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Question 1

(1) Show that the Dunce hat can be triangulated.

(2) Show that the following subspace of R2 cannot be triangulated:

{(x, y) : 0 6 y 6 1, x = 0 or 1/n for some n ∈ N} ∪ ([0, 1]× {0})

Proof. (1) The Dunce hat is a finite CW complex so it can be triangulated. The triangulation can be obtained by repeating
barycentric subdivision until the space becomes a simplicial complex. A triangulation (which is not the simplest)
of the Dunce hat is as follows:

(2) Step 1: An infinite simplicial complex is not compact.

Suppose thatK = (V,Σ) is an abstract simplicial complex and |K| is its topological realization. For v ∈ V , by Lemma
4.18 in the notes, stK(v) is an open set inK that contains a unique vertex v. If V is infinite, then {stK(v)}v∈V is an
infinite open cover ofK with no finite subcover. HenceK is not compact.

Step 2: A finite simplicial complex is locally connected.

LetK = (V,Σ) be a finite simplicial complex. By Proposition 4.22 in the notes, there is a (continuous) embedding
ι : |K| ↪→ Rn for n = |V |, in which every vertex is mapped to a unit vector in Rn. Notice that {B(x, ε) : x ∈ Rn, ε >
0} is a topological basis of Rn. Then the preimage {B(x, ε)∩ |K| : x ∈ Rn, ε > 0} is a basis of |K| under the subset
topology.

For x ∈ |K| and open set U of |K| with x ∈ U , there exists x0 ∈ Rn and ε > 0 such that x ∈ B(x0, ε)∩ |K| ⊆ U . Let
0 < δ < ‖x−x0‖. Then x ∈ B(x, δ)∩ |K| ⊆ U . Let 0 < η < min{x1, ..., xn, δ}. We claim that for any simplex σ ∈ Σ,
|σ| ∩B(x, η) 6= ∅ if and only if x ∈ |σ|.

Suppose that σ = {ei1 , ..., eim}. Then |σ| lies in the subspace span{ei1 , ..., eim}. Ifx /∈ |σ|, then x /∈ span{ei1 , ..., eim}
and dist(x, span{ei1 , ..., eim}) = min{xi1 , ..., xim} > η.

For σ ∈ Σwith x ∈ |σ|, |σ| andB(x, ε) are both convex. HenceB(x, η)∩|σ| is convex and is connected. In particular
B(x, η) ∩ |K| has a unique connected component. B(x, η) ∩ |K| ⊆ U is connected.

Step 3: The given subspace is compact and is not locally connected.

Let S be the given subspace in the question. Notice that the sequence {1/n}n∈Z+ has a unique limit point 0. Hence
{0} ∪ {1/n : n ∈ Z+} is closed. The product set ({0} ∪ {1/n : n ∈ Z+}) × [0, 1] is also closed. S is the union of it
with 0, 1]× {0} so S is closed. Obviously S is bounded. By Heine-Borel Theorem S is compact.

Consider the open ball B centred at (0, 0) with radius 1/2. For any open subset B′ of B, B′ ∩ S is disconnected,
Hence S is not locally connected.

The three steps together lead to the conclusion that S cannot be triangulated.
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Question 2

LetK be a simplicial complex (that need not be finite). Prove that |K| is Hausdorff.

Proof. For each σ ∈ K, we consider the standard n-simplex ∆n
σ. Let L be the disjoint union of all ∆n

σ. Then |K| is a quotient
space of L. Let π : L� |K| be the canonical projection. By Proposition 3.21 in the notes, |K| is Hausdorff if and only if
any two distinct equivalence classes of L are contained in two disjoint open saturated sets.

By Lemma 4.12, any point in |K| is contained in the inside of a unique simplex. For [x], [y] ∈ |K|, there exists x, y ∈ L and
unique simplices ∆x,∆y ⊆ L such that x ∈ int(∆m

x ) and y ∈ int(∆n
y ). (π(x) = [x], π(y) = [y]) Without loss of generality

suppose thatm 6 n. We shall construct an ascending chain of open neighbourhoods of x and of y which are disjoint and
saturated. We use induction on the dimension.

Let Σr be the disjoint union of all simplices inK with dimension 6 r. For r = 0, [x] ∩ Σ0 = {x} ifm = 0 or [x] ∩ Σ0 = ∅
ifm > 0. Clearly [x] ∩ Σ0 and [y] ∩ Σ0 are disjoint because x and y are distinct.

Suppose that we have constructed disjoint saturated open sets Ur, Vr such that [x] ∩ Σr ⊆ Ur and [y] ∩ Σr ⊆ Vr. And
π(Ui) ⊆ π(Ui+1), π(Vi) ⊆ π(Vi+1) for 0 6 i < r. For each∆r+1

σ , let

Iσ := {z ∈ ∆r+1
σ : π(z) ∈ π(Ur)} Jσ := {z ∈ ∆r+1

σ : π(z) ∈ π(Vr)}

A careful choice of Ur and Vr may let us assume that Ur ∩ Vr = ∅. Then Iσ and Jσ are separated. Since∆r+1
σ is T4, there

exists disjoint open sets Mσ, Nσ such that Iσ ⊆ Mσ and Jσ ⊆ Nσ. Let Ur+1 =
⋃
σMσ ∪ Ur and Vr+1 =

⋃
σ Nσ ∪ Vr.

Clearly Ur+1 and Vr+1 are disjoint, which completes the induction.

Finally, letU =
⋃∞
r=0 Ur andV =

⋃∞
r=0 Vr. U andV are disjoint saturated openneighbourhoods of [x] and [y] respectively.

Hence |K| is Hausdorff.

Question 3

LetX1, X2 be disjoint copies of R2. We define an equivalence relation ∼ on Y = X1 tX2 by:

(x1, y1) ∈ X1 ∼ (x2, y2) ∈ X2 ⇐⇒ x1 = x2, y1 = y2, (x1, y1), (x2, y2) 6= (0, 0)

Show that every point in Y/ ∼ is contained in an open set homeomorphic to an open subset ofR2 but Y/ ∼ is not a surface.

Proof. For simplicity we write Y = R2 × {0, 1}. For [(x, y)] ∈ Y/ ∼ with (x, y) 6= (0, 0), there exists an open neighbourhood U
of (x, y) such that (0, 0) /∈ U . Let π : Y � Y/ ∼ be the canonical projection and π′(x, y) = π(x, y, 0). π′(U) is an open
neighbourhood of [(x, y)] because π−1(π′(U)) = U × {0, 1} is open in Y . We claim that π′(U) is homeomorphic to U .
Clearly π′|U : U → π(U) is a continuous bijection. For an open subset V ⊆ U , π′(V ) is open for the similar reason that
π′(U) is open. In particular, π′|U is an open mapping and is a homeomorphism.

The only singleton equivalence classes in Y/ ∼ are {(0, 0, 0)} and {(0, 0, 1)}. It suffices to consider one of them. Let U
be an open neighbourhood of (0, 0) in R2. π′(U) is an open neighbourhood of {(0, 0, 0)} because

π−1(π′(U)) = (U × {0}) ∪ ((U\{(0, 0)})× {1})

is the union of two open sets. Similarly we have π′(U) is homeomorphic to U . Hence we have proven the first half of the
statement in the question.

Since R2\{(0, 0)} is not closed, from Question 5.(1).(b) we know that the quotient space Y/ ∼ is not Hausdorff. Hence
Y/ ∼ is not a surface.
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Question 4

Find an example of a connected, finite, simplicial complexK that is not a closed combinatorial surface, but that satisfies
the following three conditions:

(1) It contains only 0-simplices, 1-simplices and 2-simplices.

(2) Every 1-simplex is a face of precisely two 2-simplices.

(3) Every point of |K| lies in a 2-simplex.

Proof. We define an abstract simplicial complexK = (V,Σ) by:

V = {1, 2, 3, 4, 5, 6, 7}

Σ = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {4, 5}, {4, 6}, {4, 7}, {5, 6}, {5, 7}, {6, 7},

{1, 2, 3}, {1, 3, 4}, {1, 2, 4}, {2, 3, 4}, {4, 5, 6}, {4, 5, 7}, {4, 6, 7}, {5, 6, 7}}

In other words,K is two tetrahedrons gluing together at one vertex.

It is immediate that all three conditions are satisfied. However, |K| is not a closed combinatorial surface. We observe
that the link linkK(4) = (V ′,Σ′), where:

V ′ = {1, 2, 3, 5, 6, 7}

Σ′ = {{1, 2}, {1, 3}, {2, 3}, {5, 6}, {5, 7}, {6, 7}}

Σ′ is the union of two disjoint simplicial circles. Then |K| cannot be a closed combinatorial surface.

Question 5

A simple closed curve C in a space X is the image of a continuous injection S1 → X. Find simple closed curves C1, C2

and C3 in the Klein bottleK such that

(1) K\C1 has one component, which is homeomorphic to an open annulus S1 × (0, 1).

(2) K\C2 has one component, which is homeomorphic to an open Möbius band.

(3) K\C3 has two components, each of which is homeomorphic to an open Möbius band.

Proof. The Klein bottleK is defined by the unit square A = [0, 1]2 with side identifications (0, y) ∼ (1, y) and (x, 0) ∼ (1− x, 1).
Let π : A� K be the projection.

(1) Define γ1 : [0, 1] → A by γ1(t) = (t, 1/2). It is easy to see that C1 := π ◦ γ1([0, 1]) is a simple closed curve on K as
(0, 1/2) and (1, 1/2) are identified onK.

K\C1 is path-connected, since for any x ∈ A\γ1([0, 1]), there is a straight line in A from x to one of (0, 0), (0, 1),
(1, 0), and (1, 1), which are identified onK.

Let σ1 : A\γ1([0, 1])→ S1 × (0, 1) be given by

σ1(x, y) =


(
e2πix, y + 1/2

)
0 6 y < 1/2(

e2πi(1−x), y − 1/2
)

1/2 < y 6 1

ClearlyA is compact andS1×(0, 1) is Hausdorff. The equivalence classes onA\γ1([0, 1]) coincides with the partition
{σ−11 (α) : α ∈ S1 × (0, 1)}. By Proposition 3.11,K\C1 and S1 × (0, 1) are homeomorphic.
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(2) Define γ2 : [0, 1] → A by γ1(t) = (1/2, t). It is easy to see that C2 := π ◦ γ2([0, 1]) is a simple closed curve on K as
(1/2, 0) and (1/2, 1) are identified onK.

K\C2 is path-connected for the same reason as above.

Let σ2 : A\γ2([0, 1])→ (0, 1)× [0, 1] be given by

σ2(x, y) =

(x+ 1/2, y) 0 6 x < 1/2

(x− 1/2, y) 1/2 < x 6 1

The equivalence classes onA\γ2([0, 1]) coincides with the equivalence classes on (0, 1)×[0, 1] induced by theMöbius
band. By Proposition 3.11,K\C2 is homeomorphic to an open Möbius band.

(3) Define γ3 : [0, 1]→ A by

γ3(t) =

(1/3, 2t) 0 6 t 6 1/2

(2/3, 2t− 1) 1/2 6 t 6 1

C3 := π ◦ γ3([0, 1]) is a simple closed curve onK because (1/3, 1) is identified with (2/3, 0) and (2/3, 1) is identified
with (1/3, 0).

K\C3 has two connected components. This is obvious in intuition but very hard to argue rigorously.

Define σ3 : A\γ3([0, 1])→ (0, 1)× [0, 1]

σ3(x, y) =


(

3

2
x+

1

2
, y

)
0 6 x < 1/3(

3

2
x− 1, y

)
2/3 < x 6 1

and θ3 : A\γ3([0, 1])→ (0, 1)× [0, 1]

θ3(x, y) = (3x− 1, y) 1/3 < x < 2/3

By universal property of quotient space, σ3 and θ3 induces continuous maps σ̃3 and θ̃3 from components of K\C3

to (0, 1)× [0, 1]. Let p : (0, 1)× [0, 1]→ S be the projection of the square onto a Möbius band. p ◦ σ̃3 and p ◦ θ̃3 maps
two components ofK\C3 to two open Möbius bands respectively.

Remark. The geometric visualization of the constructions above is as follows:
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Question 6

The following polygon with side identifications is homeomorphic to which surface?

Proof. The surface S is obtained by first attaching three 1-cells onto two 0-cells, then one 2-cells onto it by sending S1 to the
path xyzx−1y−1z−1. Hence the fundamental group of the surface is given by π1(S) = 〈x, y, z | xyzx−1y−1z−1〉. We can
perform a sequence of Tietze transformations:

〈x, y, z | xyzx−1y−1z−1〉 ∼= 〈x, y, z, w | xyzx−1y−1z−1, w−1xy〉 (T5)

∼= 〈x, y, z, w | xyzx−1y−1z−1, xyw−1〉 (T2 + T3 + T4)

∼= 〈x, y, z, w | xyzx−1y−1z−1, xyw−1, x−1wy−1〉 (T2)

∼= 〈x, y, z, w | xx−1wy−1yzx−1xyw−1y−1z−1, xyw−1, x−1y−1w〉 (T4)

∼= 〈x, y, z, w | wzyw−1y−1z−1, xyw−1, x−1y−1w〉 (T3)

∼= 〈x, y, z, w, u | wzyw−1y−1z−1, xyw−1, x−1y−1w, u−1zy〉 (T5)

∼= 〈x, y, z, w, u | wuw−1u−1, xyw−1, x−1y−1w, u−1zy〉 (T2 + T3 + T4)

∼= 〈w, u | wuw−1u−1〉 (T5)

∼= Z⊕ Z

Hence π1(S) = π1(M1). By Proposition 5.17, S is a closed combinatorial surface. By the classification theorem of closed
surfaces, S is homeomorphic to one ofMg orNh. As no two ofMg orNh have the same fundamental group, we conclude
that S ∼= M1. S is homeomorphic to the torus.

Remark. Geometrically we can visualize the transformations above as follows:
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Question 7

Suppose that the sphere S2 is given the structure of a closed combinatorial surface. Let C be a sub-complex that is a
simplicial circle. Suppose that S2\C has two components. Indeed, suppose that this is true for every simplicial circle in
S2. Let E be one of these components.

Our aim is to show that E is homeomorphic to a disc. This is a version of the Jordan curve theorem.

We will prove this by induction on the number of 2-simplices in E. Our actual inductive hypothesis is: there is a homeo-
morphism from E toD2, which takes C to the boundary circle ∂D2.

(1) Let σ1 be a 1-simplex in C. Since S2 is a closed combinatorial surface, σ1 is adjacent to two 2-simplices. Show that
precisely one of these 2-simplices lies in E. Call this 2-simplex σ2.

(2) Start the induction by showing that if E contains at most one 2-simplex, then E = σ2.

(3) Let v be the vertex of σ2 not lying in σ1. Suppose that v does not lie in C. Show how to construct a sub-complex C ′

of S2, that is a simplicial circle, and that has the following properties:

• S2\C ′ has two components;

• one of these components F is a subset of E;

• F contains fewer 2-simplices than E.

Show in this case that there is a homeomorphism from E toD2, which takes C to the boundary circle ∂D2.

(4) Suppose now that v lies in C. How do we complete the proof in this case?

Proof. (1) We shall first prove that every component of S2\C contains the inside of at least one 2-simplex. We choose x ∈ E.
By Lemma 5.16.(3), x is in some 2-complex ρ, whose inside is in E. The same thing holds for the other connected
component.

Let ρ1, ρ2, ..., ρk be the 1-simplices (in order) on C. Let ηi, λi be the 2-simplices adjacent to ρi. Suppose for contra-
diction that η1, λ1 ∈ E. We claim that η1, .., ηn, λ1, ..., λn ∈ E. This is because the vertices of every ηi is connected
to those of η1 by an edge path by connectivity of E, and similar for λi. Let G be the other connected component.
We know that G contains a 2-simplex α. The vertices of α is connected to the vertices on C by an edge path by
connectivity ofG. Then there is a 2-simplex adjacent to some ρi and is contained inG. Contradiction. Similarly we
can prove that it cannot be the case that η1, λ1 ∈ G.

(2) Trivial. A 2-simplex is homeomorphic to a disc.

(3) We can add v into the simplicial circleC and remove the 1-simplex σ1. By doing this we obtain a component F such
that F contains one 2-simplex fewer than E, because we have taken σ2 into the other component when modifying
C. By induction hypothesis there is a homeomorphism ϕ : F → D2 such that ϕ(C ′) = ∂D2. Note that D2 is
homeomorphic to a standard 2-simplex. If we attach a 2-simplex onto another 2-simplex by identifying two faces
of them, then the result simplicial complex is still homeomorphic toD2. Then we can say that E is homeomorphic
toD2 with boundary being sent to ∂D2.

(4) If C contains only 3 vertices, then there is nothing to prove. Suppose that C have more then 3 vertices. Let σ1 =

a1, a2 and σ2 = {a1, a2, v}. If a1, a2, v is the order of these vertices on C, then we add {a1, v} to the simplicial circle
and remove all vertices between a1 and v. By doing this we obtain a component F such that F contains fewer 2-
simplices than E. The situation is similar to part (3) except that we will attach a 2-simplex onto another 2-simplex
by identifying one face of them. The result simplicial complex is also a disc.


