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Chapter 1

Introduction

Ever since the discovery of quantum theory in the early twentieth century, the problem of finding a correspon-

dence between classical systems and quantum systems has been a central theme of theoretical physics. The

defining features of quantum mechanics include the probabilistic interpretations of measurements and the non-

commutativity of multiplications of physical observables. Proposed by Bayen et. al. in [Bay78I] and [Bay78II],

deformation quantisation originates from an attempt of understanding quantisation “as a deformation of the

structure of the classical observable, rather than as a radical change in the natural of the observables.” In par-

ticular, the Hilbert space formalism of quantum mechanics is replaced by a deformation of classical mechanics

on the phase space, which is known as a star product. In a mathematical formulation, deformation quantisation

attempts to classify the star products on an associative algebra which recovers the commutative multiplication

and the Poisson algebra in the formal classical limit ~→ 0.

The Weyl–Moyal product proposed by Groenewold ([Gro46]) is well-known as the first example of deformation

quantisation on the flat phase space. In 1983, De Wilde and Lecomte proved the existence of star products first

on the cotangent bundle of a smooth manifold ([DWL83b]) and later on a symplectic manifold ([DWL83a]).

Independently, Fedosov ([Fed94]) proved the existence on a symplectic manifold in 1985 by constructing a flat

connection of the Weyl bundle, which globalises the local Weyl–Moyal product in a coordinate-free manner.

The classification up to equivalence on symplectic manifolds were studied by Deligne ([Del95]), Gutt ([BCG97],

[GR99]), Weinstein and Xu ([WX97]) et. al. In contrast to the case of symplectic manifolds, where the Poisson

bracket takes constant coefficients locally in the Darboux coordinates, deformation quantisation problems in the

more general case of Poisson manifolds have greater complexity, since the local expression of Poisson bracket is

arbitrary.

In 1997, Kontsevich ([Kon97a]) reformulated the problem as the existence of an L∞-quasi-isomorphism between

two differential graded Lie algebras, which is known as the formality conjecture. He proved the conjecture in

the ground-breaking paper [Kon97], in which he provided an explicit formula for the star product in Rd. The

work is among one of his four accomplishments in geometry ([Tau98]) for which he won the 1998 Fields Medal

Prize. The proof of globalisation in an arbitrary smooth manifold was sketched in [Kon97] and was made

precise by Cattaneo, Felder & Tomassini in [CFT02] and also by Kontsevich in his subsequent work [Kon01].

Kontsevich’s formality theorem has inspired numerous development in symplectic geometry, algebraic geometry,

and quantum field theory.

• The underlying idea of Kontsevich’s construction comes from string theory. In the paper [CF00] by

Cattaneo & Felder, Kontsevich’s formula for the star product is interpreted as the perturbative expansion

of the functional integral of Poisson sigma model, thus providing a Feynman path integral quantisation

explanation to a construction arising in the context of canonical quantisation.

• In [Tam98], Tamarkin provides another proof of the formality theorem in a pure algebraic setting using

the theory of operads. He proved the formality of the differential graded Lie algebra associated to a finite

dimensional vector space over a field of characteristic 0. His approach is surveyed in [Kon99] and [Hin03].

• Deformation quantisation of smooth algebraic varieties over a field of characteristic 0 is studied in [Kon01]

and [Yek05].

1
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1.1 Quantisation: From Classical to Quantum

In this section we review the physical backgrounds and motivations of quantisation. We also define all the

geometric objects involved in the picture.

1.1.1 Classical Mechanics

In classical mechanics, a dynamical system is described by a smooth manifold M , whose dimension corresponds

to the degree of freedom of that system. In the Hamiltonian formalism, the dynamics of the system is governed

by the Hamilton’s equations on the phase space, which is the cotangent bundle T∗M of M :

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

, i = 1, ..., n,

where (q1, ..., qn, p1, ..., pn) is a set of local coordinates on T∗M and H : T∗M → R is the Hamiltonian function.

The cotangent bundle has a canonical symplectic form ω, given in local coordinates by ω =
dimM∑
i=1

dqi ∧ dpi.

Hamiltonian mechanics can be generalised on the setting of a symplectic manifold (N,ω) without difficulty.

Definition 1.1. A symplectic manifold (N,ω) is a smooth manifold N with a closed non-degenerate 2-form

ω, called the symplectic form. A diffeomorphism between two symplectic manifolds that preserve the symplectic

form is called a symplectomorphism.

An important result in symplectic geometry in the following:

Lemma 1.2. Darboux’s Theorem

A 2n-dimensional symplectic manifold is locally symplectomorphic to (R2n, ω), where ω =
n∑
i=1

dqi ∧ dpi is

the standard symplectic form on R2n.

The symplectic form ω induces the symplectic involution J : T∗N → TN via ω(X, J(ξ)) = ξ(X) for ξ ∈ T∗N

and X ∈ TN , which is a linear isomorphism. For a smooth function f ∈ C∞(N), the Hamiltonian vector field

associated to f is defined by Xf := J(df). For two smooth functions f and g, we can define the Poisson

bracket {−,−} : C∞(N)× C∞(N)→ C∞(N):

{f, g} := ω(Xf , Xg) = Xf (g).

The Lie bracket of the vector fields and the Poisson bracket are related by

[Xf , Xg] = X{f,g}.

Alternatively, the Poisson bracket defines a skew-symmetric bivector field π ∈ Γ(N,
∧2 TN) such that the

bracket is given by the pairing {f, g} = π(df ∧ dg). In local coordinates, the corresponding matrices satisfy

πij = (ω−1)ij . Darboux’s theorem demonstrates that it is always possible to find a chart such that the Poisson

bivector field π has constant coefficients in the local coordinates. Furthermore, the coordinates can be chosen

such that {
qi, qj

}
= 0, {pi, pj} = 0,

{
qi, pj

}
= δij , i, j = 1, ..., n. (1.1)
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In these coordinates the Poisson bracket of two functions f, g is given by

{f, g} =
dimM∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂g

∂qi
∂f

∂pi

)
.

In terms of the Poisson bracket, Hamilton’s equations show that the time evolution of any smooth function

f(t) : N × R→ N is given by
df

dt
= {f,H} . (1.2)

It is straightforward to prove that the Poisson bracket satisfies the conditions for a Lie bracket on C∞(N).

Moreover it is a derivation in both of its arguments. We extract these properties to make the following defini-

tion:

Definition 1.3. Let A be an associative algebra over a field k. A Poisson bracket {−,−} on A is a k-bilinear

map, satisfying:

• Skew-symmetry: {u, v} = −{v, u};
• Jacobi identity: {u, {v, w}}+ {v, {w, u}} = {w, {u, v}} = 0;

• Leibniz rule: {uv,w} = u {v, w}+ {u,w} v.

where u, v, w ∈ A. An algebra A equipped with a Poisson bracket is called a Poisson algebra. If A = C∞(M)

is the algebra of smooth functions on a smooth manifold M , then M is called a Poisson manifold.

Remark. A symplectic manifold must be even-dimensional due to the non-degeneracy of the symplectic form.

On the other hand, any smooth manifold can be a Poisson manifold, whose Poisson bracket is allowed to be

degenerate.

1.1.2 Quantum Mechanics

For convenience we consider the flat phase space N = R2n in this part. According to the Dirac–von Neumann

axiomatisation of quantum mechanics, a quantum mechanical system is described by a separable complex

Hilbert space H with a self-adjoint operator Ĥ acting on H, which is called the Hamiltonian. Every physical

observable f is associated with a self-adjoint operator f̂ on a Hilbert space H. The spectrum of f̂ is the set of

possible outcomes of measuring f̂ . In the Heisenberg picture, the time evolution of the operator f̂ is controlled

by the Hamiltonian:

df̂

dt
=

1

i~
[f̂ , Ĥ] (1.3)

where ~ is the reduced Planck constant and [−,−] is the commutator. The coordinates qi and pi of the phase

space R2n are upgraded to self-operators q̂i and p̂i which satisfy the canonical commutation relation:[
q̂i, q̂j

]
= 0, [p̂i, p̂j ] = 0,

[
q̂i, p̂j

]
= i~δij · idH, i, j = 1, ..., n. (1.4)

By Stone–von Neumann theorem, there is an irreducible unitary representation of H on L2(Rn) which is unique

up to isomorphism such that

q̂i : ψ(x) 7−→ xiψ(x), p̂i : ψ(x) 7−→ −i~
∂ψ

∂xi
. (1.5)

which is often referred as the position representation in physics. Comparing (1.1), (1.2) with (1.3), (1.4), we

recognise that a classical system is quantised to a quantum system under the naive correspondence
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C∞
(
R2n

)
{self-adjoint operators on L2(Rn)}

{−,−} 1

i~
[−,−]

Q

~→ 0

which is called canonical quantisation. In particular, one may postulate that there exists a R-linear quantisa-

tion map Q which “canonically quantises” the coordinates while mapping the Poisson brackets to commutators:

[Q(f), Q(g)] = i~Q({f, g}) for all f, g ∈ C∞
(
R2n

)
. In 1946, Groenewold proved in his thesis [Gro46] that such

quantisation map does not exist. We outline the idea of the proof following [Hal13].

Theorem 1.4. Groenewold’s No-Go Theorem

Let P6m be the set of polynomials in R[q1, ..., qn; p1, ..., pn] with deg 6 m. We can identify P6m as a

subset of C∞
(
R2n

)
. On the other hand, let D (Rn) be the space of differential operators with coefficients

in R[x1, ..., xn]. Consider q̂i, p̂i ∈ D (Rn) as given in (1.5). There is no linear map Q : P64 → D (Rn) such

that

• Q(1) = id;

• Q(qi) = q̂i and Q(pi) = p̂i for all i = 1, ..., n;

• [Q(f), Q(g)] = i~Q({f, g}) for all f, g ∈ P63.

Proof. See Appendix 1.A.

The impossibility of finding a strict morphism taking Poisson brackets to commutators suggests that the con-

ditions for the quantisation have to be relaxed, which leads to different quantisation schemes, the most famous

among which are geometric quantisation and deforamtion quantisation. In this dissertation we only study the

latter. In deformation quantisation, the condition Q({f, g}) = i~ [Q(f), Q(g)] is replaced by an asympototic

equality:

[Q(f), Q(g)] = i~Q({f, g}) +O(~2). (1.6)

Furthermore, the constant ~ is treated as a formal indeterminate, so that (1.6) holds in the formal sense. We

remove the Hilber space from the picture and works completely on the classical phase space. The “quantum”

aspect of the theory is captured in a non-commutative associative product, which is the object we study in the

next section.

1.2 Star Products

In this section we take the phase space M to be an arbitrary Poisson manifold. Let A := C∞(M) be the

R-algebra of smooth functions on M . Let Q be the quantisation map. To study the quantisation on the phase

space, we assume that Q is an isomorphism and consider the pull-back of the product:

f ? g := Q−1(Q(f)Q(g)), f, g ∈ A.

Writing this product in a formal power series:

f ? g =
∞∑
m=0

~mBm(f, g) ∈ A[[~]],

we infer from (1.6) that B0(f, g) = B0(g, f) = fg and B1(f, g) − B1(g, f) = i {f, g}. This is an example of a

star product. We give the formal definition below.



1.2. STAR PRODUCTS 5

Definition 1.5. A star product on A is an R[[~]]-bilinear map ? : A[[~]]×A[[~]]→ A[[~]] such that

• Associativity: (f ? g) ? h = f ? (g ? h) for f, g ∈ A[[~]];

• Unit: 1 ? f = f ? 1 = f , for f ∈ A[[~]], where 1 is the constant function on M ;

• f ? g = fg +
∞∑
m=1

~mBm(f, g) for f, g ∈ A, where Bm are bi-differential operators of globally bounded

order, that is, differential operators with respect to each argument in any local coordinates of M .

The star products ? and ?′ are said to equivalent, if there exists a R-linear isomorphism ϕ : A[[~]]→ A[[~]] such

that ϕ(f) = f +
∞∑
m=1

~mϕm(f) for f ∈ A and ϕ(f) ?′ ϕ(g) = ϕ(f ? g) for f, g ∈ A[[~]].

Remark. If µ denotes the multiplication of functions on A, then we can write ? = µ+

∞∑
m=1

~mBm. The notion

of star products will be discuss in the broader concept of deformations of associative multiplication in Section

2.1.

A star product gives rise to a Poisson bracket on M :

Lemma 1.6

Suppose that ? = µ +
∞∑
m=1

~mBm is a star product on A. Then {f, g} := B1(f, g) − B1(g, f) defines a

Poisson bracket on A. Moreover, the bracket only depends on the equivalence class of ?.

Proof. The skew-symmetry and bilinearity of {−,−} are immediate from definition. For the Jacobi identity,

we can expand the bracket ~2 {f, {g, h}} in R[~]/
〈
~3
〉
:

~2 {f, {g, h}} = f ? (g ? h)− f ? (h ? g)− (g ? h) ? f + (h ? g) ? f.

The expansion of two other brackets are similar. By associativity of the star product, we note that the

sum vanishes:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

The Leibniz rule for {−,−} follows from the Leibniz rule of B1. Therefore {−,−} is a Poisson bracket.

Suppose that ? is equivalent to ?′ via the isomorphism ϕ. Then at order ~ we find that

gϕ1(f) + fϕ1(g) +B′1(f, g) = ϕ1(fg) +B1(f, g).

Note that B′1 − B1 is symmetric in the two arguments and hence does not contribute to the Poisson

bracket. The star product ?′ induces the same Poisson bracket as ?.

Definition 1.7. Let A be a Poisson algebra. We say that (A[[~]], ?) is a deformation quantisation of A, if

? = µ+
∞∑
m=1

~mBm is a star product on A[[~]] such that {f, g} = B1(f, g)−B1(g, f) coincides with the Poisson

bracket on A.

Remark. Note that the definition has a factor i different from our picture in quantum mechanics. Since ~ is

considered as a formal symbol, it is possible to absorb i into the ~ and to work entirely over R.
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We are more interested in the converse of Lemma 1.6, that is, to find a deformation quantisation for a given

Poisson bracket. This seems more difficult and requires some additional structure on the algebra A as we want

to constructing B2, B3, ... from B1. The classification theorem of deformation quantisation, stated in its greatest

generality, is the following bijective correspondence on a smooth manifold M :

{Formal Poisson structures}
Equivalence

←→ {Star products}
Equivalence

. (1.7)

By the end of Chapter 2, we shall elucidate this matter as a consequence of Kontsevich’s formality theorem

2.56.

1.2.1 Weyl–Moyal Product

In this part we study a simple construction of deformation quantisation on R2n. The idea of Weyl quantisation

and Moyal bracket originates from the works by Weyl ([Wey27]), Moyal ([Moy49]), Wigner ([Wig32]), and

Groenewold ([Gro46]) which had been studied before deformation quantisation appeared. The story begins

with the ordering ambiguity in canonical quantisation of monomials like qp2 ∈ C∞
(
R2
)
. The naive strategy

of “replacing q by q̂ and p by p̂” does not work because q̂p̂2 fails to be self-adjoint on L2(R). A more serious

approach is to take the total symmetrisation of the expression:

Q(qp2) =
1

3

(
q̂p̂2 + p̂q̂p̂+ p̂2q̂

)
=

1

2

(
q̂p̂2 + p̂2q̂

)
.

This leads to the definition of Weyl quantisation:

Definition 1.8. For a monomial f = qIpJ ∈ R[q1, ..., qn; p1, ..., pn], we define the Weyl quantisation QW(f)

of f to be the total symmetrisation of the monomial q̂I p̂J , where I, J are multi-indices. Then we extend QW

linearly to R[q1, ..., qn; p1, ..., pn]. Furthermore, Weyl quantisation can be extended to L2(R2n) functions as

follows:

QW(f) :=
1

(2π)n

∫
Rn

∫
Rn

Ff(a, b) ei(a·q̂+b·p̂) dnadnb,

where Ff(a, b) is the Fourier transform of f(q,p), and the exponential of operators is formally understood

by the Baker–Campbell–Hausdorff formula (cf. (2.4)). If we identify a suitable codomain of QW, it becomes

invertible with inverse Q−1
W known as the Wigner transform.

Definition 1.9. The Weyl–Moyal product of f, g ∈ C∞
(
R2n

)
is defined as f ? g := Q−1

W (QW(f)QW(g)).

In this definition, ~ is treated as a real parameter. It can be proven (cf. [Hal13]) that f ? g → fg uniformly as

~→ 0, so that f ?g is an actual deformation of fg, not just a formal one. However, it is sufficient to consider the

formal aspect of the the Weyl–Moyal product. The closed form of the Weyl–Moyal product is given by

(f ? g)(x) = exp

 i~
2

2n∑
i,j=1

πij
∂

∂xi
∂

∂yj

f(x)g(y)

∣∣∣∣∣∣
x=y

.

= (fg)(x) +
∞∑
m=1

(i~)m

2mm!

m∏
k=1

 2n∑
ik,jk=1

πik,jk
∂

∂xik
∂

∂yjk

 f(x)g(y)

∣∣∣∣∣∣
x=y

. (1.8)

where π is the Poisson bivector field associated to the standard symplectic structure of R2n. Now we consider

~ as a formal symbol, so that f ? g ∈ C∞
(
R2n

)
[[~]]. Next we replace R2n by Rd and allow the constant matrix

(πij)i,j to have arbitrary form.
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Proposition 1.10

By extending the Weyl–Moyal product R[[~]]-bilinearly, we obtain a star product on C∞
(
Rd
)
[[~]], which is

called the Moyal star product.

Proof. The only non-trivial part is checking associativity. For f, g, h ∈ C∞
(
Rd
)
,

((f ? g) ? h)(x) = exp

(
i~
2
πij

∂

∂xi

∂

∂zj

)
(f ? g)(x)g(z)

∣∣∣∣
x=z

= exp

(
i~
2
πij
(
∂

∂xi
+

∂

∂yi

)
∂

∂zj

)
exp

(
i~
2
πk`

∂

∂xk
∂

∂y`

)
f(x)g(y)g(z)

∣∣∣∣
x=y=z

= exp

(
i~
2
πij
(
∂

∂xi
∂

∂yj
+

∂

∂yi
∂

∂zj
+

∂

∂xi
∂

∂zj

))
f(x)g(y)g(z)

∣∣∣∣
x=y=z

= (f ? (g ? h))(x).

Remark. A natural question that arises is the possibility to extend this construction to include Poisson bivector

field π with coefficients depending on the coordinates. This proves to be the most difficult part of Kontsevich’s

quantisation theorem and is a consequence of the formality theorem. There is a canonical star product associated

to π, whose formula is given in (3.9).

1.A Proof of Groenewold’s No-Go Theorem

Lemma 1.11

For f ∈ P62 and g ∈ P , we have [QW(f), QW(g)] = i~QW({f, g}).

Proof. The result is trivially true for f ∈ P0. Let f ∈ P1. Suppose that f = xi. We claim that

QW(xig) = QW(xi)QW(g)− i~
2
QW

(
∂g

∂pi

)
= QW(g)QW(xi) +

i~
2
QW

(
∂g

∂pi

)
.

We know that every g ∈ Pm can be expressed as a sum of the monomials (a · x + b · p)m for some

a, b ∈ Cn. So it suffices to prove the equality when g = (a · x+ b · p)m.

Let h := a · x+ b · p, ĥ := a · x̂+ b · p̂ = QW(h). Note that [x̂i, ĥ] = a id for some a ∈ C. We have, for

0 6 k 6 m,

x̂iĥm = ĥkx̂iĥm−k + k[x̂i, ĥ]ĥm−1

Summing over k:

x̂iĥm =
1

m+ 1

m∑
k=0

ĥkx̂iĥm−k +
m

2
[x̂i, ĥ]ĥm−1

Note that
1

m+ 1

m∑
k=0

ĥkx̂iĥm−k = QW(xihm) = QW(g). The above equation is

QW(xi)QW(g) = QW(xig) +
m

2
i~biQW(hm−1) = QW(xig) +

i~
2
QW

(
∂g

∂pi

)
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On the other hand, we have

ĥmx̂i = ĥkx̂iĥm−k − (m− k)[x̂i, ĥ]ĥm−1

Summing over k gives

QW(g)QW(xi) = QW(xig)− i~
2
QW

(
∂g

∂pi

)
which completes the proof of the claim.

Therefore we have [
QW(xi), QW(g)

]
= i~QW

(
∂g

∂pi

)
= i~QW(

{
xi, g

}
).

For f = pi, similarly we can prove that

[QW(pi), QW(g)] = −i~QW

(
∂g

∂xi

)
= i~QW({pi, g}).

We deduce that the result is true for all f ∈ P1. Now let f ∈ P2. By linearity it suffices to consider the

case f = f1f2, where f1, f2 ∈ P1. The above argument shows that

QW(fih) =
1

2
(QW(fi)QW(h) +QW(h)QW(fi))

for all h ∈ P . Therefore we have

[QW(f1f2), QW(g)] =
1

2
[QW(f1)QW(f2) +QW(f2)QW(f1), QW(g)]

=
1

2
(QW(f1) [QW(f2), QW(g)] +QW(f2) [QW(f1), QW(g)]

+ [QW(f1), QW(g)]QW(f2) + [QW(f2), QW(g)]QW(f1))

=
1

2
(QW(f1)QW({f2, g}) +QW(f2)QW({f1, g})

+QW({f1, g})QW(f2) +QW({f2, g})QW(f1))

= QW(f1 {f2, g}) +QW(f2 {f1, g})
= QW({f1f2, g})

which establishes the result for all f ∈ P2.

Lemma 1.12

Let A ∈ D(Rn). If [A, x̂i] = 0 and [A, p̂i] = 0 for all i ∈ {1, ..., n}, then A = c id for some c ∈ C.

Proof. We adopt the notion of multi-index α = (α1, ..., αn), where α1, ..., αn ∈ N. Let |α| =
∑n

k=1 αk, and

∂α := ∂α1
1 · · · ∂αn

n . Let ei be the multi-index with 1 in the i-th entry and 0 otherwise. For α,β, we

define α− β = (α1 − β1, ..., αn − βn) if αi > βi for all i, and α− β = 0 otherwise.

Note by induction that

∂k

∂(xi)k
(xig(x)) = k

∂k−1

∂(xi)k−1
g(x) + xi

∂k

∂(xi)k
g(x).
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Then for any multi-index α, we have [
f(x)∂α, x̂i

]
= αif(x)∂α−ei .

Suppose that A ∈ D(Rn) \ {0} such that A commutes with all x̂i and p̂i. If degA > 0, then A has a

term of the form fβ(x)∂β such that fβ(x) 6= 0 and βi > 0 for some j. Then

[A, x̂i] = βifβ(x)∂β−ei + · · ·

Hence [A, x̂i] 6= 0, which is a contradiction. Therefore degA = 0. A = f(x) id for some polynomial f .

But we also have

0 = [A, p̂i] = i~
∂f

∂xj
id

Hence f = c for some c ∈ C. A = c id.

Lemma 1.13

1. For f ∈ P2, there exist g1, ..., gk, h1, ..., hk ∈ P2 such that f =
∑k

i=1 {gi, hi};

2. For f ∈ P3, there exist g1, ..., gk ∈ P3 and h1, ..., hk ∈ P2 such that f =
∑k

i=1 {gi, hi}.

Proof. We adopt the notion of multi-index α = (α1, ..., αn), where α1, ..., αn ∈ N. Let xα := (x1)α1 · · · (xn)αn

and similar for pα.

Let g1 :=
∑n

i=1 x
ipi ∈ P2. Note that

{
g1,x

αpβ
}

= (|β| − |α|)xαpβ.

1. Let f := xαpβ ∈ P2. If |α| 6= |β|, then f =

{
g1,

1

|β| − |α|
xαpβ

}
. If |α| = |β|, then f = xjpk for

some j, k. We have f =

{
1

2
(xj)2,

1

2
(pk)

2

}
. The result follows from taking linear combinations of

such f .

2. Let f := xαpβ ∈ P3. Then |α| 6= |β| and we have f =

{
g1,

1

|β| − |α|
xαpβ

}
. The result follows

from taking linear combinations of such f .

Proposition 1.14

Let Q satisfies the conditions in the Groenewold’s Theorem 1.4. Then Q = QW on P63.

Proof. It is clear that Q = QW on P61. Let f ∈ P2. Let Af := Q(f)−QW(f). For any g ∈ P1,

Q[{f, g}] =
1

i~
[Q(f), Q(g)] =

1

i~
([QW(f), QW(g)] + [Af , QW(g)])

= QW({f, g}) +
1

i~
[Af , QW(g)] = Q({f, g}) +

1

i~
[Af , QW(g)] .

We used the fact that {f, g} ∈ P1 in the last equality. Hence [Af , QW(g)] = 0 for all g ∈ P1. By Lemma

1.12, Af = af id for af ∈ C. Now for f, h ∈ P2,

i~Q [{f, h}] = [QW(f) + af id, QW(h) + ah id] = [QW(f), QW(h)] = i~QW ({f, h}) .
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By Lemma 1.13.1, we deduce that Q(f) = QW(f) for all f ∈ P2.

Let f ∈ P3. Let Bf := Q(f)−QW(f). For g ∈ P1, we have {f, g} ∈ P2. Then the result we just proved

shows that Q({f, g}) = QW({f, g}). The same method as above shows that Bf = bf id for bf ∈ C. Then

for h ∈ P2,

i~Q [{f, h}] = [QW(f) + bf id, QW(h)] = [QW(f), QW(h)] = i~QW ({f, h}) .

By Lemma 1.13.2, we deduce that Q(f) = QW(f) for all f ∈ P3. This finishes the proof.

Proof of Theorem 1.4. cf. §13.4 of [Hal13].

Suppose that Q exists. It suffices to consider the case n = 1. Let x := x1 and p := p1. Note that we

have the identity of Poisson brackets:{
x3, p3

}
= 9x2p2 = 3

{
x2p, xp2

}
=

1

12

{{
x3, p2

}
,
{
x2, p3

}}
. (1.9)

Now we apply the quantisation map Q to both sides of the equation. Note that by Proposition 1.14,

Q = QW when acting on these polynomials. We have

0 = Q
({
x3, p3

})
− 1

12
Q
({{

x3, p2
}
,
{
x2, p3

}})
=

1

i~
[Q(x3), Q(p3)]− 1

12(i~)3

[[
Q(x3), Q(p2)

]
,
[
Q(x2), Q(p3)

]]
=

1

i~
[QW(x3), QW(p3)]− 1

12(i~)3

[[
QW(x3), QW(p2)

]
,
[
QW(x2), QW(p3)

]]
=

1

i~
[x̂3, p̂3]− 1

12(i~)2

[[
x̂3, p̂2

]
,
[
x̂2, p̂3

]]
= 3(x̂2p̂2 + p̂x̂2p̂+ p̂2x̂2)− 1

3i~
[
(x̂2p̂+ x̂p̂x̂+ p̂x̂2), (p̂2x̂+ p̂x̂p̂+ x̂p̂2)

]
= 3

(
3p̂2x̂2 + 6i~p̂x̂+ 2(i~)2 id

)
− 1

3

(
27p̂2x̂2 + 54i~p̂x̂+ 9(i~)2 id

)
= −3(i~)2 id

which is a contradiction.



Chapter 2

Deformation Theory

2.1 Deformations of Associative Algebras

In this section, we consider the deformation problems in a more general setting. From now on, we denote

by k a fixed ground field of characteristic 0. Let A be an associative k-algebra with the multiplication map

µ : A ⊗k A → A. We would like to deform µ into another product ? : AR ⊗k AR → AR using a test algebra

R.

2.1.1 Deformation Functor

Definition 2.1. A test algebra R is a commutative local Artinian k-algebra with the maximal ideal mR and

the residue field R/mR
∼= k. The category of test algebras is denoted by ℛ, whose morphisms are local k-algebra

homomorphisms, that is, the k-algebra homomorphisms f : R→ S satisfying f(mR) ⊆ mS .

Remark. Note that R is commutative local Artinian implies that mR is nilpotent. We will use this fact in the

proof of Lemma 2.21.

Definition 2.2. Let R be a test algebra. Let AR := A ⊗k R. An R-deformation of the multiplication µ on

A is an associative R-linear map ? : AR ⊗R AR → AR such that µ = ? on AR/mR ⊗R AR/mR. This can be

represented in the commutative diagram:

AR ⊗R AR A⊗k A

AR A

modmR

?
modmR

µ

Note that an R-deformation is uniquely determined by its restriction on A⊗kA. The R-deformations ? and ?′ are

said to be equivalent, if there exists an R-module automorphism ϕ : AR → AR such that ϕ(u? v) = ϕ(u) ?′ ϕ(v)

and ϕ = id on AR/mR.

Definition 2.3. For a test algebra R, let DefoA(R) be the set of equivalence classes of R-deformations of A.

Then we obtain a functor DefoA : ℛ → Set, called the deformation functor.

Example 2.4. An infinitesimal deformation of A is a R-deformation with R = k[~]/
〈
~2
〉
.

Example 2.5. A formal deformation is a R-deformation with R = k[[~]]. Although k[[~]] is not Artinian, it

can be expressed as a completion in the ~-adic topology: k[[~]] = lim←−m k[~]/〈~m〉. In fact, we have an natural

isomorphism of functors:

DefoA(k[[~]]) ' lim←−mDefoA(k[~]/〈~m〉).

So we can study the formal deformations by studying the deformation functor.

11
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Example 2.6. Let A := C∞(M). A star product ? on A is an associative R[[~]]-deformation such that u ? v =

uv +
∞∑
n=1

~nBn(u, v) for u, v ∈ A, where Bn are bi-differential operators in the local coordinates of M .

2.1.2 Hochschild Cohomology

The information of deformations are encoded in the Hochschild complex defined below. This part consists of

standard material which can be found in any homological algebra textbook. We include the details here for

completeness.

Definition 2.7. For each p ∈ Z>0, let Cp(A,A) := Homk(A
⊗p, A). We define the Hochschild differential

δH : Cp(A,A)→ Cp+1(A,A) as

(δHf)(u0, ..., up) = u0f(u1, ..., up) +

p∑
r=1

(−1)rf(u0, ..., ur−1ur, ..., up) + (−1)p+1f(u0, ..., up−1)up.

The chain can be augmented to p = 0 by defining δH : C0(A,A) ∼= A→ C1(A,A) as

(δHa)(u0) = u0a− au0.

Lemma 2.8. Hochschild Complex

The Hochschild differential δH satisfies δ2
H = 0. Therefore (Cp(A,A))p>0 is a cochain complex, called the

Hochschild complex.

Proof. Let Ae := A ⊗k Aop. We define the bar complex (BnA, bn)n>0 as follows. Let BnA := A ⊗k A⊗n ⊗k A,

with the left Ae-module structure

(u⊗ u′)(u1 ⊗ · · ·un) := uu1 ⊗ · · · ⊗ unu′.

We define bn : BnA→ Bn−1A as the Ae-module homomorphism given by

bn(u0 ⊗ · · · ⊗ un+1) :=

n∑
k=0

(−1)k · · · ⊗ ukuk+1 ⊗ · · · .

We claim that bn−1 ◦ bn = 0. Indeed, bn−1 ◦ bn(u0 ⊗ · · · ⊗ un+1) is a linear combination of the elements

of form · · · ⊗ uiui+1 ⊗ · · · ⊗ ujuj+1 ⊗ · · · and · · · ⊗ ui−1uiui+1 ⊗ · · · . For each of these elements, there

are exactly two ways of contractions from u0⊗· · ·⊗un+1, with opposite signs, which cancels each other.

Hence (BnA, bn)n>0 is indeed a chain complex.

Next we have an Ae-module isomorphism ϕ : Cn(A,A)
∼−→ HomAe(BnA,A) given by f 7→ (u0 ⊗ · · · ⊗

un+1 7→ u0f(u1, ..., un)un+1). Moreover, the following diagram commutes:

Cn+1(A,A) HomAe(Bn+1A,A) Bn+1A

Cn(A,A) HomAe(BnA,A) Bn+1A

δH

ϕ

ϕ

dual

dual
bb∨

This implies that δ2
H = 0.

The cohomology of the Hochschild complex (C•(A,A), δH) is called Hochschild cohomology, and is denoted

by HH•(A,A). We shall see in Section 2.3.3 that, when A is the algebra of smooth functions on a smooth

manifold M , the Hochschild cohomology computes the polyvector fields on M .
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Remark. The n-th Hochschild cohomology HHn(A,A) can also be identified with the Ext group ExtnAe(A,A)

in the category of Ae-modules.

2.1.3 Gerstenhaber Bracket

We define a graded Lie bracket on the shifted1 Hochschild complex C•(A,A)[1].

Definition 2.9. For f ∈ Cp+1(A,A) and g ∈ Cq+1(A,A), we define the Gerstenhaber product f • g ∈
Cp+q+1(A,A) as

(f • g)(u0, ..., up+q) :=

p∑
i=0

(−1)iq(f •i g)(u0, ..., up+q)

:=

p∑
i=0

(−1)iqf(u0, ..., ui−1, g(ui, ..., ui+q), ui+q+1, ..., up+q).

Then we define the Gerstenhaber bracket of f and g as

[f, g]G := f • g − (−1)pqg • f

and extend it k-bilinearly to C•(A,A).

Lemma 2.10. Graded Jacobi identity for Gerstenhaber bracket

For f ∈ Cp+1(A,A), g ∈ Cq+1(A,A), and h ∈ C•(A,A), the Gerstenhaber bracket satisfies
[f, [g, h]G]G = [[f, g]G , h]G + (−1)pq [g, [f, h]G]G .

Proof. By linearity, we may assume that h ∈ Cr+1(A,A). Consider the associator of the Gerstenhaber product:

A(f, g, h) := (f • g) • h− f • (g • h).

A direct computation shows that

[[f, g]G , h]G + (−1)|f |·|g| [g, [f, h]G]G − [f, [g, h]G]G

= −(−1)pqA(g, f, h) +A(f, g, h)− (−1)qrA(f, h, g)

+ (−1)pq+prA(g, h, f) + (−1)pr+qrA(h, f, g)− (−1)pq+pr+qrA(h, g, f).

The right-hand side of the above equation would vanish if the associator satisfies the graded symmetry:

A(f, g, h) = (−1)qrA(f, h, g).

By definition we have:

A(f, g, h)− (−1)qrA(f, h, g) =

p∑
i=0

p+q∑
j=0

(−1)i(q+r)(f •i g) •j h−
p∑
i=0

q∑
j=0

(−1)iqf •i (g •j h)

− (−1)qr

 p∑
i=0

p+r∑
j=0

(−1)i(q+r)(f •i h) •j g −
p∑
i=0

r∑
j=0

(−1)irf •i (h •j g)

 (2.1)

The composition of partial products satisfies:

1For a graded vector space V :=
⊕

V i, the shifted space V [k] has the grading V [k]i := V i+k.
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(f •i g) •j h =


(f •j h) •i g, i > j,

f •i (g •j−i h), i 6 j 6 i+ q,

(f •j−q h) •i g, i+ q < j.

Substituting this into (2.1) we see that the right-hand side is cancalled. HenceA(f, g, h) = (−1)qrA(f, h, g).

Lemma 2.11. Hochschild Differential via Gerstenhaber Bracket

For f ∈ Cp(A,A), we have

δHf = (−1)p+1 [µ, f ]G ,

where δH is the Hochschild differential and µ ∈ C2(A,A) is the multiplication on A.

Proof. This is straightforward by definition.

[µ, f ]G (u0, ..., up) = (µ • f)(u0, ..., up)− (−1)p−1(f • µ)(u0, ..., up)

= f(u0, ..., up−1)up + (−1)p−1u0f(u1, ..., up) +

p−1∑
r=1

(−1)r+pf(u0, ..., ur−1ur, ..., up)

= (−1)p+1(δHf)(u0, ..., up+1).

Remark. For reasons which will be clear shortly, we define a modified differential d on the Hochschild

complex by dHf = (−1)p+1δHf for f ∈ Cp(A,A). Then the new differential satisfies dHf = [µ, f ]G for any

f ∈ C•(A,A). We will be using dH instead of δH from now on.

Corollary 2.12

The multiplication µ on A has vanishing Gerstenhaber bracket: [µ, µ]G = 0.

Proof. This follows from associativity of µ:

[µ, µ]G(u, v, w) = 2u(vw)− 2(uv)w = 0.

Remark. The same proof shows that the associativity of any η ∈ C2(A,A) is equivalent to [η, η]G = 0.

Lemma 2.13. Graded Leibniz Rule

For f ∈ Cp+1(A,A) and g ∈ Cq+1(A,A), we have dH [f, g]G = [dHf, g]G + (−1)p [f, dHg]G.

Proof. By Lemma 2.11, this is the the graded Jacobi identity, which is Lemma 2.10.

Remark. The compatible structure of a differential and a graded Lie bracket on the Hochschild complex gives

rise to a structure of differential graded Lie algebra, which is introduced in the next section.
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2.2 Differential Graded Lie Algebras

Definition 2.14. A graded Lie algebra g =
⊕

i∈Z g
i is a Z-graded vector space over a field k with a bilinear

map [−,−] : g× g→ g, satisfying that

• [x, y] ∈ g|x|+|y|;

• Graded skew-symmetry: [x, y] = −(−1)|x|·|y|[y, x];

• Graded Jacobi identity: (−1)|x|·|y|[[x, y], z] + (−1)|y|·|z|[[y, z], x] + (−1)|z|·|x|[[z, x], y] = 0.

where x, y, z ∈ g are homogeneous elements with grading |x|, |y|, |z| respectively.

A differential graded Lie algebra (DGLA) is a graded Lie algebra g with a differential d : gi → gi+1 which

is k-linear of degree 1 and satisfies that

• Graded Leibniz rule: d[x, y] = [dx, y] + (−1)|x|[x,dy];

• Sqaure-zero: d2 = 0.

Remark. Let g be a graded Lie algebra. Then the zeroth grading g0 is a Lie algebra in the usual sense.

Example 2.15. Following the results established in the previous section, the shifted Hochschild complex

C•(A,A)[1] with the Gerstenhaber bracket [−,−]G and the modified Hochschild differential d is a DGLA.

Example 2.16. Let g be a DGLA over k, and S be a graded commutative k-algebra, that is, ab = (−1)|a|·|b|ba

for homogeneous a, b ∈ S. We can define a DGLA structure on g⊗k S as follows:

• g⊗k S is graded by (g⊗k S)i =
⊕
p+q=i

(gp ⊗k Sq);

• The differential is given by d(x⊗ a) = dx⊗ a for x ∈ g and a ∈ S;

• The graded Lie bracket is given by [x ⊗ a, y ⊗ b] = (−1)|a|·|y|[x, y] ⊗ ab for homogeneous x, y ∈ g and

a, b ∈ S.

A DGLA (g,d) is naturally a cochain complex. The corresponding cohomology H•(g) :=
⊕

i∈Z Hi(g) is a graded

vector space with an induced graded Lie bracket. H•(g) with the zero differential is again a DGLA.

Definition 2.17. A morphism of DGLAs f : (g, [, ]g, dg)→ (h, [, ]h,dh) is a k-linear map f : g→ h homoge-

neous of degree 0 such that f ◦ dg = dh ◦ f and f([x, y]g) = [f(x), f(y)]h.

gi gi+1

hi hi+1

dg

dh

f f

If f induces the isomorphism of the cohomologies H•(f) : H•(g)→ H•(h), then f is called a quasi-isomorphism

of DGLAs.

2.2.1 Maurer–Cartan Equation

In general deformation theory, the philosophy due to Deligne ([Del87]) is that deformation problems in charac-

teristic 0 are controlled by some differential graded Lie algebra. For deformation of algebras, the DGLA is the
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shifted Hochschild complex. We show that the deformation functor we defined in the previous section can be

identified with a quotient of the set of zeroes of the Maurer–Cartan equation.

Definition 2.18. Let g be a DGLA. For x ∈ g1, the Maurer–Cartan equation is given by

dx+
1

2
[x, x] = 0. (2.2)

The set of solutions is denoted by MC(g). It is clear from definition that the solutions of the Maurer–Cartan

equation is preserved under a morphism of DGLAs.

MC(g) is also preserved under the gauge actions of g0, which will be defined and studied in the following. For

this part we follow the approach outlined in [Man05].

We would like to adjoint an element δ of degree 1 to g such that dx = [δ, x]. To do this, we construct a new

DGLA gδ given by g1
δ = g1 ⊕ kδ and giδ = gi for i 6= 1. The graded Lie bracket and the differential are defined

for homogeneous elements by

[x+ vδ, y + wδ]δ = [x, y] + vdy + (−1)|x|wdx, dδ(x+ vδ) = dx = [x, vδ]δ.

The Maurer–Cartan equation can be expressed as

dx+
1

2
[x, x] = 0 ⇐⇒ [x+ δ, x+ δ]δ = 0. (2.3)

We define the right adjoint action of g0 on g1
δ , given by ad(x0)(y + vδ) = [y + vδ, x0]δ. Suppose that g0 is ad-

nilpotent. The following lemma shows that the Lie algebra action can be exponentiated to a group action:

Lemma 2.19. Exponentiation of Nilpotent Lie Algebras

There exists a functor exp, which attaches a group G to each nilpotent Lie algebra h, such that there is

a surjection exp: h → G satisfying exp(x) exp(y) = exp(x ? y), where x ? y ∈ h is given by the Baker–

Campbell–Hausdorff formula:

x ? y := x+ y +
1

2
[x, y] +

1

12
[x, [x, y]]− 1

12
[y, [x, y]] + · · · . (2.4)

The infinite sum truncates at some finite term because of the nilpotency of h.

Proof. A discussion of this fact can be found in e.g. [Get09].

Remark. Moreover, for any representation ρ : h → gl(V ) such that ρ(h) is a nilpotent subalgebra of gl(V ),

the corresponding exponential representation exp(ρ) : exp(h)→ GL(V ) is given by (exp ρ) ea = eρ(a), where ea

denotes the usual exponential of an endomorphism.

Therefore ad induces the action of exp
(
g0
)

on g1
δ . We embed g1 into g1

δ as a hyperplane
{
x+ δ : x ∈ g1

}
, which

is preserved under this group action. Explicitly, we obtain a right action of exp
(
g0
)

on g1, given by

exp(x0) 7−→
(
y 7−→ ead(x0)(y + δ)− δ = y + dx0 + [y, x0] +

1

2
([dx0, x0] + [[y, x0], x0]) + · · ·

)
The group exp

(
g0
)

is called the gauge group. On the other hand, ad induces the right action of g0 on g1 given

by

x0 7−→ (y 7−→ dx0 + [y, x0]) .
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The key observation is that:

Lemma 2.20

The gauge action of exp
(
g0
)

on g1 preserves the set MC(g) of the solutions of the Maurer–Cartan equation.

Proof. We have [x+ δ, x+ δ]δ = 0 if and only if x ∈ MC(g) by (2.3). For convenience we denote by x · exp(x0)

the right action of exp(x0) on x ∈ g1. Let x ∈ MC(g). We have

d(x · exp(x0)) +
1

2
[x · exp(x0), x · exp(x0)]

= [δ, ead(x0)(x+ δ)]δ +
1

2

(
[ead(x0)(x+ δ), ead(x0)(x+ δ)]δ − 2[δ, ead(x0)(x+ δ)]δ

)
= ead(x0)[x+ δ, x+ δ]δ = 0.

This shows that x · exp(x0) ∈ MC(g).

Lemma 2.21

Suppose that R is a test k-algebra (cf. Definition 2.1) and g is any DGLA. Then the DGLA g ⊗k mR is

ad-nilpotent in its zeroth grading.

Proof. The grading of mR is centred at zero, so (g ⊗k mR)0 = g0 ⊗k mR. The graded Lie bracket is given by

[x⊗ a, y⊗ b] = [x, y]⊗ ab, where x, y ∈ g are homogeneous and a, b ∈ mR. Since R is local Artinian, mR

is nilpotent. For sufficiently large n, we have

ad(x⊗ a)n(y ⊗ b) = (adx)n(y)⊗ anb = 0.

By taking linear combinations we deduce that (g⊗k mR)0 is ad-nilpotent.

Following 2.21, for a test algebra R, we have a well-defined action of exp
(
g0 ⊗k mR

)
on MC(g⊗k mR). The set

of orbits is denoted by

MCg(R) := MC(g⊗k mR)/ exp
(
g0 ⊗k mR

)
. (2.5)

This is referred as the Maurer–Cartan moduli set. We can also check that the guage actions are preserved under

a morphism of DGLAs. In this way we obtain a functor MCg : ℛ → Set, called the Maurer–Cartan functor

associated to g. This is related to the deformation functor in Definition 2.3 by the following proposition.

Proposition 2.22. Deformation via Maurer–Cartan Functor

Let A be an associative k-algebra, and C•(A,A)[1] be the corresponding shifted Hochschild complex. Then

we have an isomorphism of functors:

DefoA ' MCC•(A,A)[1].

Proof. Let R be a test algebra. Let µ be the multiplication on A, We consider ? ∈ Homk(A⊗k A,A⊗k R), and

let B(u, v) := u ? v − uv. So B = ? − µ is of degree 1 in the DGLA g := C•(A,A)[1] ⊗k mR. We can

compute the Maurer–Cartan equation for B:

dHB +
1

2
[B,B]G = d?− dµ+

1

2
[µ, µ]G +

1

2
[?, ?]G − [µ, ?]G =

1

2
[?, ?]G .
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The vanishing of [?, ?]G is exactly the associativity condition for ?. We deduce that ? is a R-deformation

if and only if B ∈ MC(g).

Next, we need to check that the equivalence of R-deformations in Definition 2.2 is generated by the

gauge group exp
(
g0
)
. Before that we need to know how this action works. Since we have µ ∈ g1 such

that dHx = [µ, x]G for x ∈ g, the adjunction of δ is unnecessary. exp
(
g0
)

acts on g1 by

exp(x0) 7−→
(
y 7−→ e[−,x0]G(y + µ)− µ

)
.

Suppose that ? and ?′ are two R-deformations. Note that B = ? − µ and B′ = ?′ − µ are related by a

gauge action exp(f) for some f ∈ g0 if and only if ?′ = e[−,f ]G ?. This is equivalent to saying that f is

an R-equivalence of ? and ?′ in the sense of Definition 2.2.

In summary, we obtain a bijective correspondence:

DefoA(R) ' MCC•(A,A)[1](R).

It is straightforward to check that the correspondence is functorial in R.

Remark. It is more common in the literature (cf. [Kon97], [Man05]) to call MCg the deformation functor.

Nevertheless we have shown that this is equivalent to our Definition 2.3.

Remark. Following Example 2.5, it is straightforward to extend the previous discussion to the formal defor-

mation R = k[[~]] as a completion:

g ⊗̂mR := lim←−n g⊗ ~ · k[~]/〈~n〉 = ~g[[~]].

For x ∈ (g ⊗̂mR)1 = ~g1[[~]], the associated Maurer–Cartan equation is called the formal Maurer–Cartan

equation.

Before closing the section, we mention a classical result in deformation theory. We will present and prove a

generalised version of it in Section 2.4.4.

Theorem 2.23. Quasi-Isomorphism Theorem for DGLAs

Let f : g → g′ be a morphism of DGLAs. If f is a quasi-isomorphism, then f induces an natural isomor-

phism of the Maurer–Cartan functors:

MCg ' MCg′ .

Proof. See Theorem 3.1 of [Man05].

2.3 Polydifferential Operators and Polyvector Fields

We have seen how the differential graded Lie algebra controls the deformation problem of a general associative

algebra. In this section we return to the settings in differential geometry. Let M be a smooth manifold. Denote

by A := C∞(M) the smooth functions on M .

Definition 2.24. An n-differential operator f ∈ HomR(A⊗n, A) is a n-linear map such that f is a differential

operator in each argument. The set of all n-differential operators is denoted by Dn−1
poly (M). Note that Dn

poly(M) ⊆
Cn+1(A,A) and δ(Dn

poly(M)) ⊆ Dn+1
poly (M), where δ is the Hochschild differential. Therefore D •poly(M) is a

subcomplex of the shifted Hochschild complex C•(A,A)[1], and is called the differential Hochschild complex.
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Just like C•(A,A)[1], D •poly(M) with the modified Hochschild differential dH and the Gerstenhaber bracket

[−,−]G is a DGLA.

With R = R[[~]] and mR = ~R[[~]], an analogy of Proposition 2.22 is the following:

Proposition 2.25. Star Products via Maurer–Cartan Equation

The set of equivalence classes of star products on M is in bijective correspondence with the set of solutions

of the formal Maurer–Cartan equation for Dpoly(M) modulo gauge actions:

MCDpoly(M)(R[[~]]) = MC(~Dpoly(M)[[~]])/ exp
(
~D 0

poly(M)[[~]]
)
.

2.3.1 Polyvector Fields

To study the deformations of the Poisson structure on M , we need to introduce another differential graded Lie

algebra.

Definition 2.26. Let TM be the tangent bundle of M . An n-vector field is a section of the n-th exterior

product
∧n TM . The set of n-vector fields is denoted by T n−1

poly (M) := Γ(M,
∧n TM). The set of polyvector

fields is the graded vector space given by

Tpoly(M) =

∞⊕
i=−1

T i
poly(M) = Γ(M,

∧•TM)[1],

where
∧0 TM = M by convention. Also notice that we have shifted the degree by 1, as in the case of Dpoly(M).

Recall that T 0
poly(M) = Γ(M,TM) has a Lie algebra structure given by the Lie derivatives:

[X,Y ] := LXY.

It has a unique extension to the graded Lie algebra structure on Tpoly(M):

Definition 2.27. For X := X1 ∧ · · · ∧ Xp ∈ T p−1
poly (M) and Y := Y1 ∧ · · · ∧ Yq ∈ T q−1

poly (M), we define the

Schouten–Nijenhuis bracket [X,Y ]SN ∈ T p+q−2
poly (M) as

[X,Y ]SN :=

p∑
r=1

q∑
s=1

(−1)r+s[Xr, Ys] ∧X1 ∧ · · · ∧ X̂r ∧ · · · ∧Xp ∧ Y1 ∧ · · · ∧ Ŷs ∧ · · · ∧ Yq.

where X̂i denotes the omission of Xi in the expression. If f ∈ C∞(M) = T −1
poly(M), we define:

[X, f ]SN :=

p∑
r=1

(−1)p−rXr(f) ·X1 ∧ · · · ∧ X̂r ∧ · · · ∧Xp.

Finally we extend the bracket bilinearly to T •poly(M).
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Lemma 2.28. Properties of Schouten–Nijenhuis Bracket

The Schouten–Nijenhuis bracket is the unique graded Lie bracket on Tpoly(M) such that

• [X, f ]SN = LXf = X(f) for X ∈ Γ(M,TM) and f ∈ C∞(M);

• [X,Y ]SN = LXY for X,Y ∈ Γ(M,TM);

• [X,Y ∧ Z]SN = [X,Y ]SN ∧ Z + (−1)(p−1)qY ∧ [X,Z]SN (∗)

for X,Y, Z ∈ Tpoly(M) homogeneous of degree p, q, r respectively.

Proof. We can verify all properties (graded skew-symmetry, graded Jacobi identity, equation (∗)) of the Schouten–

Nijenhuis bracket directly by definition, though some brute force computations are inevitable. We omit

the details, which can be found in, e.g. [CI04]. The uniqueness is proven by inductions on the degree of

X and Y consecutively.

Remark. Now Tpoly(M) with the Schouten–Nijenhuis bracket [−,−]SN and the zero differential is a DGLA.

In local coordinates, a polyvector field X ∈ T p+1
poly (M) has the expansion in terms of the frame vector fields:

X =
dimM∑

i1,...,ip=1

Xi1,...,ip∂i1 ∧ · · · ∧ ∂ik .

Analogous to the Gerstenhaber product, for X ∈∈ T p−1
poly (M) and Y ∈∈ T q−1

poly (M) we can define the product

X � Y ∈ T p+q−2
poly (M) by:

X � Y :=

p∑
r=1

dimM∑
i1,...,ip,j1,...,jq=1

(−1)r+1Xi1,...,ip∂rY
j1,...,jq∂i1 ∧ · · · ∧ ∂̂ir ∧ · · · ∧ ∂ip ∧ ∂j1 ∧ · · · ∧ ∂jq (2.6)

Lemma 2.29

The Schouten–Nijenhuis bracket can be expressed in terms of the product defined in (2.6) as:

[X,Y ]SN = (−1)pX � Y − (−1)(p−1)qY �X

where X ∈ T p
poly(M) and Y ∈ T q

poly(M).

Proof. See Lemma IV.2.1 of [AMM02].

Remark. Let V := Γ(M,TM). Then T p−1
poly (M) =

∧p V . Using the décalage isomorphism given in (2.9), it is

isomorphic to Symp(V [1])[−p] via décp. In this way the product (2.6) has the following compact form:

X � Y = décp+q−1

(
dimM∑
r=1

∂déc−1
p (X)

∂ψi

∂déc−1
p (Y )

∂xi

)
, (2.7)

where X ∈ T p−1
poly (M), Y ∈ T q−1

poly (M), and ψi := déc−1
1 (∂i) is an odd variable of degree 1.
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2.3.2 Poisson Deformations

Now we would like to show how the DGLA Tpoly(M) controls the deformations of the Poisson bracket on M .

First we shall make the definition precise. For a general Poisson algebra, the Poisson deformations can be

formulated analogously to Definition 2.2. As before, We denote by k a ground field of characteristic 0.

Definition 2.30. Let R be a test algebra. Let AR := A ⊗k R. A Poisson R-deformation of the Poisson

bracket π0 on A is a Poisson bracket π : AR⊗k AR → AR such that π = π0 on AR/mR⊗k AR/mR. The Poisson

R-deformations π and π′ are said to be equivalent, if there exists an R-module automorphism ϕ : AR → AR
such that ϕ(π(u, v)) = π′(ϕ(u), ϕ(v)) and ϕ = id on AR/mR.

For A = C∞(M) and R = R[[~]], a Poisson bracket on AR is an element of T 1
poly(M)[[~]]. We say that it defines

a formal Poisson structure on M in contrast to an actual Poisson structure on M , which is an element of

T 1
poly(M).

Lemma 2.31

The bivector field π on M has vanishing Schouten–Nijenhuis bracket [π, π]SN = 0 if and only if π is a

Poisson bracket.

Proof. In local coordinates, π =
dimM∑
i,j=1

πij∂i ∧ ∂j . The equation [π, π]SN = 0 becomes:

dimM∑
i,j,k,`=1

πij∂jπ
k`∂i ∧ ∂k ∧ ∂` = 0.

On the other hand, π defines a Poisson structure if and only if it satisfies the Jacobi identity:

π(π(f, g), h) + π(π(g, h), f) + π(π(h, f), g) = 0, f, g, h ∈ C∞(M).

In local coordinates, this becomes

dimM∑
i,j,k,`=1

πij∂jπ
k` (∂if∂kg∂`h+ ∂ig∂kh∂`f + ∂ih∂kf∂`g) .

So we have the equivalence as claimed.

Proposition 2.32. Poisson Structures via Maurer–Cartan Equation

The set of equivalence classes of formal Poisson structures on M is in bijective correspondence with the

set of solutions of the formal Maurer–Cartan equation for Tpoly(M) modulo gauge actions:

MCTpoly(M)(R[[~]]) = MC(~Tpoly(M)[[~]])/ exp
(
~T 0

poly(M)[[~]]
)
.

Proof. The formal Maurer–Cartan equation for Tpoly(M) is given by

dπ +
1

2
[π, π]SN =

1

2
[π, π]SN = 0, π ∈ ~T 1

poly(M)[[~]].

The previous lemma shows that the set of solutions corresponds to the set of formal Poisson structures.

By a similar proof as Proposition 2.22, it can be shown that the equivalence relation on formal Poisson

structures is exactly generated by the gauge actions exp
(
~T 0

poly(M)[[~]]
)

.
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Remark. Combining Theorem 2.23, Proposition 2.25, and Proposition 2.32, it is tempting to look for a quasi-

isomorphism of DGLAs between Tpoly(M) and Dpoly(M), in which case we would obtain the claimed bijective

correspondence (1.7). Unfortunately such quasi-isomorphism does not exist. In the next part we will construct

a quasi-isomorphism of graded vector spaces, which does not preserve the graded Lie brackets. This is the first

step towards the construction of a weaker notion of quasi-isomorphism, which will be introduced in the Section

2.4.

2.3.3 Hochschild–Kostant–Rosenberg Theorem

For a polyvector field X = X1 ∧ · · · ∧Xn ∈ T n−1
poly (M), X acts on f1, ..., fn ∈ C∞(M) as

(X1 ∧ · · · ∧Xn)(f1, ..., fn) =
1

n!
det(Xi(fj))i,j .

This identifies X as a polydifferential operator which is skew-symmetric and 1-differential in each argument.

Therefore we obtain a morphism of graded vector spaces,

U
(0)
1 : Tpoly(M)→ Dpoly(M) (2.8)

which is equal to the identity map at degree −1. We called it the HKR map.

Vey proved the following version of the Hochschild–Kostant–Rosenberg Theorem 2 ([Vey75]), which says that

U
(0)
1 is a quasi-isomorphism of graded vector spaces.

Theorem 2.33. Smooth Hochschild–Kostant–Rosenberg Theorem

The HKR map U
(0)
1 : Tpoly(M)→ Dpoly(M) induces isomorphisms in the cohomology spaces

Hn(U
(0)
1 ) : T n

poly(M) = Hn(Tpoly(M))
∼−→ Hn(Dpoly(M)).

Proof. First we check that U
(0)
1 is a chain map. Since Tpoly(M) has zero differential, we must have dH◦U

(0)
1 = 0.

Indeed, for X = X0 ∧ · · · ∧Xp ∈ T p
poly(M) and f0, ..., fn ∈ C∞(M), we have

(−1)pdH(U
(0)
1 (X))(f0, ..., fp+1) = f0U

(0)
1 (X)(f1, ..., fn+1)

+

n+1∑
r=1

(−1)rU
(0)
1 (X)(f0, ..., fr−1fr, ..., fn+1) + (−1)pU

(0)
1 (X)(f0, ..., fn)fn+1

= f0U
(0)
1 (X)(f1, ..., fn+1) +

n+1∑
r=1

(−1)rfrU
(0)
1 (X)(f0, ..., f̂r, ..., fn+1)

+
n+1∑
r=1

(−1)rfr−1U
(0)
1 (X)(f0, ..., f̂r−1, ..., fn+1) + (−1)pfn+1U

(0)
1 (X)(f0, ..., fn)

= 0,

where we used the fact that U
(0)
1 (X) acts on each argument as a derivation. Let Hn(U

(0)
1 ) : T n

poly(M)→
Hn(Dpoly(M)) be the induced map in the n-th cohomology. Note that U

(0)
1 embed Tpoly(M) into Dpoly(M)

as a sub-complex of skew-symmetric 1-differential operators. So Hn(U
(0)
1 ) is injective. To show that it

is surjective, we shall show that every α ∈ D p
poly(M) is of the form:

2Originally, the HKR theorem was purposed by Hochschild, Kostant, and Rosenberg ([HKR62]) for smooth affine varieties.
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α = dHβ + γ

for some β ∈ D p−1
poly (M) and γ ∈ U

(0)
1 (T p

poly(M)). By a standard argument by the partition of unity,

it suffices to prove this in a local chart (cf. Proposition 2.13–15 of [GR99]). So we may assume that

M = Rd. We sketch the proof in this case following [GR99].

We use induction on the degree p of α ∈ D p
poly(M). For p = 0, cocycles are vector fields so the result

is true trivially. Suppose the result holds for all r < p. For α ∈ D p
poly(M), consider the term of highest

order q in f0:

α(f0, ..., fn) =
∑
|I|=q

∂If0 · ηI(f1, ..., fn) + · · · =
∑
|I|=q

(∂I ⊗ ηI)(f0 ⊗ · · · ⊗ fn) + · · · ,

where I = (i1, ..., iq) is a multi-index, and η ∈ D p−1
poly (M). Taking the differential, we note that α is a

p-cocycle implies that ηI are (p− 1)-cocycles. In such case, by induction hypothesis, ηI = dHξI + ζI for

some ξI ∈ D p−1
poly (M) and ζI ∈ U (0)

1 (T p
poly(M)). We claim that α is cohomologous to α′ ∈ D p

poly(M) with

the differential term highest order q′ in f0 such that q′ < q. This follows from a careful analysis of the

expansions of the terms ζI and ψ arising from

α+ dH

∑
|I|=q

∂I ⊗ ξI

 =
∑
|I|=q

∂I ⊗ ζI + ψ.

Refer to [GR99] for details. By induction, we reduce to the case q = 1, where

α =

p∑
i=0

∂i ⊗ ηi.

With ηi = dHξi + ζi as before, we have

α = −dH

(
p∑
i=0

∂i ⊗ ξi

)
+

p∑
i=0

∂i ⊗ ζi,

where

p∑
i=0

∂i⊗ζi is 1-differential in all arguments. Finally, we can show that every 1-differential operator

is cohomologous to its total skew-symmetrisation. Therefore α = dHβ + γ for some β ∈ D p−1
poly (M) and

γ ∈ U (0)
1 (T p

poly(M)) as claimed.

The HKR map U
(0)
1 is not a morphism of DGLAs, because the Schouten–Nijenhuis bracket is not mapped to the

Gerstenhaber bracket. However, the failure of U
(0)
1 being a graded Lie algebra homomorphism can be resolved

by finding a morphism U whose first-order approximation U1 = U
(0)
1 . This is the motivation of introducing

L∞-algebras and L∞-morphisms in the next section.

2.4 L∞-Algebras

In this section we discuss the L∞-algebras. We first present an abstract definition using graded coalgebras.

This allows us to define L∞-morphisms in a clean way. Then we show its equivalence with another definition

using the Taylor coefficients, which presents L∞-algebras as a generalisation of DGLAs in a natural way.
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2.4.0 Sign Conventions for Tensor Algebras

Before going into the main topic, we quickly review the constructions and sign conventions which will be useful

for the rest of the dissertation.

Convention. We adopt the Koszul sign convention. Let V and W be Z-graded vector spaces. Let f : V → V

and g : W →W be linear maps of degree |f | and |g| respectively. Then f ⊗ g ∈ End(V ⊗W ) is defined as

(f ⊗ g)(x⊗ y) := (−1)|g|·|x|f(x)⊗ g(y),

where x ∈ V and y ∈ W are homogeneous. Colloquially, we pick up a sign (−1)ab whenever we commute two

graded objects of degree a and b.

Definition 2.34. Let V =
⊕

i∈Z V
i be a graded k-vector space. Let V ⊗n be the n-th tensor product of V with

itself. For homogeneous elements x, y, we define the twisting map τ by

τ(x⊗ y) = (−1)|x|·|y|(y ⊗ x).

The symmetric product and the exterior product are identified as quotient spaces of V ⊗n:

Symn V := V ⊗n/〈x⊗ y − τ(x⊗ y)〉,
∧n V := V ⊗n/〈x⊗ y + τ(x⊗ y)〉.

The image of x1 ⊗ · · · ⊗ xn under the quotients are denoted by x1 · · ·xn and x1 ∧ · · · ∧ xn respectively. These

constructions give rise to the following algebras:

• Tensor algebra:

• Reduced tensor algebra:

• Symmetric algebra:

• Reduced symmetric algebra:

• Exterior algebra:

• Reduced exterior algebra:

⊗
(V ) :=

⊕∞
n=0 V

⊗n;⊗+(V ) :=
⊕∞

n=1 V
⊗n;

Sym(V ) :=
⊕∞

n=0 V
⊗n;

Sym+(V ) :=
⊕∞

n=1 Symn V ;∧
(V ) :=

⊕∞
n=0

∧n V ;∧+(V ) :=
⊕∞

n=1

∧n V .

Remark. These algebras are graded by the induced grading from V :

|x1 ⊗ · · · ⊗ xn| =
n∑
i=1

|xi|.

Convention. Let x := x1 ⊗ · · · ⊗ xn ∈ V ⊗n. We identify x with its projection in Symn V (resp. in
∧n V ).

Let σ ∈ Sn be a permutation. The Koszul sign εx(σ) (resp. χx(σ)) is defined as the change of sign when

permuting the product x in the symmetric (resp. exterior) algebra:

x1 · · ·xn = εx(σ)xσ(1) · · ·xσ(n), x1 ∧ · · · ∧ xn = χx(σ)xσ(1) ∧ · · · ∧ xσ(n).

Unlike the ungraded case, the definition of twisting map in a graded space allows the exchange of symmetric

and exterior product by a shift in the degree. This is encoded in the following lemma.
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Lemma 2.35. Décalage Isomorphism

There exists a canoncial isomorphism of degree 0 between the symmetric algebra and the shifted exterior

algebra, namely the décalage isomorphism, given by

décn : Symn(V [1])
∧n(V )[n]

x1 · · ·xn (−1)
∑n

i=1(n−i)(|xi|−1)x1 ∧ · · · ∧ xn
(2.9)

2.4.1 L∞-Algebras via Coalgebras

First of all, we need to introduce the coalgebras over a field k, which is the category-theoretic dual of the asso-

ciative algebras. The notions of co-associativity, co-commutativity, co-freeness, and so on can be defined as for

their counterparts for algebras, but with all arrows reversed in the corresponding commutative diagrams.

Definition 2.36. A co-associative coalgebra C over a field k is a k-vector space equipped with a k-linear

co-multiplication ∆: C → C ⊗k C satisfying the co-associativity:

(idC ⊗ ∆) ◦∆ = (∆⊗ idC) ◦∆.

A co-unit of C is a k-linear map e : C → k satisfying

(idC ⊗ e) ◦∆ = (e⊗ idC) ◦∆ = idC .

The commutative diagrams are shown below.

C C ⊗k C C C ⊗k C

C ⊗k C C ⊗k C ⊗k C C ⊗k C C

∆

∆
∆⊗ idC

idC ⊗∆ ∆

∆

idC ⊗e
e⊗ idC

A graded coalgebra C =
⊕

i∈ZC
i is both a graded vector space and a coalgebra, such that the co-

multiplication is compatible with the grading:

∆(Ci) ⊆
⊕
p+q=i

(Cp ⊗k Cq).

A morphism F : (C,∆) → (C ′,∆′) of graded coalgebras is a linear map F : C → C ′ of degree 0 such that

∆′ ◦ F = (F ⊗ F ) ◦∆. In [Kon97], such morphism is called a pre-L∞-morphism.

Definition 2.37. We introduce some more properties. A graded coalgebra C is said to be

• graded co-commutative, if ∆ = τ ◦∆, where τ is the twisting map;

• co-nilpotent, if for each x ∈ C there exists n ∈ N such that ∆n(x) = 0, where ∆n is defined recursively

by ∆n+1 = (∆⊗ idC⊗n) ◦∆n.

Example 2.38. Let V =
⊕

i∈Z V
i be a graded k-vector space. Recall that the reduced symmetric algebra

is given by

Sym+(V ) :=

∞⊕
n=1

Symn(V ) =

∞⊕
n=1

V ⊗n
/〈

x⊗ y − (−1)|x|·|y|y ⊗ x
〉
,

We can put a graded coalgebra structure on Sym+(V ). The co-multiplication is defined as
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∆(x1 · · ·xn) :=
n−1∑
i=1

∑
σ∈S(i,n−i)

εx(σ)(xσ(1) · · ·xσ(i))⊗ (xσ(i+1) · · ·xσ(n)),

where the (i, n−i)-shuffles S(i, n−i) is the set of σ ∈ Sn such that σ(1) < · · · < σ(i) and σ(i+1) < · · · < σ(n),

and the Koszul sign εx(σ) is defined in the previous part.

The reduced symmetric space Sym+(V ) is the co-free 3 co-nilpotent co-commutative coalgebra without co-unit

co-generated by V . By co-freeness we mean that Sym+ is the right adjoint functor of the forgetful functor to the

category of differential graded vector spaces. In this case, it has the universal property that any homomorphism

of co-nilpotent co-commutative coalgebras A→ V uniquely lifts to a homomorphism A→ Sym+(V ).

Sym+(V )

A V

∃ !

Definition 2.39. A co-derivation δ of degree d on a graded coalgebra C is a graded k-linear map δ : Ci → Ci+d

satisfying the co-Leibniz rule:

∆ ◦ δ = (δ ⊗ idC + idC ⊗ δ) ◦∆

Definition 2.40. An L∞-algebra (g, Q) is a graded k-vector space g with a co-derivation Q of degree 1

on the reduced symmetric space Sym+(g[1]) such that Q2 = 0. A L∞-morphism between L∞-algebras,

F : (g, Q)→ (g′, Q′), is a morphism of graded coalgebras F : Sym+(g[1])→ Sym+(g′[1]) such that F ◦Q = Q′◦F .

2.4.2 L∞-Algebras via Taylor Coefficients

Definition 2.41. Let F : (g, Q) → (g′, Q′) be a morphism of L∞-algebras. The Taylor coefficients of F

(resp. of Q) are the sequence of maps Fn : Symn(g[1])→ g′[1] (resp. Qn : Symn(g[1])→ g[1]). By the universal

property of Sym+(g[1]), the morphism F (resp. the codifferential Q) is uniquely determined by its Taylor

coefficients.

Under the décalage isomorphisms (2.9), a Taylor coefficient Qn corresponds to a multi-bracket `n = Qn ◦
déc−1

n :
∧n(g)[n]→ g of degree 2− n.

Lemma 2.42. Reconstruction from Taylor Coefficients

Let F : (g, Q) → (g′, Q′) be a morphism of L∞-algebras. Then Q and F are given in terms of the Taylor

coefficients by

Q(x1 · · ·xn) =

{1,...,n}∑
I,J

εx(I, J)Q|I|(xI) · xJ ;

F (x1 · · ·xn) =

∞∑
k=1

1

k!

{1,...,n}∑
I1,...,Ik

εx(I1, ..., Ik)F|I1|(xI1) · · ·F|Ik|(xIk).

Proof. See Theorem III.2.1 of [AMM02].

3The authors of [DMZ07] point out that, contrary to the common belief (e.g. in [Kon97]), Sym+(V ) is not co-free in the category
of co-commutative coalgebras without co-unit. The subtlety is discussed in Section II.3.7 of [MSS02]. Also see [Gra99] for a complete
proof of the claims.
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Remark. In the lemma I1, ..., Ik are multi-indices such that (I1, ..., Ik) is a partition of {1, ..., n}. The sum is

over all such possible partitions. For each partition (I1, ..., Ik), it defines an ordering of {1, ..., n} and hence a

permutation σ ∈ Sn in the following way: all elements of Ii precedes those of Ij if i < j; in each Ii the order

is the usual ordering of natural numbers. εx(I1, ..., Ik) is the Koszul sign associated to this permutation. The

convention for (I, J) is identical.

The conditionQ2 = 0 can be expanded into an infinite sequence of constraints imposing on the Taylor coefficients

Qn. For convenience, we denote by Qmn : Symn(g[1])→ Symm(g[1]) the map induced from Q by restriction on

the domain and projection on the codomain. In particular Q1
n = Qn is the n-th Taylor coefficient. Then Q2 = 0

is equivalent to
n∑
i=1

Q1
i ◦Qin = 0, ∀n ∈ Z>0. (2.10)

• For n = 1, (2.10) gives Q1 ◦ Q1 = 0, which implies that Q1 is a differential of degree 1 on g. Let

dx := (−1)|x|Q1(x) for homogeneous x ∈ g.

• For n = 2, (2.10) gives Q1(Q2(x · y)) +Q2(Q1(x) · y + (−1)|x|−1x ·Q1(y)) = 0. If [x, y] := `2(x ∧ y), then

this becomes the graded Leibniz rule of [−,−].

• For n = 3, (2.10) gives

(−1)|x|·|z|[[x, y], z] + (−1)|y|·|z|[[z, x], y] + (−1)|x|·|y|[[y, z], x]

= (−1)|x|·|z|
(

d(`3(x ∧ y ∧ z)) + `3(dx ∧ y ∧ z) + (−1)|x|`3(x ∧ dy ∧ z) + (−1)|x|+|y|`3(x ∧ y ∧ dz)
)
.

for homogeneous x, y, z ∈ g. This reduces to the graded Jacobi identity for [−,−] if `3 = 0.

Therefore, the L∞-algebras can be considered as the generalisation of DGLAs where the graded Jacobi identity

for the graded Lie bracket `2 holds only up to homotopy of a higher bracket `3. In particular, we have the

following result:

Proposition 2.43. From L∞-Algebras to DGLAs

An L∞-algebra (g, Q) defines a DGLA structure on g if and only if Qn = 0 for n > 3.

Remark. In general, it can be shown (cf. [DMZ07], [Jur19]) that the constraint Q ◦Q = 0 is equivalent to the

homotopy Jacobi identities satisfied by the multi-brackets:

n∑
i=1

(−1)i
∑

σ∈S(i,n−i)

χx(σ)`n+1−i
(
`i
(
xσ(1) ∧ · · · ∧ xσ(i)

)
∧ xσ(i+1) ∧ · · · ∧ xσ(n)

)
= 0.

This provides an equivalent alternative definition for L∞-algebras, which justifies some other names for L∞-

algebras (Lie-∞ algebras or strongly homotopy Lie algebras).

For the L∞-morphism F : (g, Q)→ (g′, Q′), an similar analysis for the condition F ◦Q = Q′◦F shows that:

• For n = 1, F1 ◦Q1 = Q′1 ◦F1, which implies that F1 is a morphism between the differerntial graded vector

spaces g and g′;

• For n = 2, F1 ◦Q2 −Q′2 ◦ F1 = (terms involving F2). This suggests the following result:
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Proposition 2.44. From L∞-Morphisms to DGLA Morphisms

An L∞-morphism F : (g, Q)→ (g′, Q′) between the DGLAs g and g′ defines a morphism of DGLAs if and

only if Fn = 0 for n > 2.

Remark. A morphism of L∞-algebras F : (g, Q) → (g′, Q′) is called an L∞-quasi-isomorphism, if the first

Taylor coefficient F1 : g→ g′ is a quasi-isomorphism, that is, F1 induces isomorphisms of the cohomology spaces

Hn(F1) : Hn(g)→ Hn(g′). In this case we say that g is homotopy equivalent to g′. It is not immediate that

homotopy equivalence defines an equivalence relation in the category of L∞-algebras. It is a non-trivial result

that an L∞-quasi-isomorphism admits an L∞-quasi-inverse, which will be shown in the next part.

2.4.3 Minimal Models

Definition 2.45. Let (g, Q) and (g′, Q′) be two L∞-algebras. We define the direct sum g ⊕ g′ to be an L∞-

algebra with the co-differential given in terms of the Taylor coefficients by

(Q⊕Q′)n((x1 + x′1) · · · (xn + x′n)) = Qn(x1 · · ·xn) +Q′n(x′1 · · ·x′n)

where x1, ..., xn ∈ g and x′1, ..., x
′
n ∈ g′.

Definition 2.46. Let (g, Q) be an L∞-algebra. It is called

• minimal, if the first Taylor coefficient Q1 = 0;

• linear contractible, if the Taylor coefficients Qn = 0 for n > 2 and H•(g, Q1) = 0.

Proposition 2.47. Decomposition Theorem

Every L∞-algebra is isomorphic to a direct sum of a minimal L∞-algebra and a linear contractible L∞-

algebra.

Proof. (Adapted from [AMM02] and [Jur19].) The first step of the proof is a general fact in linear algebra that

any cochain complex of vector spaces is a direct sum of a complex with zero differential and a complex

with zero cohomology. For this we consider a cochain complex (C•,d) of vector spaces. Note that the

two short exact sequences

0 ker dn Cn im dn 0

0 im dn−1 ker dn Hn(C•) 0

split. Therefore we have a decomposition Cn = Zn ⊕ Znc = Bn ⊕ Hn ⊕ Znc , where Zn = ker dn,

Bn = im dn−1 ∼= Zn−1
c , and Hn ∼= Hn(C•). We define a linear map hn : Cn → Cn−1 by the composition:

Cn Bn Zn−1
c Cn−1∼ .

hn is called the splitting map. It follows that Bn = im(dn−1 ◦ hn) and Znc = im(hn+1 ◦ dn). Therefore

we have a decomposition of the identity map on Cn:

id = pn + dn−1 ◦ hn + hn+1 ◦ dn,

where pn : Cn → Hn is the projection map. This shows that h is a chain homotopy between id and p.

Therefore the cohomology of H• ∼= H•(C•) induced by the projection p is trivial. On the other hand,
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the projection 1−pn : Cn → Bn⊕Znc is chain-homotopic to the zero map. Hence the induced differential

on B• ⊕ Z•c is zero.

Now let (g, Q) be an L∞-algebra. According to the above construction we can decompose (g, Q1) into

gm⊕gc, such that gm has zero differential: M1 = 0; and gc = B⊕Zc has zero cohomology: H•(gc, L1) = 0.

Correspondingly, the reduced symmetric algebra is decomposed as

Sym+(g[1]) ∼= Sym+(gm[1])⊕ Sym+(gc[1])⊕ Sym+(gm[1])⊗ Sym+(gc[1]).

We would like to find an L∞-isomorphism F : (g, Q)→ (g, Q) such that (g, Q) = (gm,M)⊕ (gm, L). In

other words, the codifferential Q satisfies

Q
∣∣
Sym+(gm[1])

= M, Q
∣∣
Sym+(gm[1])

= L, Q
∣∣
Sym+(gm[1])⊗Sym+(gc[1])

= M ⊗ id + id⊗L.

The process is equivalent to finding an infinite chain of L∞-isomorphisms:

(g, Q) (g, Q(1)) (g, Q(2)) (g, Q(3)) · · · (g, Q)F (1) = id F (2) F (3)

with the following properties (∗): for each k ∈ Z>0,

(∗.1) F (k) is an L∞-isomorphism such that F
(k)
j = 0 for all j 6= k;

(∗.2) Q
(k−1)
j = Q

(k)
j for all j 6= k;

(∗.3) Q
(k)
j (Sym+(gm[1])) ⊆ gm for 1 6 j 6 k;

(∗.4) Q
(k)
j

∣∣
Sym+(gc[1])

= 0 for 2 6 j 6 k;

(∗.5) Q
(k)
j

∣∣
Sym+(gm[1])⊗Sym+(gc[1])

= 0 for 1 6 j 6 k.

Assuming these, we will obtain an L∞-isomorphism F : (g, Q)→ (g, Q) such that the Taylor coefficients

of F and Q are given by Fk = F
(k)
k and Qk = Q

(k)
k for all k ∈ Z>0 respectively. Moreover, (g, Q) is

the claimed direct sum. The strategy is using induction on k to construct Qk and Fk and to prove the

properties (∗) for k. The base case k = 1 is proven in the first part of this proof. Now we assume

that Q(k−1) is given and construct Q
(k)
k and F

(k)
k . To ease the notations, we write Q1 = Q

(k−1)
1 = Q

(k)
1 ,

Qk = Q
(k−1)
k , Qk = Q

(k)
k , and Fk = F

(k)
k .

The condition F (k)◦Q(k−1) = Q(k)◦F (k) of F (k) being an L∞-morphism is expanded as follows (neglecting

any signs):

FkQ1(x1 · · ·xk) +Qk(x1 · · ·xk) = Q1Fk(x1 · · ·xk) +Qk(x1 · · ·xk). (2.11)

For x ∈ Symk(g[1]), k > 2, we say that x is of type r for 0 6 r 6 k, if x = x1 · · ·xk, where x1, ..., xr ∈ Zc
and xr+1, ..., xk ∈ Z. We write Type(x) = r. We define Qk(x) to be the projection of Qk(x) onto gm⊕Zc
if Type(x) = 0, and Qk(x) = 0 if Type(x) > 0. Then (∗.4) and (∗.5) holds immediately. Fk(x) will be

defined recursively for the type of x.

First, we consider Type(x) = 0, i.e. x = x1 · · ·xk for x1, ..., xk ∈ Z. An easy induction shows that

Qk(x) ∈ Z. Hence Qk(x) ∈ gm by definition, which proves (∗.3). On the other hand, the equation (2.11)

becomes

Q1Fk(x1 · · ·xk) = Qk(x1 · · ·xk)−Qk(x1 · · ·xk).

This defines Fk(x) up to an element in Z. Furthermore, suppose that x1 = Q1y1 ∈ B. The expansion of
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the equation Q(k−1) ◦Q(k−1) = 0 takes the form (neglecting any signs):

Qk(Q1y1 · x2 · · ·xk) +
∑

16i,j<k

Qi(· · ·Qj(· · · ) · · · ) +Q1Qk(y1 · x2 · · ·xk) = 0. (2.12)

Since Qi, Qj satisfies the property (∗.4) and (∗.5), all intermediate terms vanish. We are left with

Qk(Q1y1 · x2 · · ·xk) = −Q1Qk(y1 · x2 · · ·xk) ∈ B,

which implies that Qk(Q1y1 · x2 · · ·xk) = 0. Let Q̃1 : Symk(g[1]) → Symk(g[1]) be the coalgebra mor-

phism induced by Q1. Then QkQ̃1(x) = 0.

Next, we define Fk(x) recursively by the following construction. Let r > 1. Suppose that Fk(y) is

determined for all y with Type(y) 6 r− 2 and for all z with Type(z) = r− 1 up to an element in Z. Let

x ∈ Symk(g[1]) with Type(x) = r. We would like to determine Fk(x) up to an element in Z, and specify

Fk(y) for all y with Type(y) = r − 1.

The following sub-lemma (cf. Lemma V.3 of [AMM02]) will be useful in the subsequent proof:

Let x ∈ Symk(g[1]) with Type(x) = r > 0. If Q1x = 0, then there exists y of type r + 1 such

that x = Q̃1y.

Applying (2.11) to Q̃1(x), we obtain that

Q1FkQ̃1(x) = QkQ̃1(x),

where we used the facts that Q1Q̃1 = 0 and Q̃kQ̃1 = 0. Similar to (2.12), Q(k−1) ◦ Q(k−1) = 0 implies

that

Q1Qk(x) +QkQ̃1(x) = 0. (2.13)

Combining the two equations, we have FkQ̃1(x) + Qk(x) ∈ Z. Note that Type(Q̃1x) = r − 1, so that

FkQ̃1(x) is determined up to an element in Z. Now we specify FkQ̃1(x) such that

FkQ̃1(x) +Qk(x) =: b(x) ∈ B.

Applying (2.11) to x, we obtain that b(x) = Q1Fk(x). On the other hand, note that b(x) must satisfy

the constraint that b(x) = Qk(x) provided Q1(x) = 0. In this case, the sub-lemma above implies that

x = Q̃1y for some y with Type(y) = r + 1. Hence (2.13) implies that b(x) = −Q1Qk(y). By fixing b(x)

satisfying the above constriants, Fk(x) is determined up to an element in Z.

Corollary 2.48. Minimal Model Theorem

Each L∞-algebra g is homotopy equivalent to a minimal L∞-algebra gm, which is known as the minimal

model of g.

Proof. Let g = gm ⊕ gc be the decomposition of g into minimal gm and linear contractible gc. Note that the

linear contractible part gc has trivial cohomology. The inclusion gm ↪→ g and the projection g� gm are

L∞-quasi-isomorphisms. Hence g and gm are homotopy equivalent.
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Lemma 2.49

Suppose that F : (g, Q)→ (g′, Q′) is an L∞-quasi-isomorphism of minimal L∞-algebras g and g′. Then F

is an isomorphism.

Proof. The conditions that g and g′ are minimal imply that H•(g) = g and H•(g′) = g′. Since F is a quasi-

isomorphism, F1 : g → g′ is an isomorphism. Let G1 be the inverse of F1. By the universal property of

Sym+(g[1]), G1 uniquely lifts to an L∞-morphism G : (g′, Q′)→ (g, Q), which is the inverse of F .

Remark. This demonstrates that the minimal model of an L∞-algebra is unique up to isomorphism.

Proposition 2.50. Homotopy Equivalence of L∞-Algebras

Every L∞-quasi-isomorphism F : (g, Q)→ (g′, Q′) has a quasi-inverse G : (g′, Q′)→ (g, Q), that is, H•(G1)

is an actual inverse of H•(F1). Therefore the homotopy equivalence of L∞-algebras is an equivalence

relation.

Proof. We decompose (g, Q) and (g′, Q′) into the direct sum of the minimal part and the contractible part:

(g, Q) = (gm, Qm)⊕ (gc, Qc), (g′, Q′) = (g′m, Q
′
m)⊕ (g′c, Q

′
c).

We have a commutative diagram shown as follows, where F̃ = π′ ◦ F ◦ ι : (gm, Qm) → (g′m, Q
′
m) is an

L∞-quasi-isomorphism induced by F .

(g, Q) (g′, Q′)

(gm, Qm) (g′m, Q
′
m)

F

π

F̃
π′ι ι′ (2.14)

Since gm and g′m are minimal, F̃ is an isomorphism. We denote by G̃ the inverse of F̃ . Then G = ι◦G̃◦π′

is a quasi-inverse of F .

2.4.4 Maurer–Cartan Equation, Reprise

In this part, we extend the discussions in Section 2.2.1 to incorporate L∞-morphisms into the deformation

theory via differential graded Lie algebras.

Definition 2.51. Let (g, Q) be an L∞-algebra. For x ∈ g1, the homotopy Maurer–Cartan equation is

given by

Q(ex−1) = 0 ⇐⇒
∞∑
n=1

1

n!
Qn(x · · ·x) = 0. (2.15)

The set of solutions is again denoted by MC(g). Note that when g is a DGLA, (2.15) reduces to the Maurer–

Cartan equation (2.2).

It is more natural to consider ex−1 ∈ Sym+(g[1]) instead of x ∈ g1 as the invariant object in an L∞-algebra

(g, Q). If F : (g,Q) → (g′, Q′) is an L∞-morphism, then F (Q(ex−1)) = Q′(F (ex−1)). It follows that if

x ∈ MC(g), then under the L∞-morphism F ,

x 7−→
∞∑
n=1

Fn(x · · ·x) ∈ MC(g′).
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Remark. Note that ex−1 is not a well-defined element in Sym+(g[1]) without specifying the notion of con-

vergence. We resolve this issue by only considering the L∞-algebra g⊗k mR where R is either a test k-algebra

(so that we have the nilpotency condition) or a formal completion (so that ex−1 is a well-defined formal power

series).

As an analogue of the gauge action on a DGLA, we can define the homotopy action on an L∞-algebra g by

constructing a simplicial structure on MC(g). In the case where g is a DGLA, the fundamental group of MC(g)

corresponds to MC(g) modulo gauge action. The notion of Maurer–Cartan functor (2.5) can thus be extended

to L∞-algebras. This is beyond the scope of our exposition, as we restrict our attention to the deformation

problem controlled by DGLAs. For a detailed treatment, see [SS12] and [Get09].

Lemma 2.52

Let g and g′ be two DGLAs. Then the direct sum of DGLAs induces the Cartesian product of Maurer–

Cartan functors:

MCg⊕g′ ' MCg ×MCg′ .

Proof. This follows from that MC((g ⊕ g′) ⊗ mR) = MC(g ⊗ mR) ×MC(g′ ⊗ mR) and that the gauge action is

preserved in the decomposition.

Lemma 2.53

Suppose that g is a linear contractible L∞-algebra. Then MCg(mR) is a singleton for any test algebra R.

Proof. A linear contractible L∞-algebra is simply a differential graded vector space. The Maurer–Cartan equa-

tion is dx = 0 for x ∈ g1 ⊗mR. Write x =
∑
i

xi ⊗ ai for xi ∈ g1 and ai ∈ mR. Then dxi = 0 for each i.

Since g has trivial cohomology, xi = dyi for some yi ∈ g0. Then x = d(
∑

i yi ⊗ ai) = exp(
∑

i yi ⊗ ai) · 0.

Hence x is gauge equivalent to 0. We deduce that MCg(mR) = {0}.

Theorem 2.54. L∞-Quasi-Isomorphism Theorem

Let F : g→ g′ be an L∞-morphism of DGLAs. If F is an L∞-quasi-isomorphism, then the map

x 7−→
∞∑
n=1

1

n!
Fn(x · · ·x)

induces an natural isomorphism of the Maurer–Cartan functors:

MCg ' MCg′ .

Proof. Let g = gm⊕ gc be a decomposition of g such that gm is minimal and gc is contractible. By the previous

two lemmata, we have

MCg = MCgm⊕gc ' MCgm ×MCgc ' MCgm .

Moreover, any L∞-morphism induces a natural transformation in the corresponding Maurer–Cartan

functors. The diagram (2.14) induces the commutative diagram of Maurer–Cartan functors:
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MCg MCg′

MCgm MCg′m

MCF

MCF

Since F : g → g′ is an L∞-quasi-isomorphism, the induced map F : gm → g′m is also an L∞-quasi-

isomorphism. Since gm and g′m are minimal, the F is a strict isomorphism which admits a strict inverse.

Therefore MCF is a natural isomorphism of functors. We conclude that MCg ' MCg′ as claimed.

Remark. Let us digress on the result from a categorical perspective. Let L∞Alg be the category of L∞-algebras

and dgLie be that of differential graded Lie algebras. The reason why we need to upgrade from Theorem 2.23

to Theorem 2.54 is that there exist L∞-morphisms between DGLAs which are not morphisms of DGLAs, and

quasi-isomorphisms of DGLAs may not have inverse in dgLie. The theorem tells us that, from the viewpoint

of the deformation functor, we should instead work on the homotopy category Ho(dgLie), which is obtained by

localisation on the quasi-isomorphisms in dgLie.

2.4.5 Formality Theorem

Definition 2.55. A differential graded Lie algebra g is said to be formal, if it is homotopy equivalent to its

cohomology H•(g), viewed as a DGLA with induced bracket and zero differential.

The main theorem due to Kontsevich [Kon97] in this dissertation is the following:

Theorem 2.56. Formality Theorem

There exists an L∞-quasi-isomorphism U : Tpoly(M) → Dpoly(M) such that the first Taylor coefficient U1

coincides with the HKR map U
(0)
1 .

Remark. By HKR theorem, Tpoly(M) is quasi-isomorphic to the cohomology H•(Dpoly(M)) of Dpoly(M).

Therefore the formality theorem implies that the DGLA Dpoly(M) is formal. This justifies the name of the

theorem.

The formality theorem, in combination of Proposition 2.25, Proposition 2.32, and the L∞-quasi-isomorphism

theorem 2.54, completely solved the classification problem of deformation quantisation on a Poisson manifold.

We obtain the bijective correspondence announced in Section 1.2:

{Formal Poisson structures}
Equivalence

←→ {Star products}
Equivalence

. (1.7)

The rest of this dissertation will be devoted to the proof of formality theorem. We would like to study the

constraints imposed on the Taylor coefficients Un given that U is an L∞-morphism. Let QT and QD be the

co-differentials associated to the L∞-algebras Tpoly(M) and Dpoly(M). Since they are DGLAs, then Qij = 0 for

i > j − 1, and we have

(QD )1 ◦ Un + (QD )2 ◦ U2
n = Un ◦ (QT )nn + Un−1 ◦ (QT )n−1

n , ∀n ∈ Z>0, (2.16)



34 CHAPTER 2. DEFORMATION THEORY

where we used the same notation as (2.10). To expand this expression further, we have

(QD )1(Un(ξ1 · · · ξn)) +
1

2

∑
σ∈S(i,n−i)

εξ(σ)(QD )2

(
Ui(ξσ(1) · · · ξσ(i)) · Un−i(ξσ(i+1) · · · ξσ(n))

)
=

n∑
i=1

ε
{i}
ξ Un

(
(QT )1(ξi) · ξ1 · · · ξ̂i · · · ξn

)
+

1

2

k∑
i=1

∑
j 6=i

ε
{i,j}
ξ Un−1

(
(QT )2(ξi · ξj) · ξ1 · · · ξ̂i · · · ξ̂j · · · ξn

)
,

(2.17)

where εξ(σ) is the Koszul sign defined in Example 2.38, ε
{i}
ξ and ε

{i,j}
ξ are the Koszul signs associated to σ = (1 i)

and σ = (1 min{i, j})(2 max{i, j}) respectively. From the definition of Dpoly(M) and Tpoly(M) and the décalage

isomorphisms (2.9), we have

(QT )1(ξ) = 0, (QT )2(ξ · η) = (−1)|ξ|·(|η|−1) [ξ, η]SN ,

(QD )1(f) = (−1)|f |dHf = (−1)|f | [µ, f ]G , (QD )2(f · g) = (−1)|f |·(|g|−1) [f, g]G .

We extend the L∞-morphism U to include the usual multiplication U0 ∈ R→ Dpoly(M) such that U0(1) = µ ∈
D 1

poly(M). Let the both sides of (2.17) act on the smooth functions f0, ..., fm ∈ C∞(M). Furthermore, we make

the convention that

Un(ξ1 · · · ξn)(f1, ..., fm) = 0

if m 6=
n∑
i=1

|xi|+ 1− n. With some careful computation, it can be shown (cf. Theorem VI.1 of [AMM02]) that

(2.17) simplifies to

n∑
i=1

∑
j 6=i

ε
{i,j}
ξ Un−1(ξi � ξj · · · ξ̂i · · · ξ̂j · · · ξn)(f0, ..., fm) =

n∑
i=0

m∑
j=−1

m−k∑
k=0

(−1)j(k+m)

∑
σ∈S(i,n−i)

εξ(σ)Ui(ξσ(1) · · · ξσ(i))
(
f0, ..., fk−1, Un−i(ξσ(i+1) · · · ξσ(n))(fk, ..., fj+k), fj+k+1, ..., fm

) (2.18)

where ξi � ξj is the product on Tpoly(M) (cf. (2.6) or (2.7)). (2.18) will be referred as the formality equa-

tion, which is our starting point of the next chapter, where we construct Un as a sum of weighted admissible

graphs.



Chapter 3

Kontsevich Quantisation

In this chapter we present the construction of the L∞-morphism from Tpoly(Rd) to Dpoly(Rd) and that of a star

product in Rd following Kontsevich [Kon97]. Then we sketch the globalisation of the star product in a general

smooth manifold M following [CFT02].

3.1 Construction in Rd

This section is devoted to construct an explicit L∞-quasi-isomorphism U : Tpoly(Rd)→ Dpoly(Rd).

3.1.1 Admissible Graphs

First we define the admissible graphs. A directed graph Γ is a pair (VΓ, EΓ), where VΓ is the set of the vertices

of Γ, and EΓ ⊆ VΓ × VΓ is the set of edges of Γ. For each edge e = (v1, v2) ∈ EΓ, s(e) := v1 is called the source

of e, and t(e) := v2 is called the target of e.

Definition 3.1. An admissible graph Γ ∈ Gn,m is a connected directed graph, satisfying the following condi-

tions:

• n,m > 0 and 2n+m− 2 > 0.

• VΓ = V 1
Γ t V 2

Γ , where V 1
Γ = {1, ..., n} is the set of vertices of the first type, and V 2

Γ =
{

1, ...,m
}

is the set

of vertices of the second type.

• Γ has no edge starting from a vertex of the second type.

• Γ has neither loops nor double arrows.

• For v ∈ V 1
Γ , the set of edges starting from v is denoted by

Star(v) := {e ∈ EΓ : e = (v, w) for some w ∈ VΓ}
Star(v) is a finite set. We put an order on it so that Star(v) =

{
e1
v, ..., e

#(Star(v))
v

}
.

We associate each Γ ∈ Gn,m and polyvector vectors ξ1, ..., ξn with a polydifferential operator BΓ(ξ1⊗· · ·⊗ ξn) ∈
Dm

poly(Rd) by the following recipe.

• BΓ = 0 unless ξi ∈ T ki
poly(R

d) for each i ∈ V 1
Γ , where ki = #(Star(i))− 1.

• Let I : EΓ → {1, ..., d} be a map.

• For each i ∈ V 1
Γ and j ∈ V 2

Γ , put respectively the functions: ∏
e∈Γ(−,i)

∂I(e)

 ξ
I(e1i ),...,I(e

ki
i )

i ,

 ∏
e∈Γ(−,j)

∂I(e)

 fj

where Γ(−, v) := {e ∈ EΓ : t(e) = v}.
• Multiply the functions on the vertices and sum over all possible I : EΓ → {1, ..., d}. This gives

BΓ(ξ1 ⊗ · · · ⊗ ξn)(f1, ..., fm) ∈ R.
So we obtain the map BΓ : Tpoly(Rd)⊗n → Dm−1

poly (Rd).

35
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3.1.2 Configuration Spaces

Definition 3.2. We construct the configuration space for the n+m vertices of Γ ∈ Gn,m.

• If m > 0, let

Conf+
n,m := {(p1, ..., pn; q1, ..., qm) ∈ Cn+m : p1, ..., pn ∈ H, pi 6= pj for i 6= j;

q1, ..., qm ∈ R, q1 < · · · < qm}
(3.1)

Conf+
n,m is a (2n + m)-dimensional smooth manifold. Let G be the 2-dimensional Lie group action on

Conf+
n,m by z 7→ az + b for a > 0 and b ∈ R. This is a free action, and we obtain a quotient manifold

C+
n,m := Conf+

n,m /G (3.2)

which is a connected (2n + m− 2)-dimensional smooth manifold. It has the natural orientation induced

by the volume form in R2n+m:

Ω = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn ∧ dq1 ∧ · · · ∧ dqm, pi = xi + iyi,

which is inherited from Conf+
n,m because the actions of G preserve orientation.

• If m = 0, let

Confn := {(p1, ..., pn) ∈ Cn : p1, ..., pn ∈ C, pi 6= pj for i 6= j} (3.3)

Let G′ be the 3-dimensional Lie group action on Confn by z 7→ az + b for a > 0 and b ∈ C. The quotient

manifold

Cn := Confn /G
′ (3.4)

is a (2n− 3)-dimensional smooth manifold for n > 2.

Then we define the weight integral WΓ associated to Γ ∈ Gn.

Definition 3.3. Let H := {z ∈ C : Im z > 0} be the upper half plane endowed with the hyperbolic metric

g =
dx2 + dy2

y2
. It is called the Poincaré half plane. Let H := H ∪ R.

• For p ∈ H, let L(p,∞) be the vertical half line from p to infinity;

• For p 6= q ∈ H, let L(p, q) be the geodesic from p to q, which is an arc of a circle centred on the real line;

• Let ϕ(p, q) be the angle from L(p,∞) to L(p, q). By simple planimetry (cf. [Kel03]) we find that

ϕ(p, q) = arg

(
q − p
q − p

)
=

1

2i
log

(
q − p
q − p

· q − p
q − p

)
. (3.5)

We extend ϕ(p, q) to p 6= q ∈ H.

Definition 3.4. For e ∈ EΓ, we define the angle map ϕe : Cn,m → S1 as

ϕe(p1, ..., pn; q1, ..., qm) = ϕ(ps(e), pt(e)).

We define a differential form

ωΓ :=
∧
e∈EΓ

dϕe (3.6)

where the ordering of the 1-forms in the product is the one induced on the set of all edges by the ordering on

the source vertices v and the ordering on the set Star(v).
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Proposition 3.5. Compactification of Configuration Spaces

There exists a compact smooth manifold with corners C
+
n,m (resp. Cn) whose interior is the open configu-

ration space C+
n,m (resp. Cn) such that the angle map ϕ and the differential form ωΓ extends smoothly to

the corresponding compactification.

Remark. A manifold with corners X is a second-countable Hausdorff topological space such that every point

has a neighbourhood homeomorphic to Rn−k × Rk>0 for some k, which is called the depth of that point. The

boundary ∂X is the set of those points with depth k > 0. The subset of points with depth k is an (n − k)-

submanifold Sk(X) of X, the submanifolds of which are called the strata of codimension k. This notion is a

natural generalisation of a manifold with boundary. The definition can be extended straightforward to smooth

manifolds with corners, where the transition maps between charts are required to preserve the corners.

Proof. We construct a map

ψ : Conf+
n,m → T(2n+m)(2n+m−1) × (RP2)(2n+m)(2n+m−1)(2n+m−2)

where T(2n+m)(2n+m−1) = S1 × · · · × S1︸ ︷︷ ︸
(2n+m)(2n+m−1)

is a torus. For each pair of distinct points a, b ∈ {p1, p1, ..., pn, pn, q1, ..., qm},

we associate an angle arg(a−b) ∈ S1; for each triple of distinct points a, b, c ∈ {p1, p1, ..., pn, pn, q1, ..., qm},
we associative a point [a − b : b − c : c − a] ∈ RP2. These data uniquely determine the map ψ. Since

these data are preserved by the action of G, ψ descends to the quotient:

ψ̃ : C+
n,m → X := T(2n+m)(2n+m−1) × (RP2)(2n+m)(2n+m−1)(2n+m−2),

which is injective. Therefore C+
n,m is embedded into X. Let C

+
n,m be the closure of ψ̃(C+

n,m) in this space.

This is a manifold with corners.

Definition 3.6. The weight integral for Γ ∈ Gn,m is defined to be

WΓ :=


n∏
k=1

1

#(Star(k))!

1

(2π)#(EΓ)

∫
C

+
n,m

ωΓ, if #(EΓ) = 2n+m− 2,

0, otherwise.

(3.7)

Remark. The requirement #(EΓ) = 2n+m− 2 ensures that the degree of the form ωΓ matches the dimension

of the configuration space. It also ensures that Un has the correct degree (see the beginning of Section 3.2).

Now we define the n-th Taylor coefficient Un by

Un =
∞∑
m=0

∑
Γ∈Gn,m

WΓBΓ. (3.8)

Now we are just one step away from the formality theorem in Rd. The proof will be completed in Section

3.2.

3.1.3 Explicit Formula of Kontsevich Star Product

From Theorem 2.54 and Equation (3.8), a Poisson bivector field π induces the Kontsevich star product in the

following way:
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Theorem 3.7. Kontsevich Star Product

Let π ∈ T 1
poly(Rd) be a Poisson bivector field on Rd. Then

? = µ+

∞∑
n=1

~n

n!
Un(π · · ·π) ∈ D 1

poly(Rd)[[~]]

defines a star product on Rd such that f ? g − g ? f = ~π(f, g) modulo ~2.

From the previous discussion, we can develop a set of rules for the computation of the star product f ? g. Some

constructions can be simplified. For example, we only use the admissible graphs in Gn,2 where #(Star(k)) = 2

for k = 1, ..., n. The Lie group action of G on configuration space C+
n,2 fix the two vertices of the second type

to 0, 1 ∈ R respectively, which gives an isomorphism:

C+
n,2 ' Hn := {(p1, ..., pn) ∈ Cn : p1, ..., pn ∈ H, pi 6= pj for i 6= j} .

The explicit formula for the Kontsevich star product is given by

f ? g = fg +
∞∑
n=1

~n

2n(2π)2nn!

∑
Γ∈Gn,2

BΓ,π(f, g)

∫
Hn

ωΓ, (3.9)

where BΓ,π(f, g) := BΓ(π · · ·π)(f, g) according to the definition in Section 3.1.1 and ωΓ is the differential form

(3.6).

Example 3.8. As an easy example, we compute the star product when π = πij∂i∧∂j has constant coefficients.

Since any derivative on πij vanishes, we only need to sum over the admissible graphs with no edges targeting

at the vertices of first type V 1
Γ . The admissible graphs with non-vanishing weight WΓ has 2n edges. Therefore

the only contributing admissible graph in Gn,2 is of the following form, which is denoted by Γn.

Re

f g

1 2 n

The differential operator associated to Γn is given by

BΓn,π(f, g)(x) =

n∏
k=1

 2n∑
ik,jk=1

πik,jk
∂

∂xik
∂

∂yjk

 f(x)g(y)

∣∣∣∣∣∣
x=y

.

The differential form ωΓn is given by

ωΓn = dϕ(1,1) ∧ dϕ(1,2) ∧ · · · ∧ dϕ(n,1) ∧ dϕ(n,2)

where, following (3.5), the differential 1-forms are given by dϕ(i,j)(p1, ..., pn, q1, q2) = 2d arg(qj − pi), where

q1 = 0 and q2 = 1 are fixed. The compactification Hn is parametrised as

Hn ' {(arg(0− p1), arg(1− p1), ..., arg(0− pn), arg(1− pn)) : p1, ..., pn ∈ H distinct}
' [−π, 0]2n.
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Hence the star product is given by

(f ? g)(x) = (fg)(x) +
∞∑
n=1

~n

2n(2π)2nn!
BΓn,π(f, g)(x) ·

∫
Hn

ωΓ

= (fg)(x) +
∞∑
n=1

~n

2nn!

n∏
k=1

 2n∑
ik,jk=1

πik,jk
∂

∂xik
∂

∂yjk

 f(x)g(y)

∣∣∣∣∣∣
x=y

.

We have thus shown that in this case the Kontsevich star product coincides with the Weyl–Moyal product (1.8).

3.2 Proof of Formality Theorem

To show that the coefficients Un given in (3.8) defines an L∞-quasi-morphism U : Tpoly(Rd) → Dpoly(Rd), it

remains to show that

(a) Un respects the grading on Tpoly(Rd) and Dpoly(Rd);

(b) U1 = U
(0)
1 , which is the HKR map (2.8) and is already proven to be a quasi-isomorphism;

(c) Un satisfies the constraint equation (2.16).

For (a), we show that for Γ ∈ Gn,m, WΓBΓ is a morphism of graded vector spaces of degree 1 − n from∧n(Tpoly(Rd))→ Dm−1
poly (Rd). Indeed, WΓ is non-zero only if

2n+m− 2 = #(EΓ) =
n∑
k=1

#(Star(k)) =
n∑
k=1

(|ξi|+ 1) = |ξ1 ⊗ · · · ⊗ ξn|+ n.

So degUn = (m− 1)− (2n+m− 2− n) = 1− n as claimed.

3.2.1 Checking Quasi-Isomorphism

For (b), the proof is simply a checking for the constructions.

Lemma 3.9. U is a Quasi-Isomorphism

The first Taylor coefficient U1 : Tpoly(Rd) → Dpoly(Rd) defined by (3.8) satisfies U1 = U
(0)
1 , where U

(0)
1 is

the HKR map defined in (2.8).

Proof. By (3.8), we have

U1 =

∞∑
m=0

∑
Γ∈G1,m

WΓBΓ =

∞∑
m=0

WΓmBΓm

where Γm is the unique graph in G1,m as shown below:

Re

1 2 3 m

1
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The differential operator associated to Γm is given by

BΓm(ξ)(f1, ..., fm) =
d∑

i1,...,im=1

ξi1,...,im∂i1f1 · · · ∂imfm.

The computatuion of the weight integral is similar to that in Example 3.8:

WΓm =
1

m!(2π)m

∫
C

+
1,m

dϕ(1,1) ∧ · · · ∧ dϕ(1,m) =
1

m!(2π)m
(2π)m =

1

m!
.

The map U1 thus takes the form

U1(ξ)(f1, ..., fm) =
1

m!

d∑
i1,...,im=1

ξi1,...,im∂i1f1 · · · ∂imfm.

In particular, if ξ = X1 ∧ · · · ∧Xn for X1, ..., Xn ∈ Γ(Rd,TRd), then

ξi1,...,im =
∑
σ∈Sm

sgn(σ)X
σ(i1)
1 · · ·Xσ(im)

m =⇒ U1(ξ)(f1, ..., fm) =
1

m!
det(Xi(fj))i,j .

We conclude that U1 agrees with the HKR map U
(0)
1 .

3.2.2 Formality Equation from Boundary Strata

For (c), the construction in Section 3.1 allows us to put the formality equation (2.18) into the form∑
Γ∈Gn,m

#(EΓ)=2n+m−3

cΓBΓ(ξ1 · · · ξn)(f1, ..., fm) = 0. (3.10)

where we only sum over Γ ∈ Gn,m for #(EΓ) = 2n + m − 3, since only these graphs can have non-vanishing

weights WΓ by definition. The equation (3.10) is satisfied if we can prove that cΓ = 0 for all such graphs Γ. In

the following subsections, we shall prove that

Lemma 3.10

Let cΓ ∈ R be the coefficient associated to Γ ∈ Gn,m from (2.18) and (3.10). Then

cΓ =

n∏
k=1

1

#(Star(k))!

1

(2π)#(EΓ)

∫
∂C

+
n,m

ωΓ.

Having proven this, we invoke the Stokes’ theorem for manifolds with corners:

Lemma 3.11. Stokes’ Theorem with Corners

Let X be an n-dimensional oriented smooth manifold with corners. Let X1 be the union of strata of X of

codimension 0 and 1. Then ∂X1 is a (n−1)-dimensional manifold with boundary with orientation induced

from X1. Let ω be a compactly supported differential (n− 1)-form on M . We have∫
X

dω =

∫
∂X1

ω.

Proof. See [Con].
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Then cΓ = 0 follows from that ωΓ is a closed form:

cΓ =

∫
∂C

+
n,m

ωΓ =

∫
C

+
n,m

dωΓ =

∫
C

+
n,m

d

 ∧
e∈EΓ

dϕe

 = 0.

To prove Lemma 3.10, we need to analyse the integral

∫
∂C

+
n,m

ωΓ, which has only contributions from boundary

strata of codimension 1. Informally, these strata represent the degenerate configurations where some points

collapse together. They can be classified into the following two types:

S1: The vertices S := {k1, ..., ki} (i > 2) of the first type collapse together to a point in the upper half plane

H. Such boundary strata can locally be expressed as a product ∂SC
+
n,m ' Ci × C+

n−i+1,m.

S2: The vertices S := {k1, ..., ki} (i > 0) of the first type and S′ := {`+ 1, ..., `+ j} (j > 0) of the second type

collapse together to a point on the real line R, where 2i + j > 2 and i + j 6 n + m − 1. Such boundary

strata can locally be expressed as a product ∂S,S′C
+
n,m ' C+

i,j × C
+
n−i,m−j+1.

The products represent what Kontsevich [Kon97] called “looking through a magnifying glass”, as shown in the

following diagram:

Figure 3.1: Type S1 boundary stratum through a magnifying glass.

Suppose that we start with an admissible graph Γ. Let Γ0 be the subgraph of Γ spanned by the collapsing

vertices, and Γ1 be the quotient of Γ by Γ0. There are cases where Γ1 fails to be admissible:

• Γ1 may have multiple arrows.

• Γ1 may have a bad edge, as shown in the following diagram:

Figure 3.2: Type S2 boundary stratum with a bad edge.

In both cases, we note that the corresponding weight integrals vanish. Therefore we can safely neglect these

cases. The decomposition of a stratum F ' F0 × F1 induces the decomposition of the weight integral:∫
F
ωΓ = ±

∫
F0

ωΓ0

∫
F1

ωF1 .
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It requires great caution when dealing with the orientations and signs in the integrals. For details refer to

[AMM02].

Type S1: i = 2

Now we consider type S1 strata with i = 2. In this case, Γ0 contains a single edge e. Suppose that s(e) = pi
and t(e) = pj . Then Γ1 is obtained by identifying pi with pj and contracting the edge (if exists) from pi to pj .

The polydifferential operator associated to this stratum is given by

BΓ,R(ξ1 · · · ξn)(f0, ..., fm) = BΓ1(ξi � ξj · · · ξ̂i · · · ξ̂j · · · ξn)(f0, ..., fm).

Type S1: i >>> 3

We prove that the integral vanishes for i > 3.

Lemma 3.12. Vanishing of Kontsevich Integrals

For n > 3 and Γ ∈ Gn,0, the weight integral over the configuration space Cn is zero:∫
Cn

ωΓ = 0.

This result implies that type S1 strata with i > 3 does not contribute to the coefficient cΓ. For the proof we

need a result from distribution theory, which is stated below:

Lemma 3.13. Distributional Forms

Let U be a complex manifold with compactification U . For a differential form ω on U such that the

coefficients of ω and dω are locally integrable over U , we denote by ℐ (ω) the corresponding distributional

form, that is, differential form with coefficients in the space of distributions. Then ℐ commutes with the

exterior differential: d(ℐ (ω)) = ℐ (dω). In addition, the integral

∫
U
ω is absolutely convergent and is

equal to

∫
U
ℐ (ω).

Proof. See Lemma 6.6.1 of [Kon97].

Proof of Lemma 3.12. We pick the edge e1. Using the action of the Lie group G′, we may identify the config-

uration space as a subset of Hn
where s(e1) is fixed to the origin and t(e1) lies on the unit circle. This

provides a decomposition Cn ' S1 × U where U is a complex manifold. The weight integral factors

accordingly:∫
Cn

ωΓ =

∫
S1×U

dϕe1 ∧
2n−3∧
i=2

d(ϕei − ϕe1) = 2π

∫
U

2n−3∧
i=2

dϕei = 2π

∫
U

2n−4∧
i=1

d arg zi,

where zi is the difference in the complex coordinates of s(ei+1) and t(ei+1). Now we employ a trick using

logarithm. We claim that ∫
U

2n−4∧
i=1

d arg zi =

∫
U

2n−4∧
i=1

d log |zi|. (3.11)
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Indeed, both d arg zi and d log |zi| can be expressed as a sum of a holomorphic 1-form and an anti-

holomorphic 1-form:

d arg zi =
1

2i
(d log zi − d log zi) ; d log |zi| =

1

2
(d log zi + d log zi) . (3.12)

We know that the integration of a (k, 2N − k)-form on a 2N -dimensional complex manifold vanishes

unless k = N . The non-vanishing contributions of (3.12) are the same in the integration, which justifies

(3.11). Finally, using the fact from distribution theory which is stated above, we have∫
U

2n−4∧
i=1

d log |zi| =
∫
U

d

(
log |z1|

2n−4∧
i=2

d log |zi|

)
=

∫
U
ℐ

(
d

(
log |z1|

2n−4∧
i=2

d log |zi|

))

=

∫
U

d

(
ℐ

(
log |z1|

2n−4∧
i=2

d log |zi|

))
= 0

Type S2

Now we consider type S2 strata. Suppose that Γ0 contains the vertices k1, ..., ki, `+ 1, ..., `+ j. The polydiffer-

ential operator associated to this stratum is given by

BΓ,F (ξJ)(f0, ..., fm) = BΓ1(ξσ(1) · · · ξσ(i)) (f0, ..., f`, BΓ0(ξI)(f`+1, ..., f`+j), f`+j+1, ..., fm)

where the multi-indices I = (k1, ..., ki) and J = {1, ..., n} \ I (with increasing order).

These polydifferential operators match those appeared in the formality equation 2.16. The matching of the

coeffcients cΓ,F with

∫
F
ωΓ is more subtle and we refer to [AMM02]. This concludes the proof of Lemma 3.10

and thus of the formality theorem 2.56.

3.3 Globalisation of Star Product

Kontsevich proved the formality theorem on general manifolds in [Kon97] and [Kon01]. In this section we

summarise a slightly different approach of the globalisation of Kontsevich star product following Cattaneo,

Felder and Tomassini in [CFT02] and [CF01]. Note that this approach proves a weaker result, as the general

formality theorem does not follow immediately from the existence of star products. Another approach due to

Dolgushev ([Dol05a], [Dol05b]) directly globalises the formality theorem is stronger, but we will not cover it

due to length limit.

3.3.1 Formal Geometry

The first step of globalisation is to construct two vector bundles over the Poisson manifold M , which fibre-wise

represents the Poisson algebras and their quantisations. The idea is that two smooth functions with the same

Taylor coeffcients are indistinguishable from the star product.

Definition 3.14. Let M be a d-dimensional smooth manifold. The k-th jet bundle Jk(M) over M is defined

fibre-wise as follows: for x ∈M , Jkx(M) is the set of functions f ∈ C∞(M) quotient by the equivalence relation

that f ∼ g if and only if the partial derivatives of f and g at p agree up to order k. The infinite jet bundle

J∞(M) is obtained by taking the projective limit1 of the forgetful maps Jk+1(M) → Jk(M). That is, for

1Technically we have to specify the topology with respect to which we are taking the limit. Heuristically we consider J∞(M) as
a formal projective limit in the category of smooth manifolds.



44 CHAPTER 3. KONTSEVICH QUANTISATION

f, g ∈ C∞(M), [f ] = [g] ∈ J∞(M) if and only if f and g have the same Taylor expansion at some x ∈M .

We give a local characterisation of J∞(M). Let M coor := J∞0 (Rd,M) be the fibre at 0 ∈ Rd of the infinite jet

bundle J∞(Rd,M). Note that GL(d,R) acts on M coor by linear diffeomorphisms, which induces the quotient

manifold Maff := M coor/GL(d,R). In particular, Maff is a vector bundle over M whose fibres are contractible,

and hence admits a section ϕaff : M → Maff . We define the associated bundle Ẽ0 over Maff by taking the

fibre product of M coor with a formal power series:

Ẽ0 := M coor ×GL(d,R) R
[[
y1, ..., yd

]]
.

Then the pull-back via ϕaff provides a vector bundle E0 := (ϕaff)∗Ẽ0 over M , with fibres R
[[
y1, ..., yd

]]
. Note

that E0 is isomorphic to J∞(M), given by identifying the jets of f at p with the Taylor expansion of f ◦ϕ−1 at

0, where ϕx : M → Rd is a chosen coordinate chart around x ∈M and ϕx(x) = 0.

Now consider M as a Poisson manifold. Let E0 = J∞(M) be its infinite jet bundle. The canonical map

C∞(M)→ E0 transports the Poisson structure of C∞(M) to E0.

Proposition 3.15. Grothendieck Connection

There exists a canonical connection D0 on E0 such that

1. D0 is a derivation: D0(fg) = fD0g + gD0f for f, g ∈ Γ(M,E0).

2. D0 is flat: D2
0 = 0. This implies that the E0-valued differential forms

Ω•(E0) := Ω•(M)⊗C∞(M) Γ(M,E0)

is a cochain complex with respect to the connectionD0. It provides the cohomology groups H•(E0, D0).

3. The cohomology is concentrated at zeroth degree: Hn(E0, D0) for n > 0.

4. The canonical map C∞(M) → E0 induces a Poisson isomorphism between C∞(M) and the algebra

of D0-horizontal sections H0(E0, D0).

We call D0 the Grothendieck connection of E0.

Proof. See §2 of [CF01].

On the other hand, let Ẽ be the associated bundle of R[[~]]-modules

Ẽ := M coor ×GL(d,R) R
[[
y1, ..., yd, ~

]]
over Maff . And let E := (ϕaff)∗Ẽ = E0[[~]] be a vector bundle over M . We shall regard E as the fibre-wise

quantisation of E0. More explicitly we would like to prove that

Theorem 3.16. Deformation Quantisation on a Poisson Manifold

Let (M,π) be a Poisson manifold and E be the vector bundle over M constructed above. There exists a

flat connection D = D0 +
∞∑
n=1

~nDn of E such that the R[[~]]-algebra H0(E,D) is a quantisation of C∞(M).

Following the spirit of Fedosov’s construction ([Fed94]), the next step is to construct a connection of E and

transport the Kontsevich star product to the sections Γ(M,E) of E. The formality theorem in Rd provides

such constructions.
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3.3.2 Star Product and Connection on Deformed Bundle

Recall that Kontsevich’s construction (3.8) provides an L∞-quasi-isomorphism U : Tpoly(Rd) → Dpoly(Rd). We

make the following definition:

Definition 3.17. Let π be a Poisson bivector field and ξ, η ∈ Γ(Rd,TRd). Define:

P (π) :=
∞∑
k=0

~k

k!
Uk(π · · ·π),

A(ξ, π) :=
∞∑
k=0

~k

k!
Uk+1(ξ · π · · ·π),

F (ξ, η, π) :=
∞∑
k=0

~k

k!
Uk+2(ξ · η · π · · ·π).

Note that P (π) ∈ D 1
poly(Rd)[[~]] is exactly the star product. We expect that A(−, π) and F (−,−, π) behave like

a connection 1-form and its curvature 2-form.

Definition 3.18. The Lie algebra Γ(TRd) of vector fields acts on the space of local polynomial maps U (cf. §3

of [CFT02]). We consider the Chevalley–Eilenberg complex: 2

C•CE(TRd,U) := HomR(
∧• Γ(TRd),U),

where S ∈ CpCE(TRd,U) sends X1 ∧ · · · ∧Xp to S(X1 ∧ · · · ∧Xp, π) ∈ Dpoly(Rd) which depends polynomially on

π. Therefore P ∈ C0
CE(TRd,U)[[~]], A ∈ C1

CE(TRd,U)[[~]], and F ∈ C2
CE(TRd,U)[[~]].

The Chevalley–Eilenberg differential δ : CpCE(TRd,U)→ Cp+1
CE (TRd,U) is defined as

(δS) (X1, . . . , Xk + 1, π) :=

k+1∑
i=1

(−1)i
d

dt
S
(
X1, . . . , X̂i, . . . , Xk+1,

(
Φt
X

)
∗ π
)∣∣∣∣
t=0

+
∑
i<j

(−1)i+jS
(

[Xi, Xj ] , X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1, π
)
,

where Φt
X is the flow along the vector field X. From this differential and the formality equation (2.18) follows

the lemma:

Lemma 3.19

(i) P ◦ (P ⊗ id− id⊗P ) = 0;

(ii) (δP )(ξ, π) = P (π) ◦ (A(ξ, π)⊗ id + id⊗A(ξ, π))−A(ξ, π) ◦ P (π);

(iii) (δA)(ξ, η, π) = P (π) ◦ (F (ξ, η, π)⊗ id− id⊗F (ξ, η, π))−A(ξ, π) ◦A(η, π) +A(η, π) ◦A(ξ, π);

(iv) (δF )(ξ, η, ζ, π) = −A(ξ, π) ◦ F (η, ζ, π)−A(η, π) ◦ F (ζ, ξ, π)−A(ζ, π) ◦ F (ξ, η, π).

In the lemma, (i) is the associativity equation of the star product, and (ii),(iii),(iv) describe the changes of

P,A, F under a coordinate transformation induced by the vector field ξ. These identifies are useful in the

construction of the Fedosov connection D in Proposition 3.23. In addition, the following lowest order properties

of P,A, F are required.

2In general, let g be a Lie algebra and V be a g-module. We can similar construct the Chevalley–Eilenberg complex C•CE(g, V ).
The cohomology of this complex is called the Lie algebra cohomology of g with value in V . See Chapter 7 of [Weib95] for details.
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Lemma 3.20

(i) P (π)(f ⊗ g) = fg + π(df,dg)~ +O(~2).

(ii) A(ξ, π) = ξ +O(~), and A(ξ, π) = ξ if ξ is a linear vector field.

(iii) F (ξ, η, π) = O(~).

(iv) P (π)(1⊗ f) = P (π)(f ⊗ 1) = f .

(v) A(ξ, π)1 = 0.

With these tools in hand, we can now lift the star product to the deformed bundle E. A key observation in

[CFT02] is that, since the Kontsevich star product is GL(d,R)-equivariant, after taking an open cover of M by

contractible coordinate charts and fixing the representatives of GL(d,R)-equivalence classes on each chart, we

may assume that E is a trivial bundle over M , with fibres isomorphic to R
[[
y1, ..., yd, ~

]]
. A section f ∈ Γ(M,E)

is a map x 7→ fx, where fx = fx(y) ∈ R
[[
y1, ..., yd, ~

]]
.

Definition 3.21. Let ? = P (π) be the Kontsevich star product on Rd. It induces an associative product on

the space Γ(M,E) of sections of E by:

(f ? g)x := P (πx)(fx ⊗ gx) = P ((ϕ−1
x )∗π)(fx ⊗ gx),

where ϕx : U → Rd is the coordinate chart around x.

Definition 3.22. We define a connection D : Γ(M,E)→ Ω(M)⊗C∞(M) Γ(M,E) of E by

(Df)x := dxf +AMx f ,

where dx is the de Rham differential of x 7→ fx with value in R
[[
y1, ..., yd, ~

]]
, and AMx is a connection 1-form

satisfying AMx (ξ) := A(ξ̂x, πx) for ξ ∈ Γ(M,TM). Here ξ̂x is defined by

ξ̂x(y) = −
dimM∑
i,j,k=1

ξi

((
∂ϕx
∂y

)−1
)k
j

∂ϕjx
∂xi

∂

∂yk
,

which is a formal vector field in y and depends on the coordinate chart ϕx. Furthermore, it can be shown from

Lemma 3.20 that D is independent of the choice of ϕx and hence is a well-defined global connection of E.

3.3.3 Fedosov’s Construction

Similar to Fedosov’s construction ([Fed94]) for a star product on the symplectic manifold, we would like to

construct a flat Fedosov connection D of E so that the D-horizontal sections are isomorphic to the R[[~]]-algebra

C∞(M)[[~]].

Proposition 3.23

Let FM ∈ Ω2(E) be the E-valued 2-form x 7→ FMx , where FMx (ξ, η) := F (ξ̂x, η̂x, πx) for ξ, η ∈ Γ(M,TM).

Then D is a Fedosov connection with Weyl curvature FM . More specifically, for f, g ∈ Γ(M,E),

1. D(f ? g) = Df ? g + f ? Dg;

2. D2f =
[
FM , f

]
?

:= FM ? f − f ? FM ;

3. Bianchi identity: DFM = 0.
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To prove Theorem 3.16, we need to deform D into a flat connection D which is still Fedosov. We need the

following lemma:

Lemma 3.24

Suppose that D is a Fedosov connection on E with Weyl curvature F . Then for γ ∈ Ω1(E), D := D+[γ,−]?
is a Fedosov connection with Weyl curvature F +Dγ + γ ? γ.

The construction of a flat Fedosov connection D is now reduced to finding a solution to the differential equation

FM + Dγ + γ ? γ = 0. It can be proven that γ can be constructed order by order as a result of the vanishing

of higher cohomology of E0:

Lemma 3.25

Suppose that D0 is a flat connection of E0 with H2(E0, D0) = 0. Then there exists γ ∈ ~Ω1(E) such that

D := D + [γ,−]? has zero Weyl curvature.

Finally, we would like to construct a quantisation from H0(E0, D0) to H0(E,D). Let End(E0) be vector bundle

overM of the fibre endomorphisms of E0. Then Ω•(End(E0)) is a differential graded algebra, with the differential

given by the super-commutator:

D0(Φ) := D0 ◦ Φ− (−1)pΦ ◦D0, Φ ∈ Ωp(E0).

Note that if D = D0 +
∞∑
n=1

~nDn is a connection on E = E0[[~]], then Dn ∈ Ω1(End(E0)) for n ∈ Z>0.

Lemma 3.26

Suppose that D = D0 +
∞∑
n=1

~nDn is a flat Fedosov connection on E, and H1(End(E0), D0) = 0. Then

there exists a formal power series ρ = id +
∞∑
n=1

~nρn ∈ Ω0(End(E0))[[~]] which induces an R[[~]]-isomorphism

H0(E0, D0)[[~]]→ H0(E,D).

The proof of the lemma is similar to the previous one, where ρ is constructed recursively as a result of the vanish-

ing of cohomology. Combining Proposition 3.15 and Lemma 3.26, we obtain an isomorphism τ : C∞(M)[[~]]→
H0(E,D). An explicit star product on C∞(M) is given by

(f ? g)(x) =
[
τ−1(τ(f)x(y) ? τ(g)x(y))

]
y=0

.

It remains to check that f ? g satisfies the conditions for a star product on C∞(M) and that it recovers the

Poisson bivector π in the first order of ~. For the details refer to [CFT02]. This concludes the proof of Theorem

3.16.
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[Moy49] José E. Moyal. “Quantum mechanics as a statistical theory”. In: Mathematical Proceedings of the

Cambridge Philosophical Society. Vol. 45. 1. Cambridge University Press. 1949, pp. 99–124.

[MSS02] Martin Markl, Steven Shnider, and James D. Stasheff. Operads in algebra, topology and physics.

Vol. 96. American Mathematical Society Providence, RI, 2002.

[Sch68] Michael Schlessinger. “Functors of Artin rings”. In: Transactions of the American Mathematical

Society 130.2 (1968), pp. 208–222.

[SS12] Mike Schlessinger and Jim Stasheff. “Deformation theory and rational homotopy type”. In: arXiv:1211.1647

(2012).

[Tak08] Leon A. Takhtajan. Quantum mechanics for mathematicians. Vol. 95. Graduate Studies in Math-

ematics. American Mathematical Society, 2008.

[Tam98] Dmitry E. Tamarkin. “Another Proof of M. Kontsevich Formality Theorem”. In: arXiv math/9803025

(1998).

[Tau98] Clifford Henry Taubes. “The Work of Maxim Kontsevich”. In: Documenta Mathematica, Extra

volume ICM 1998. Vol. I. 1998, pp. 119–126.
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