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Question 1
(1) Show that the Dunce hat can be triangulated.
(2) Show that the following subspace of R? cannot be triangulated:

{(z,y): 0<y <1, z=00r1/nforsomen e N}U([0,1] x {0})

Proof. (1) The Dunce hat is a finite CW complex so it can be triangulated. The triangulation can be obtained by repeating
barycentric subdivision until the space becomes a simplicial complex. A triangulation (which is not the simplest)
of the Dunce hat is as follows:

(2) Step 1: An infinite simplicial complex is not compact.

Suppose that K = (V, X)) is an abstract simplicial complex and | K| is its topological realization. Forv € V, by Lemma
4.18 in the notes, st (v) is an open set in K that contains a unique vertex v. If V' is infinite, then {stx (v)},cv is an
infinite open cover of K with no finite subcover. Hence K is not compact.

Step 2: A finite simplicial complex is locally connected.

Let K = (V,X) be a finite simplicial complex. By Proposition 4.22 in the notes, there is a (continuous) embedding
¢ : |K| — R™ for n = |V, in which every vertex is mapped to a unit vector in R™. Notice that {B(x,¢) : = € R", ¢ >
0} is a topological basis of R™. Then the preimage {B(x,c) N|K|: « € R™, ¢ > 0} is a basis of | K| under the subset
topology.

For ¢ € |K| and open set U of | K| with « € U, there exists yp € R” and ¢ > 0 such that € B(zg,¢) N |K| C U. Let
0< 6 < ||x—xo|. Thenx € B(x,d)N|K| CU.Let0 < n < min{xy,..., ,, d }. We claim that for any simplex o € %,
|o| N B(x,n) # @ ifand only if x € |o|.

Suppose thato = {e;, , ..., e;, }. Then |o|lies in the subspace span{e;,, ...,e; }. [fx ¢ |o|,thenx ¢ span{e;,,...,e; }
and dist(x, span{e;, , ...,e; }) = min{z;,, ..., x; } > .

Foro € ¥ withx € |o|, |o| and B(x, ¢) are both convex. Hence B(x,n)N|o| is convex and is connected. In particular
B(x,n) N |K| has a unique connected component. B(x,n) N |K| C U is connected.

Step 3: The given subspace is compact and is not locally connected.

Let S be the given subspace in the question. Notice that the sequence {1/n},cz, has a unique limit point 0. Hence
{0} U{1/n :n € Z,} is closed. The product set ({0} U{1/n : n € Z,}) x [0,1] is also closed. S is the union of it
with 0,1] x {0} so S is closed. Obviously S is bounded. By Heine-Borel Theorem S is compact.

Consider the open ball B centred at (0,0) with radius 1/2. For any open subset B’ of B, B’ N S is disconnected,
Hence S is not locally connected.

The three steps together lead to the conclusion that S cannot be triangulated. O



Question 2

Let K be a simplicial complex (that need not be finite). Prove that | K| is Hausdorff.

Proof. For each o € K, we consider the standard n-simplex A”. Let L be the disjoint union of all A”. Then |K]| is a quotient
space of L. Let = : L — |K| be the canonical projection. By Proposition 3.21 in the notes, | K| is Hausdorff if and only if
any two distinct equivalence classes of L are contained in two disjoint open saturated sets.

By Lemma 4.12, any point in | K| is contained in the inside of a unique simplex. For [z], [y] € | K|, there exists z,y € L and
unique simplices A, A, C L such that z € int(A}") and y € int(A}). (7(z) = [z],7(y) = [y]) Without loss of generality
suppose that m < n. We shall construct an ascending chain of open neighbourhoods of = and of y which are disjoint and
saturated. We use induction on the dimension.

Let X, be the disjoint union of all simplices in K with dimension < . Forr =0, [z]N Yy = {z}if m=0or[z|N¥y =2
if m > 0. Clearly [z] N Xy and [y] N ¥, are disjoint because z and y are distinct.

Suppose that we have constructed disjoint saturated open sets U,., V;. such that [z] N 2, C U, and [y] N X, C V,.. And
7(U;) C 7(Uiy1), m(V;) € w(Vigq) for 0 < i < r. For each A7+ let

I, :={z € AT . 7(2) € n(U,)} Jyi={z € AI"t: 1(2) € 7(V,)}

A careful choice of U, and V,. may let us assume that U, NV, = @. Then I,, and J, are separated. Since A’ ! is T4, there
exists disjoint open sets M,, N, such that I, C M, and J, C N,. Let U1 = |J, M, UU, and V,; = J, Ny U V.
Clearly U, and V., are disjoint, which completes the induction.

Finally,letU = (J;2,U,andV = |2, V;. U and V are disjoint saturated open neighbourhoods of [z] and [y] respectively.
Hence |K| is Hausdorff. O

Question 3
Let X, X, be disjoint copies of R?. We define an equivalence relation ~ onY = X; LI X, by:

(x1,91) € X1~ (x2,92) € Xo <= 1 =22, Y1 = Y2, (T1,¥1), (T2,y2) # (0,0)

Show that every point in Y/ ~ is contained in an open set homeomorphic to an open subset of R? but Y/ ~ is not a surface.

Proof. For simplicity we write Y = R? x {0, 1}. For [(z,y)] € Y/ ~ with (z,y) # (0,0), there exists an open neighbourhood U
of (z,y) such that (0,0) ¢ U. Let 7 : Y — Y/ ~ be the canonical projection and «'(x,y) = n(x,y,0). #'(U) is an open
neighbourhood of [(z,y)] because 7 ~!(n/(U)) = U x {0,1} is open in Y. We claim that n/(U) is homeomorphic to U.
Clearly 7’|y : U — #(U) is a continuous bijection. For an open subset V' C U, 7/(V) is open for the similar reason that
7' (U) is open. In particular, 7’|y is an open mapping and is a homeomorphism.

The only singleton equivalence classes in Y/ ~ are {(0,0,0)} and {(0,0,1)}. It suffices to consider one of them. Let U
be an open neighbourhood of (0,0) in R2. #/(U) is an open neighbourhood of {(0,0,0)} because

mH(@(U)) = (U x {0}) U (U\{(0,0)}) x {1})

is the union of two open sets. Similarly we have /(U is homeomorphic to U. Hence we have proven the first half of the
statement in the question.

Since R2\{(0,0)} is not closed, from Question 5.(1).(b) we know that the quotient space Y/ ~ is not Hausdorff. Hence
Y/ ~ is not a surface. O



Question 4

Find an example of a connected, finite, simplicial complex K that is not a closed combinatorial surface, but that satisfies
the following three conditions:

(1) It contains only 0-simplices, 1-simplices and 2-simplices.
(2) Every 1-simplex is a face of precisely two 2-simplices.

(3) Every point of |K| lies in a 2-simplex.

Proof. We define an abstract simplicial complex K = (V, %) by:

V ={1,2,3,4,5,6,7}
Y={{1,2},{1,3},{1,4},{2,3},{2,4}, {3,4}, {4,5},{4,6},{4, 7}, {5,6}, {5, 7}, {6, 7},
{1,2,3},{1,3,4},{1,2,4},{2,3,4},{4,5,6},{4,5,7},{4,6,7},{5,6,7}}
In other words, K is two tetrahedrons gluing together at one vertex.
It is immediate that all three conditions are satisfied. However, | K| is not a closed combinatorial surface. We observe
that the link linkx (4) = (V', ¥'), where:
V' =1{1,2,3,5,6,7}
¥ = {{L 2}’ {1’ 3}’ {27 3}7 {57 6}7 {57 7}7 {67 7}}

¥’ is the union of two disjoint simplicial circles. Then | K| cannot be a closed combinatorial surface. O

Question 5

A simple closed curve C in a space X is the image of a continuous injection S' — X. Find simple closed curves C;, Cs
and C3 in the Klein bottle K such that

(1) K\C; has one component, which is homeomorphic to an open annulus S* x (0, 1).
(2) K\C5 has one component, which is homeomorphic to an open Mobius band.

(3) K\C5 has two components, each of which is homeomorphic to an open Mdbius band.

Proof. The Klein bottle K is defined by the unit square A = [0, 1] with side identifications (0,%) ~ (1,y) and (z,0) ~ (1 —x, 1).
Let 7 : A — K be the projection.

(1) Define v; : [0,1] — A by ~1(t) = (t,1/2). It is easy to see that C; := 7w o y1([0, 1]) is a simple closed curve on K as
(0,1/2) and (1,1/2) are identified on K.

K\, is path-connected, since for any z € A\v,([0, 1]), there is a straight line in A from z to one of (0,0), (0, 1),
(1,0), and (1, 1), which are identified on K.

Let o1 : A\71([0,1]) — S* x (0,1) be given by

(e%iw,y-l-l/?) 0<y<1/2
Ul(x,y): i
(e27r1(1—r),y_1/2) 1/2<y<1

Clearly A is compact and S* x (0, 1) is Hausdorff. The equivalence classes on A\~ ([0, 1]) coincides with the partition
{o7(a) : @« € S* x (0,1)}. By Proposition 3.11, K\C; and S* x (0, 1) are homeomorphic.



(2) Define v : [0,1] = Abyy1(t) = (1/2,t). It is easy to see that Cy := 7 o 72([0,1]) is a simple closed curve on K as
(1/2,0) and (1/2,1) are identified on K.

K\ (5 is path-connected for the same reason as above.

Let o3 : A\2([0,1]) — (0,1) x [0, 1] be given by

(x+1/2,y) 0<z<1/2
oo(x,y) =
(x—1/2,y) 1/2<x<1

The equivalence classes on A\~»([0, 1]) coincides with the equivalence classes on (0, 1) x [0, 1] induced by the Mdbius
band. By Proposition 3.11, K'\C5 is homeomorphic to an open Mobius band.

(3) Define v3: [0,1] — A by

[y

/2

. {(1/3,2t) 0< :

t <
(2/3,2t—1) 1/2<t

N

C3 := mo~3([0,1]) is a simple closed curve on K because (1/3,1) is identified with (2/3,0) and (2/3, 1) is identified
with (1/3,0).

K\Cj5 has two connected components. This is obvious in intuition but very hard to argue rigorously.
Define o3 : A\v3([0,1]) — (0,1) x [0, 1]

1

2 y) 0<z<1/3

0—3(1'7y) =
2x—1,y> 2/3<zx<1

W N W

and 63 : A\y3([0,1]) — (0,1) x [0,1]

Os(z,y) =Bz —1,y) 1/3<x<2/3
By universal property of quotient space, o3 and 65 induces continuous maps 3 and 3 from components of K\Cj
to (0,1) x [0,1]. Let p: (0,1) x [0,1] — S be the projection of the square onto a M6bius band. po 63 and po 65 maps

two components of K\C5 to two open Mobius bands respectively. O

Remark. The geometric visualization of the constructions above is as follows:




Question 6

The following polygon with side identifications is homeomorphic to which surface?

Proof. The surface S is obtained by first attaching three 1-cells onto two 0-cells, then one 2-cells onto it by sending S! to the
path zyzz~1y~12~!. Hence the fundamental group of the surface is given by 71(S) = (z,y, 2 | zyzz~'y~'2~!). We can

perform a sequence of Tietze transformations:

(x,y, 2 | wyze ™y e 2 (x,y, 2z, w | zyzaly T 2T wlay) (T5)
> (z,y,z,w | xyzety 27 aywt) (T2+T3+T4)
> (z,y,z,w | zyze~ly 27 oyt 2 lwy ™Y (T2)
> (z,y,z,w |z lwy Tz teywly T2 ayw Tt 27y T w) (T4)
> (z,y,z,w | weyw ty 27 aywt 27y ) (T3)
> (z,y, z,w,u | weyw ly 2T pyw ™ 2y hw, w zy) (T5)
>~ (z,y,z,w,u | wuw tut zyw™t 2Ty, wzy) (T2+T3+T4)
>~ (w,u | wuw ™ tu"t) (T5)

2Z®L

Hence 7 (S) = w1 (M;). By Proposition 5.17, S is a closed combinatorial surface. By the classification theorem of closed
surfaces, S is homeomorphic to one of M, or N,. As no two of M, or N, have the same fundamental group, we conclude

that S = M;. S is homeomorphic to the torus.

O

Remark. Geometrically we can visualize the transformations above as follows:
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Question 7

Suppose that the sphere S? is given the structure of a closed combinatorial surface. Let C be a sub-complex that is a
simplicial circle. Suppose that S?\C has two components. Indeed, suppose that this is true for every simplicial circle in
52. Let E be one of these components.

Our aim

is to show that E is homeomorphic to a disc. This is a version of the Jordan curve theorem.

We will prove this by induction on the number of 2-simplices in E. Our actual inductive hypothesis is: there is a homeo-
morphism from E to D?, which takes C to the boundary circle 0 D?.

(1) Let oy be a 1-simplex in C. Since S? is a closed combinatorial surface, o, is adjacent to two 2-simplices. Show that
precisely one of these 2-simplices lies in E. Call this 2-simplex o».

(2) Start the induction by showing that if £ contains at most one 2-simplex, then £ = 5.

(3) Let v be the vertex of o3 not lying in o;. Suppose that v does not lie in C. Show how to construct a sub-complex C’
of S2, that is a simplicial circle, and that has the following properties:

e S2\C’ has two components;
e one of these components F' is a subset of F;

e F contains fewer 2-simplices than E.

Show in this case that there is a homeomorphism from E to D?, which takes C to the boundary circle 9D?.

(4) Suppose now that v lies in C. How do we complete the proof in this case?

Proof. (1)

@)
A)

4)

We shall first prove that every component of $?\ ' contains the inside of at least one 2-simplex. We choose = € E.
By Lemma 5.16.(3), x is in some 2-complex p, whose inside is in E. The same thing holds for the other connected
component.

Let p1, po, ..., pr. be the 1-simplices (in order) on C. Let 7;, \; be the 2-simplices adjacent to p;. Suppose for contra-
diction that n;, \; € E. We claim that 7, ..,9,,, A1, ..., A\, € E. This is because the vertices of every ; is connected
to those of 1, by an edge path by connectivity of F, and similar for );. Let G be the other connected component.
We know that G contains a 2-simplex a. The vertices of « is connected to the vertices on C by an edge path by
connectivity of G. Then there is a 2-simplex adjacent to some p; and is contained in G. Contradiction. Similarly we
can prove that it cannot be the case that ;, \; € G.

Trivial. A 2-simplex is homeomorphic to a disc.

We can add v into the simplicial circle C' and remove the 1-simplex . By doing this we obtain a component F' such
that F contains one 2-simplex fewer than E, because we have taken o5 into the other component when modifying
C. By induction hypothesis there is a homeomorphism ¢ : F — D? such that ¢(C’) = dD?. Note that D? is
homeomorphic to a standard 2-simplex. If we attach a 2-simplex onto another 2-simplex by identifying two faces
of them, then the result simplicial complex is still homeomorphic to D?. Then we can say that E is homeomorphic
to D? with boundary being sent to 9D?.

If C contains only 3 vertices, then there is nothing to prove. Suppose that C have more then 3 vertices. Let o; =
a1, ae and oo = {a1,as,v}. If ay, as, v is the order of these vertices on C, then we add {a;, v} to the simplicial circle
and remove all vertices between a; and v. By doing this we obtain a component F such that F' contains fewer 2-
simplices than E. The situation is similar to part (3) except that we will attach a 2-simplex onto another 2-simplex
by identifying one face of them. The result simplicial complex is also a disc. O



