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In these problems K denotes an arbitrary field, K[x] denotes the ring of polynomials in one variable x over K and K(x) the ring
of rational functions in the variable x (i.e. the fraction field of K[x]). If p is a prime number, then [, denotes the field of integers
modulo p.

Question 1

Let ®,,(x) € C[x] be the m-th cyclotomic polynomial, the monic polynomial whose roots are the primitive m-th roots of 1 in
C. Show that

@ d1(x)=x—-1; Dy(x) =x+1; P3(x) = xX+x+1; Dy(x) = x%+1.

®) TagmPalx) =x"-1

(c) ®,,(x) € Z[x]. [Hint: prove first that ®,,(x) € Q[x] by induction on m.]
(d) If p is prime then @, (x) =1+ x+ x2+---+xPland Dpn(x) =D (xpn_l).

(e) deg®,,, =deg®,,deg®, if (m, n) are relatively prime.

Proof. By definition, ®,,(x) = [[{(x — w) : w is a primitive m-th root of unity}. We say that w is a primitive m-th root of unity, if w
generates the cyclic group pu,(C) :={peC:p™ =1}.

(@) The primitive first root of unity is 1. So @ (x) = x—1.

The primitive second root of unity is -1. So @, (x) = x+ 1.

-1+iv3

The primitive third roots of unity are w = — and w?. They satisfy
X -l=x-Dx-w)(x-0?)
3

B
So ®3(x) = (x—w)(x —w?) =
x—1

=x?+x+1.

The primitive fourth roots of unity are +i. So ®4(x) = (x —1i) (x +1i) = x> + 1. /

(b) For p € u;,(C), by Lagrange’s Theorem d = ord(p) | m. And p is a primitive d-th root of unity. Hence (x— p) | [14), @a(x).
Hence

M-1= [ @x-p)
PEtm(C)

[[®a)
dlm

On the other hand, since C is algebraically closed, [14,, ®4(x) splits over C. For every linear factor (x— p) of [14,,, 4 (x),
(x— p) is a linear factor of ®;(x) for some d | m. Hence p is a primitive d-th root.

pf=1= p"=1 = pe )
Hence (x — p) | (x™ —1). We deduce that

[1®at0 | x™-1)

dim

Hence [14), ®g(x) = x™ - 1. /
(c) (Ifollow the proofin Lemma 5.3 and Proposition 5.5).

Let w be a primitive m-th root of unity. Then Q(w) | Q is a Galois extension. Let w1, ..., wy be all the primitive m-th roots
of unity. By Vieta’s Theorem we have

k k ) )
() = [Jx-w) =Y D" s (@1, 0) X'
i=1 i=0
where s; (w1, ..., wg) is the i-th symmetric functionin w;, .., . Note that fory € Gal (Q(w) | Q), y(s; (@1, ..., k) = s; (w1, ..., wk)
because y only permutes the primitive m-th roots of unity. Hence s;(w, ...,0) € Q@ and @, (x) € Q[x].

Next we show that ®,, € Z[x]. By (b) there exists ¥ € Q[x] such that x -1 = ®,,(x)¥(x). By Gauss’ Lemma, 1 =
c(x™—-1) = c(¥)c(D,,). Hence c(®,,) =1 and @, € Z[x]. /



(d) If p is prime, then u,(C) = Z/pZ. In particular every non-trivial element of i, (C) generates u,(C). Hence

o1
0,00 = (x-0)(x -0 (x—wP ) = x—l “ltxtetxP!

By (b) we have
n n-1
" =1= [ 9400 = @100 (1) Ppo(0) = (" = 1)@ (x)
dlp"
Hence .
xP -1 n-1 opn-1 (p-1)p"! n-1
@ (x) = i 1:1+x”J +xP XTI =@ (xP )/

(e) By Chinese Remainder Theorem, Z/mZ x Z/nZ = Z/ mnZ for gcd(m, n) = 1. Hence (Z/mZ)* x (Z/n2Z)* = (Z/ mnZ)*.

We know that
deg®p, = |um(©) | =1(Z/m2)*|
Hence
deg®,, deg®y, = [(Z/m2)™|-|(Z/n2)*| = |(Z/ mnZ)*| = deg(® P) / Greok O
Question 2

Let n be a positive integer and f = x” "_xe [Fp[x]. Let M be the splitting field of f over F,,. Show that M consists exactly of the
set of roots of f. Show that [M :F,] = n Explain why this fact also shows the existence of an irreducible polynomial of degree
ninFplx].

Proof.

In Question 6 of Sheet 1, we have shown that the roots of f(x) = xP" - xin splitting field M form a subfield K of M. On the
other hand, for a € F),, by Fermat’s Little Theorem we have a” = a. Then a” =a” = a. Inductively we have aP" = a. Hence
a€ K. Then[F, € K. Since K contains all roots of f, by the definition of splitting field we have M < K. Hence M = K.

We have also shown that f has no multiple roots. Hence we have |K| = |M| = p". And
[M:Fp)] =log, |M| = logP(p”) =n

Since f is separable, M | [, is a separable extension. By the theorem of primitive element, M | F, is a simple extension. There
exists @ € M such that M = F(a). Therefore the minimal polynomial m, of a over [, is an irreducible polynomial of degree

"V Nice ® .

Question 3

(@) Prove that ®12(x) = x* — x* + 1, and that it is irreducible over Q. Factorise it into irreducibles over F p when p=2,3,5,13.

(b) If p is any prime with p > 3 show that p? — 1 is divisible by 12, and deduce that ®;, is reducible over [, for every prime

Proof.

p.
(a) By Part (b) of Question 1, we have
112 =1 = ©1 (X) Dy (%) D3 () Dy (X) D (X) P12 (%) = (x° — D4 () P12(x) = (x° = 1) (x* + D12 (%)
Hence
x2-1 ©O+1 ,
= =x —x"+1
xXf-D(x2+1) x2+1

We can invoke Proposition 5.5 to assert that @, is irreducible over Q. Otherwise, we can also directly verify this:

1+iv3 [1+iv3
x4—x2+1 =0 = (xz)l,g = 2\/_ = X1,234=% 2\/_

Dp(x) =

We factorise ®1, over C:




(b)

Hence @15 has no root in Q. Suppose that it has a quadratic factor in Q[x]. Then there exists a, b € Q such that
- +1=0C+ax+ )P +bx+1)

which implies that
a+b=0, ab+2=-1

Clearly no rational numbers satisfy (+). We deduce that ®,, is irreducible in Q[x].

Factorisation of @, over F»: We note that a = b = 1 solves the equation (*) in F». So
Dip(x) = -x+1= (x2 +x+ 1)2

®;, has no linear factors in [, since [, contains no primitive 12th roots of unity.

Factorisation of @1, over [F3: We note that a = b = 0 solves () in F3. Hence
Qpp(x) =x* —x*+1=(x*+1)?

®;, has no linear factors in 3 since [F3 contains no primitive 12th roots of unity.

Factorisation of @1, over F5: We note that a =3 and b = —3 solve (*) in 5. Hence
Di2(x) =xt-x*+1= (x2+3x— 1)(x2—3x—1)

®;, has no linear factors in F5 since 5 contains no primitive 12th roots of unity.

X ~

(%)

Factorisation of @1, over F13: Note that F[; = Z/127 contains all primitive 12th roots of unity. Hence @1, splits over F13.

Moreover we note that 2 generates [;:

2l=2 22=4 28=_-5 2%=3 25=6 26=-1 27=—2 28=_4 2%9=5 209=-_3 ll__g 212

We also read from this table that the generators of [, are 2,6, -2, —6. Hence we have

D) =x*—x*+1=(x-2)(x+2)(x—6)(x+6) /

For a prime number p > 3, p is odd. So (p+1) and (p — 1) are even. In addition one of them is divisible by 4. Hence
p?>—1=(p+1)(p-1) is divisible by 8. One of the consecutive numbers p—1, p, p + 1 must be divisible by 3. Since p >3

is prime, either (p — 1) or (p + 1) is divisible by 3. Hence p2 — 1 is divisible by 3. We deduce that 24 | (p2 -1).

Suppose that @, is irreducible over [, for some prime p. By (a) we may assume that p > 5. Then the splitting extension

of @1, over [, has degree at least deg®,» = 4. But we also note that @1, splits over F2: We have [F;72 =7/ (p2 —1)Z. Since

12| (p2 -1, [sz contains all primitive 12th roots of unity. But [[sz :Fpl =2, which is a contradiction. We conclude that

®y; is reducible over [, for all prime p.

Excellenk @

Question 4

For this exercise recall the definition of a group action on a set. Let f € K[x] be a separable degree n polynomial, let M be its

O

splitting field and G =I'(M : K) be the Galois group of M. Let A= {a;,...a,} S M be the set of roots of f. Let S(A) be the set of
permutations of the roots of f.

(a) Show that G acts faithfully on A (this is equivalent to showing that there is an injective group homomorphism between

(b) Show that if f is irreducible, then G acts transitively on A (this is equivalent to show that for any a;, a; € A there exists

Proof.

G and S(A)).

o € Gsuchthat o (a;) = a;).

(@)

Firstly, we note that for y € Gal (M | K), y(«;) is aroot of f because

0=7y(f(ai) = Y(Z cna,'-’) = cpy(@)" = fy(ap)
k=0 k=0



Since vy is a field automorphism, y maps {a;,...,ax} bijectively to itself. This defines a group homomorphism ¢ :
Gal(M | K) — S(A). Note that M = K(a;, ..., @) by definition of the splitting field. Hence ¢(y) € S(A) is uniquely de-
termined by the image y(a1), ..., y(a,). Hence ¢ is a group monomorphism. Gal (M | K) acts faithfully on {ay, ..., ak}. \/

(b) Since M is the splitting field of the separable polynomial f over K, by Theorem 3.8 M | K is a Galois extension. For
a;,aj € A, note that f is both the minimal polynomial of a; and a j, we have the field automorphism o : K[a;] — K[a;]
with o (a;) = a; given by the composition:

Klail == K[xl/(f(0) — Klaj] /

Then o extends to a automorphism ¢ € Gal (M | K) by letting 6 (a) = ay for all k # i, j. Hence Gal (M | K) acts transi-

tielyon (a1 (g coun extend. O 1O M by USING WNIQUENESS of Splkking ©
F\Ms (Fd Q*O‘“?\ﬂ, buk ot ALNSWN 6’(0‘;\:«‘. whok "F “P.= u?‘)

Question 5

Find the Galois groups of the following polynomials and for each subgroup identify the corresponding subfield of the splitting
field:

(@ x%+1overR
) x*—1overQ
() x>—5overQ
(d) x85-3x3+2overQ
(e) x°—1overQ
) x8+x3+1overQ.

Find the Galois group of the polynomial x” "—x—toverF pr () (you can assume that this polynomial is irreducible over F yn (£);
you need not determine the subfield subgroup correspondence here).

Proof. From (a) to (f) all base fields have characteristic 0. So all splitting extensions are separable.

(a) The splitting field of x%2 +1 over R is R(i) = C. We have |Gal(C|R)| = [C : R] = 2. Hence Gal(C|R) = Z/2Z. In fact the
elements of Gal (C | R) are the identity map and the conplex conjugation z — Z. J

~1+iV3

(b) The splitting field of x3 =1 over Q is Q(w), where w = . w has minimal polynomial x%+ x+1 over Q. Hence

[Q):Q] =2. Gal Q) | Q) = Z/2Z. J

(c) The splitting extension of x3 —5 over Q is a Kummer extension. Let w be a third root of a unity (given by (b)). Then by
Lemma 5.6 the splitting field of x> -5 over Q is Q(v/3i, v/5). Similar to Question 4 in Sheet 2 we have [Q(v/3i, ¥/5) : Q] = 6.
Note that x° -5 is irreducible. By Question 2.(b) we have Gal (Q(v3i, V5) | @) = H < S3. But |S3| = 6. We deduce that
Gal (Q(v/3i, V/5) | Q) = S3.

The non-trivial subgroups of Sz are ((12)), ((13)}, ((23)) and ((123)). Correspondingly, Q(V/3i, v/5) has 3 subfields which
are degree 3 over Q: Q(v/5), Q(wV/5) and Q(w?V/5), and 1 subfield which is degree 2 over Q: Q(v/3i). /

(d) Note that x® —3x3 + 2 is reducible over Q:
B3l +2=x-DEE+ P+ 222 -2x-2) = (x- D -2 (P +x+1)

The root of the polynomial are 1,w,w?, V2, /2, w? /2. Hence the splitting field is Q(w, v/2) and [Q(«w, V/2) : Q] = 6. The
Galois group Gal (Q(w, v2) | Q) is isomorphic to either Z/6Z or Ss.

Any Q-automorphism o is uniquely determined by its image of v and v/2. Let a € Gal (Qw, V2) | Q) given by a(w) = w?
and a(v2) = V2. Then a? = id. Let € Gal (Q(w, v2) | Q) given by f(w) = w and f(V/2) = @ /2. Then §° = id. Note that

aofwV2) =a@?V2)=wV2, PfoawV?2)=pw*V2)=V2

Hence a o f§ # o a. In particular Gal (Q(w, v/2) | Q) is not Abelian. Hence Gal (Q(w, v2) | Q) = S3 4~ Or 3\’5\’ use

@ oS
The non-trivial subgroups of Gal (Q(w, v2) | Q) are (a), (fa), (f*a) and (f). Souv ‘Q'. F
n (), n ok
resk of (&) 13

verookn.



Since a(V/2) = V2, the fixed field of (@) is @(\3/5).
Since Bo a(w?V/2) = f(wV/2) = w?V/2, the fixed field of (Ba) is Q(w?V/2).
Since B2 o a(wV/2) = B?(w*V/2) = wV/2, the fixed field of (Ba) is Q(wV/2).
Since B(w) = w, the fixed field of (B) is Q(w). /
(e) The splitting extension of x° — 1 over @ is a cyclotomic extension. Let { be a primitive fifth root of unity. Then the
splitting field is Q (). By Proposition 5.4 we have

Gal(Q() | Q) = Aut(Z/52) = Z/4Z

(since @5(x) = x* + x3 + x% + x + 1 is irreducible).

We note that Gal (Q(¢) | Q) is generated by o which maps { to ¢ 2 The only non-trivial subgroup of Gal (Q({) | Q) 1s(az)
Then o2 maps { to {*, {2 to 3, {® to {?, and ¢* to {. The fixed field of (6?) is Q({ +¢*) = Q(cos Z). \/

(f) By Question 2 of Sheet 2 we know that x% + x3 + 1 is irreducible over Q. We have shown that the 6 roots of x® + x% + 1
are exactly the primitive 9th roots of unity, which means ®q(x) = x% + x3 + 1. So the splitting extension of x® + x3 + 1isa
cyclotomic extension. Let p be a primitive 9th roots of unity. Then the splitting field is Q(p). By Proposition 5.4 we have

Gal(Q(p) | Q) =Aut(2/92) = (2/92)* = Z/6Z
Gal (Q(p) | Q) is generated by y, which maps p to p?. The action of y on the roots is given by
pet-1)
) 2, .04 8, T, . 5 (1p34p%) = 23 =O
yip—p —p —p —pi—pi—p  pUIP P

"
The non-trivial subgroups of Gal (Q(p) | @) are (}/2) and (73). The fixed field of (}/2) isQ(p + p4 + p7). The fixed field of
(r’)is Qp + p*) = Q(cos ). Ris ackvally G(p*)
Let K be the splitting field of f(x) := xP" — x—tover Fpn (7). Let a be aroot of f in K. Note that for k € Fjn,

fla+k=@+k? —(@+k-t=a” +k—(@+k)—r=0

where we used the Frobenius automorphism x — x”" and the fact that k”" = k. Hence a + k is also a root of f. The roots
of f are exactly {a + k € K : k € Fp}. In particular we have K = F,n (£)(a). So |Gal (K | Fpn(1))| = p™. Any y € Gal(K | Fpn (1)) is

uniquely determined by its action on a. We dedeuce that Gal (K | Fpn (1)) = Z/ p"Z. / O
@ (\B) Grood, buk need Vo be
Cowld do with litkle bit more detoul here Mofe MOPIOUS Proving
Question 6 e gixe Fld, else may
cosSe Mistrolkes.

Prove that Q(v/2 + v/2) is Galois over @, and find its Galois group.
Proof. Let u=+/2+ /2. Then
W=2+V2 = W?-2?%=2= u'-4u*+2=0

Let f(x) = x* —4x? + 2 € Q[x]. By Eisenstein’s criterion with p = 2, it is irreducible over Q. Hence f is the minimal polynomial
of 2+ /2 over Q. The field extension Q(v/2 + /2 | Q) is separable because char@ = 0. We shall prove that the extension is
also normal. The all four roots of f are +1/2 + /2. Note that

(\/mf:z:\/i

So v2 € Q(vV2+ v/2). Next note that
\/2+\/§-\/2—\/§:\/m:\/§

So V2-v2 € Q(v2+v?2). Itis clear that —v/2+v2 and —v/2— V2 are in Q(v/2+v2). We deduce that Q(v'2+v2 | Q is
normal. By Theorem 3.18, Q(v'2 + V2) | @ is a Galois extension.

Next we have ‘Gal (@(v2+ V2) I@)‘ = [@(\/2+ V2) :@] = 4. The only groups of order 4 are Z/2Z x Z/2Z and Z/4Z. Let




yeGal(Q(V2+V2) | @) such that y(v/2+ v2) = V2— V2. Then
Y2+vV2)=2-V2 = y(V2) = V2

\/27)2)/(@):‘1( V2 )— IVD__ V2 vagfee

V22l o V2+v2) Va- vz

Then y? # id. So y has order 4 in the Galois group. We deduce that

ofolyor3|

And

YZ

=7/47 / OrR.

®



