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In these problems K denotes an arbitrary field, K [x] denotes the ring of polynomials in one variable x over K and K (x) the ring
of rational functions in the variable x (i.e. the fraction field of K [x]). If p is a prime number, then Fp denotes the field of integers
modulo p.

Question 1

Let Φm(x) ∈ C[x] be the m-th cyclotomic polynomial, the monic polynomial whose roots are the primitive m-th roots of 1 in
C. Show that

(a) Φ1(x) = x −1; Φ2(x) = x +1; Φ3(x) = x2 +x +1; Φ4(x) = x2 +1.

(b)
∏

d |mΦd (x) = xm −1

(c) Φm(x) ∈Z[x]. [Hint: prove first thatΦm(x) ∈Q[x] by induction on m.]

(d) If p is prime thenΦp (x) = 1+x +x2 +·· ·+xp−1 andΦpn (x) =Φp

(
xpn−1

)
.

(e) degΦnm = degΦm degΦn if (m,n) are relatively prime.

Proof. By definition, Φm(x) = ∏
{(x −ω) : ω is a primitive m-th root of unity}. We say that ω is a primitive m-th root of unity, if ω

generates the cyclic group µm(C) := {ρ ∈C : ρm = 1}.

(a) The primitive first root of unity is 1. SoΦ1(x) = x −1.

The primitive second root of unity is -1. SoΦ2(x) = x +1.

The primitive third roots of unity are ω= −1+ i
p

3

2
and ω2. They satisfy

x3 −1 = (x −1)(x −ω)(x −ω2)

SoΦ3(x) = (x −ω)(x −ω2) = x3 −1

x −1
= x2 +x +1.

The primitive fourth roots of unity are ±i. SoΦ4(x) = (x − i)(x + i) = x2 +1.

(b) For ρ ∈µm(C), by Lagrange’s Theorem d = ord(ρ) | m. And ρ is a primitive d-th root of unity. Hence (x−ρ) |∏d |mΦd (x).
Hence

xm −1 = ∏
ρ∈µm (C)

(x −ρ)

∣∣∣∣∣ ∏
d |m

Φd (x)

On the other hand, sinceC is algebraically closed,
∏

d |mΦd (x) splits overC. For every linear factor (x−ρ) of
∏

d |mΦd (x),
(x −ρ) is a linear factor ofΦd (x) for some d | m. Hence ρ is a primitive d-th root.

ρd = 1 =⇒ ρm = 1 =⇒ ρ ∈µm(C)

Hence (x −ρ) | (xm −1). We deduce that ∏
d |m

Φd (x)

∣∣∣∣∣ (xm −1)

Hence
∏

d |mΦd (x) = xm −1.

(c) (I follow the proof in Lemma 5.3 and Proposition 5.5).

Let ω be a primitive m-th root of unity. ThenQ(ω) |Q is a Galois extension. Let ω1, ...,ωk be all the primitive m-th roots
of unity. By Vieta’s Theorem we have

Φm(x) =
k∏

i=1
(x −ωi ) =

k∑
i=0

(−1)k−i sk−i (ω1, ...,ωk )xi

where si (ω1, ...,ωk ) is the i -th symmetric function inω1, ..,ωk . Note that forγ ∈ Gal(Q(ω) |Q), γ(si (ω1, ...,ωk )) = si (ω1, ...,ωk )
because γ only permutes the primitive m-th roots of unity. Hence si (ω1, ...,ωk ) ∈Q andΦm(x) ∈Q[x].

Next we show that Φm ∈ Z[x]. By (b) there exists Ψ ∈ Q[x] such that xm − 1 = Φm(x)Ψ(x). By Gauss’ Lemma, 1 =
c(xm −1) = c(Ψ)c(Φm). Hence c(Φm) = 1 andΦm ∈Z[x].
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(d) If p is prime, then µp (C) ∼=Z/pZ. In particular every non-trivial element of µp (C) generates µp (C). Hence

Φp (x) = (x −ω)(x −ω2) · · · (x −ωp−1) = xp −1

x −1
= 1+x +·· ·+xp−1

By (b) we have

xpn −1 = ∏
d |pn

Φd (x) =Φ1(x)Φp (x) · · ·Φpn (x) =
(
xpn−1 −1

)
Φpn (x)

Hence

Φpn (x) = xpn −1

xpn−1 −1
= 1+xpn−1 +x2pn−1 +·· ·+x(p−1)pn−1 =Φp (xpn−1

)

(e) By Chinese Remainder Theorem, Z/mZ×Z/nZ ∼= Z/mnZ for gcd(m,n) = 1. Hence (Z/mZ)×× (Z/nZ)× ∼= (Z/mnZ)×.
We know that

degΦm = |µm(C)×| = |(Z/mZ)×|
Hence

degΦm degΦn = |(Z/mZ)×| · |(Z/nZ)×| = |(Z/mnZ)×| = deg(ΦmΦn)

Question 2

Let n be a positive integer and f = xpn −x ∈ Fp [x]. Let M be the splitting field of f over Fp . Show that M consists exactly of the
set of roots of f . Show that

[
M : Fp

]= n Explain why this fact also shows the existence of an irreducible polynomial of degree
n in Fp [x].

Proof. In Question 6 of Sheet 1, we have shown that the roots of f (x) = xpn − x in splitting field M form a subfield K of M . On the
other hand, for a ∈ Fp , by Fermat’s Little Theorem we have ap = a. Then ap2 = ap = a. Inductively we have apn = a. Hence
a ∈ K . Then Fp ⊆ K . Since K contains all roots of f , by the definition of splitting field we have M ⊆ K . Hence M = K .

We have also shown that f has no multiple roots. Hence we have |K | = |M | = pn . And

[M : Fp ] = log|Fp | |M | = logn(pn) = n

Since f is separable, M | Fp is a separable extension. By the theorem of primitive element, M | Fp is a simple extension. There
exists α ∈ M such that M = Fp (α). Therefore the minimal polynomial mα of α over Fp is an irreducible polynomial of degree
n.

Question 3

(a) Prove thatΦ12(x) = x4 −x2 +1, and that it is irreducible overQ. Factorise it into irreducibles over Fp when p = 2,3,5,13.

(b) If p is any prime with p > 3 show that p2 −1 is divisible by 12, and deduce that Φ12 is reducible over Fp for every prime
p.

Proof. (a) By Part (b) of Question 1, we have

x12 −1 =Φ1(x)Φ2(x)Φ3(x)Φ4(x)Φ6(x)Φ12(x) = (x6 −1)Φ4(x)Φ12(x) = (x6 −1)(x2 +1)Φ12(x)

Hence

Φ12(x) = x12 −1

(x6 −1)(x2 +1)
= x6 +1

x2 +1
= x4 −x2 +1

We can invoke Proposition 5.5 to assert thatΦ12 is irreducible overQ. Otherwise, we can also directly verify this:

We factoriseΦ12 over C:

x4 −x2 +1 = 0 =⇒ (x2)1,2 = 1± i
p

3

2
=⇒ x1,2,3,4 =±

√
1± i

p
3

2
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HenceΦ12 has no root inQ. Suppose that it has a quadratic factor inQ[x]. Then there exists a,b ∈Q such that

x4 −x2 +1 = (x2 +ax ±1)(x2 +bx ±1)

which implies that
a +b = 0, ab ±2 =−1 (∗)

Clearly no rational numbers satisfy (∗). We deduce thatΦ12 is irreducible inQ[x].

Factorisation ofΦ12 over F2: We note that a = b = 1 solves the equation (∗) in F2. So

Φ12(x) = x4 −x2 +1 = (x2 +x +1)2

Φ12 has no linear factors in F2 since F2 contains no primitive 12th roots of unity.

Factorisation ofΦ12 over F3: We note that a = b = 0 solves (∗) in F3. Hence

Φ12(x) = x4 −x2 +1 = (x2 +1)2

Φ12 has no linear factors in F3 since F3 contains no primitive 12th roots of unity.

Factorisation ofΦ12 over F5: We note that a = 3 and b =−3 solve (∗) in F5. Hence

Φ12(x) = x4 −x2 +1 = (x2 +3x −1)(x2 −3x −1)

Φ12 has no linear factors in F5 since F5 contains no primitive 12th roots of unity.

Factorisation ofΦ12 over F13: Note that F×13
∼=Z/12Z contains all primitive 12th roots of unity. HenceΦ12 splits over F13.

Moreover we note that 2 generates F×13:

21 = 2 22 = 4 23 =−5 24 = 3 25 = 6 26 =−1 27 =−2 28 =−4 29 = 5 210 =−3 211 =−6 212 = 1

We also read from this table that the generators of F×13 are 2,6,−2,−6. Hence we have

Φ12(x) = x4 −x2 +1 = (x −2)(x +2)(x −6)(x +6)

(b) For a prime number p > 3, p is odd. So (p +1) and (p −1) are even. In addition one of them is divisible by 4. Hence
p2−1 = (p +1)(p −1) is divisible by 8. One of the consecutive numbers p −1, p, p +1 must be divisible by 3. Since p > 3
is prime, either (p −1) or (p +1) is divisible by 3. Hence p2 −1 is divisible by 3. We deduce that 24 | (p2 −1).

Suppose thatΦ12 is irreducible over Fp for some prime p. By (a) we may assume that p > 5. Then the splitting extension
ofΦ12 over Fp has degree at least degΦ12 = 4. But we also note thatΦ12 splits over Fp2 : We have F×

p2
∼=Z/(p2−1)Z. Since

12 | (p2 −1), Fp2 contains all primitive 12th roots of unity. But [Fp2 : Fp ] = 2, which is a contradiction. We conclude that
Φ12 is reducible over Fp for all prime p.

Question 4

For this exercise recall the definition of a group action on a set. Let f ∈ K [x] be a separable degree n polynomial, let M be its
splitting field and G = Γ(M : K ) be the Galois group of M . Let A = {α1, . . .αn} ⊆ M be the set of roots of f . Let S(A) be the set of
permutations of the roots of f .

(a) Show that G acts faithfully on A (this is equivalent to showing that there is an injective group homomorphism between
G and S(A)).

(b) Show that if f is irreducible, then G acts transitively on A (this is equivalent to show that for any αi ,α j ∈ A there exists
σ ∈G such that σ (αi ) =α j

)
.

Proof. (a) Firstly, we note that for γ ∈ Gal(M | K ), γ(αi ) is a root of f because

0 = γ( f (αi )) = γ
(

n∑
k=0

cnα
n
i

)
=

n∑
k=0

cnγ(αi )n = f (γ(αi ))
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Since γ is a field automorphism, γ maps {α1, ...,αk } bijectively to itself. This defines a group homomorphism ϕ :
Gal(M | K ) → S(A). Note that M = K (α1, ...,αn) by definition of the splitting field. Hence ϕ(γ) ∈ S(A) is uniquely de-
termined by the image γ(α1), ...,γ(αn). Hence ϕ is a group monomorphism. Gal(M | K ) acts faithfully on {α1, ...,αk }.

(b) Since M is the splitting field of the separable polynomial f over K , by Theorem 3.8 M | K is a Galois extension. For
αi ,α j ∈ A, note that f is both the minimal polynomial of αi and α j , we have the field automorphism σ : K [αi ] → K [α j ]
with σ(αi ) =α j given by the composition:

K [αi ] K [x]/〈 f (x)〉 K [α j ]∼ ∼

Then σ extends to a automorphism σ̃ ∈ Gal(M | K ) by letting σ̃(αk ) = αk for all k 6= i , j . Hence Gal(M | K ) acts transi-
tively on {α1, ...,αk }.

Question 5

Find the Galois groups of the following polynomials and for each subgroup identify the corresponding subfield of the splitting
field:

(a) x2 +1 over R

(b) x3 −1 overQ

(c) x3 −5 overQ

(d) x6 −3x3 +2 overQ

(e) x5 −1 overQ

(f) x6 +x3 +1 overQ.

Find the Galois group of the polynomial xpn −x− t over Fpn (t ) (you can assume that this polynomial is irreducible over Fpn (t );
you need not determine the subfield subgroup correspondence here).

Proof. From (a) to (f) all base fields have characteristic 0. So all splitting extensions are separable.

(a) The splitting field of x2 + 1 over R is R(i) = C. We have |Gal(C |R)| = [C : R] = 2. Hence Gal(C |R) ∼= Z/2Z. In fact the
elements of Gal(C |R) are the identity map and the conplex conjugation z 7→ z.

(b) The splitting field of x3 −1 over Q is Q(ω), where ω = −1+ i
p

3

2
. ω has minimal polynomial x2 + x +1 over Q. Hence

[Q(ω) :Q] = 2. Gal(Q(ω) |Q) ∼=Z/2Z.

(c) The splitting extension of x3 −5 over Q is a Kummer extension. Let ω be a third root of a unity (given by (b)). Then by
Lemma 5.6 the splitting field of x3−5 overQ isQ(

p
3i, 3p5). Similar to Question 4 in Sheet 2 we have [Q(

p
3i, 3p5) :Q] = 6.

Note that x3 −5 is irreducible. By Question 2.(b) we have Gal
(
Q(

p
3i, 3p5) |Q) ∼= H É S3. But |S3| = 6. We deduce that

Gal
(
Q(

p
3i, 3p5) |Q)∼= S3.

The non-trivial subgroups of S3 are 〈(12)〉, 〈(13)〉, 〈(23)〉 and 〈(123)〉. Correspondingly,Q(
p

3i, 3p5) has 3 subfields which
are degree 3 overQ: Q( 3p5),Q(ω 3p5) andQ(ω2 3p5), and 1 subfield which is degree 2 overQ: Q(

p
3i).

(d) Note that x6 −3x3 +2 is reducible overQ:

x6 −3x3 +2 = (x −1)(x5 +x4 +x3 −2x2 −2x −2) = (x −1)(x3 −2)(x2 +x +1)

The root of the polynomial are 1,ω,ω2, 3p2,ω 3p2,ω2 3p2. Hence the splitting field is Q(ω, 3p2) and [Q(ω, 3p2) :Q] = 6. The
Galois group Gal

(
Q(ω, 3p2) |Q)

is isomorphic to either Z/6Z or S3.

Any Q-automorphism σ is uniquely determined by its image of ω and 3p2. Let α ∈ Gal
(
Q(ω, 3p2) |Q)

given by α(ω) =ω2

and α( 3p2) = 3p2. Then α2 = id. Let β ∈ Gal
(
Q(ω, 3p2) |Q)

given by β(ω) =ω and β( 3p2) =ω 3p2. Then β3 = id. Note that

α◦β(ω
3p

2) =α(ω2 3p
2) =ω 3p

2, β◦α(ω
3p

2) =β(ω2 3p
2) = 3p

2

Hence α◦β 6=β◦α. In particular Gal
(
Q(ω, 3p2) |Q)

is not Abelian. Hence Gal
(
Q(ω, 3p2) |Q)∼= S3.

The non-trivial subgroups of Gal
(
Q(ω, 3p2) |Q)

are 〈α〉, 〈βα〉, 〈β2α〉 and 〈β〉.
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Since α( 3p2) = 3p2, the fixed field of 〈α〉 isQ( 3p2).

Since β◦α(ω2 3p2) =β(ω 3p2) =ω2 3p2, the fixed field of 〈βα〉 isQ(ω2 3p2).

Since β2 ◦α(ω 3p2) =β2(ω2 3p2) =ω 3p2, the fixed field of 〈βα〉 isQ(ω 3p2).

Since β(ω) =ω, the fixed field of 〈β〉 isQ(ω).

(e) The splitting extension of x5 − 1 over Q is a cyclotomic extension. Let ζ be a primitive fifth root of unity. Then the
splitting field isQ(ζ). By Proposition 5.4 we have

Gal(Q(ζ) |Q) ∼= Aut(Z/5Z) ∼=Z/4Z

(sinceΦ5(x) = x4 +x3 +x2 +x +1 is irreducible).

We note that Gal(Q(ζ) |Q) is generated by σ which maps ζ to ζ2. The only non-trivial subgroup of Gal(Q(ζ) |Q) is σ2.
Then σ2 maps ζ to ζ4, ζ2 to ζ3, ζ3 to ζ2, and ζ4 to ζ. The fixed field of 〈σ2〉 isQ(ζ+ζ4) =Q(cos 2π

5 ).

(f) By Question 2 of Sheet 2 we know that x6 + x3 +1 is irreducible over Q. We have shown that the 6 roots of x6 + x3 +1
are exactly the primitive 9th roots of unity, which meansΦ9(x) = x6 +x3 +1. So the splitting extension of x6 +x3 +1 is a
cyclotomic extension. Let ρ be a primitive 9th roots of unity. Then the splitting field isQ(ρ). By Proposition 5.4 we have

Gal
(
Q(ρ) |Q)∼= Aut(Z/9Z) ∼= (Z/9Z)× ∼=Z/6Z

Gal
(
Q(ρ) |Q)

is generated by γ, which maps ρ to ρ2. The action of γ on the roots is given by

γ : ρ 7→ ρ2 7→ ρ4 7→ ρ8 7→ ρ7 7→ ρ5 7→ ρ

The non-trivial subgroups of Gal
(
Q(ρ) |Q)

are 〈γ2〉 and 〈γ3〉. The fixed field of 〈γ2〉 is Q(ρ+ρ4 +ρ7). The fixed field of
〈γ3〉 isQ(ρ+ρ8) =Q(cos 2π

9 ).

Let K be the splitting field of f (x) := xpn −x − t over Fpn (t ). Let α be a root of f in K . Note that for k ∈ Fpn ,

f (α+k) = (α+k)pn − (α+k)− t =αpn +k − (α+k)− t = 0

where we used the Frobenius automorphism x 7→ xpn
and the fact that kpn = k. Hence α+k is also a root of f . The roots

of f are exactly {α+k ∈ K : k ∈ Fp }. In particular we have K = Fpn (t )(α). So
∣∣Gal

(
K | Fpn (t )

)∣∣ = pn . Any γ ∈ Gal
(
K | Fpn (t )

)
is

uniquely determined by its action on α. We dedeuce that Gal
(
K | Fpn (t )

)∼=Z/pnZ.

Question 6

Prove thatQ(
√

2+p
2) is Galois overQ, and find its Galois group.

Proof. Let u =
√

2+p
2. Then

u2 = 2+p
2 =⇒ (u2 −2)2 = 2 =⇒ u4 −4u2 +2 = 0

Let f (x) = x4 −4x2 +2 ∈Q[x]. By Eisenstein’s criterion with p = 2, it is irreducible overQ. Hence f is the minimal polynomial
of

√
2+p

2 over Q. The field extension Q(
√

2+p
2 |Q) is separable because charQ= 0. We shall prove that the extension is

also normal. The all four roots of f are ±
√

2±p
2. Note that(√

2+p
2

)2

= 2 =p
2

So
p

2 ∈Q(
√

2+p
2). Next note that √

2+p
2 ·

√
2−p

2 =
√

22 −2 =p
2

So
√

2−p
2 ∈ Q(

√
2+p

2). It is clear that −
√

2+p
2 and −

√
2−p

2 are in Q(
√

2+p
2). We deduce that Q(

√
2+p

2 | Q is
normal. By Theorem 3.18,Q(

√
2+p

2) |Q is a Galois extension.

Next we have
∣∣∣Gal

(
Q(

√
2+p

2) |Q
)∣∣∣ = [

Q(
√

2+p
2) :Q

]
= 4. The only groups of order 4 are Z/2Z×Z/2Z and Z/4Z. Let
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γ ∈ Gal
(
Q(

√
2+p

2) |Q
)

such that γ(
√

2+p
2) =

√
2−p

2. Then

γ(2+p
2) = 2−p

2 =⇒ γ(
p

2) =−p2

And

γ2
(√

2+p
2

)
= γ

(√
2−p

2

)
= f

( p
2√

2+p
2

)
= f (

p
2)

f (
√

2+p
2)

= −p2√
2−p

2
=−

√
2+p

2 6=
√

2+p
2

Then γ2 6= id. So γ has order 4 in the Galois group. We deduce that

Gal

(
Q

(√
2+p

2

) ∣∣∣∣ Q)
∼=Z/4Z


