property. Since
8Z+ 7 is an infinite set, we conculde that there are infinitely many integers that does not satisfy the property.

(ii) We claim that n does not satisfy the property if n 2 9Z\27Z.

Suppose that n =
P8

i=1 n
6
i for some ni 2 Z. By Lemma 3.6 in the notes, (Z/9Z)⇥ is the cyclic groupC6. Form 2 Z, if

m 2 3Z, thenm ⌘ 0 (mod 9) =) m6 ⌘ 0 (mod 9). Ifm /2 3Z, then m̄ 2 (Z/9Z)⇥. Therefore m̄6 ⌘ 1 (mod 9), since
the order of the elments in C6 divides 6. It follows that n6

i 2 {0, 1} (mod 9) for each i. In particular, n =
P6

i=1 n
6
i ⌘

0 (mod 9) only if n6
i ⌘ 0 (mod 9) for each i. But

n6
i ⌘ 0 (mod 9) =) 3 | ni =) 36 | n6

i =) 36 | n =
8X

i=1

n6
i

contradicting that n /2 27Z. Hence n does not satisfy the property. Since 9Z\27Z is an infinite set, we conculde that
there are infinitely many integers that does not satisfy the property.

(iii) We claim that n does not satisfy the property if n 2 25Z+ 13.

Suppose that n =
P11

i=1 n
10
i for some ni 2 Z. By Question 6 we know that n10

i 2 {�1, 0, 1} (mod 25). In particular,

n =
11X

i=1

n10
i 2 {�11,�10, ..., 10, 11} = {0, 1, ..., 10, 11, 14, 15, ..., 24} (mod 25)

But n ⌘ 13 (mod 25) by definition. Hence n does not satisfy the property. Since 25Z + 13 is an infinite set, we
conculde that there are infinitely many integers that does not satisfy the property.

(iv) First we claim that 31 does not satisfy the property. Suppose that there existsn1, ..., n15 2 Z such that 31 =
P15

i=1 n
4
i .

Note that n4
i > 0. We must have 31 > n4

i =) |ni| 2 {0, 1, 2} for each i. And there is exactly one |ni| = 2. A direct
calculation may verify that it is impossible to express 31 as such combination.

Next we shall use induction to prove that 31 · 16n does not satisfy the property for n 2 N. We have proven the base
case.

For the induction case, suppose that 31 · 16n�1 does not have the property. By Lemma 3.7 in the notes, we have
(Z/16Z)⇥ ⇠= C2 ⇥ C4. Form 2 2Z,m4 ⌘ 0 (mod 16). Form /2 2Z,m 2 (Z/16Z)⇥. Since every element of (Z/16Z)⇥

has order at most 4,m4 ⌘ 1 (mod 16). Hencem4 2 {0, 1} (mod 16) for anym 2 Z. Therefore

31 · 16n =
15X

i=1

n4
i =) 8 i 2 {1, ..., 15} : n4

i ⌘ 0 (mod 16) =) 8 i 2 {1, ..., 15} : ni 2 2Z

Then 31 · 16n = 16 ·
15X

i=1

⇣ni

2

⌘4
=) 31 · 16n�1 =

15X

i=1

⇣ni

2

⌘4
. It follows that 31 · 16n�1 is a sum of 15 fourth powers

of integers. Contradiction. Hence 31 · 16n does noe satisfy the property, completing the induction.

Finally, {31 · 16n : n 2 Z} is an infinite set. There are infinitely many integers that does not satisfy the property.

(v) There is a combinatorial method of doing this problem. Suppose for contradication that there exists m integers
that does not satisfy the property. Consider an integer n < k7 for large enough k 2 Z. If n satisfies the property,
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then n =
P7

i=1 n
7
i , where ni 2 {0, ..., k � 1}. Hence n7

i 2 {0, 1, 27, ..., (k � 1)7}. Since each n7
i has k possible values,

it follows from simple combinatorics that
7X

i=1

n7
i has at most

✓
k + 6

7

◆
different values.

Let '(k) be the number of integers less than k7 that does not satisfy the property. Then we have shown that

'(k) > p(k) := k7 �
✓
k + 6

7

◆
=

✓
1� 1

7!

◆
k7 + p6(k)

where p6 2 Z[x] is a polynomial of degree at most 6. It follows that '(k) ! 1 as k ! 1. Therefore there exists
N 2 N such that '(N) > m, which is a contradication. We conclude that there are infinitely many integers that
does not satisfy the property.
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