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Remark. I attempted all Questions in Section 1.

For Question 6, I fail to show the independence because the distribution function I get is not consistent.

For Question 8, I am not able to prove that the events {|Sn/n| Ê 1} are independent.

Section 1

Question 1. Proof of Lemma 3.3 for any n

Let (Ω,F ,P) be a probability space and A1, . . . , An some events in F . Show that their generated σ-algebras are independent if
and only if for any J ⊆ {1, . . . ,n}

P

(⋂
i∈J

Ai

)
= ∏

i∈J
P (Ai )

Proof. The direction "=⇒" is clear. For the "⇐=" direction, it suffices to prove that

P

(⋂
i∈I

Ai ∩
⋂
j∈J
Ω\ A j

)
=∏

i∈I

∏
j∈J
P(Ai )P

(
Ω\ A j

)
for any I , J ⊆ {1, ...,n} with I ∩ J =∅. We use induction on the cardinality of J . Base case J =∅ is our assumption. For the
induction case, fix k ∈ J . Write J ′ = J \ {k}. Then

P

(⋂
i∈I

Ai ∩
⋂
j∈J
Ω\ A j

)
=P

(⋂
i∈I

Ai ∩
⋂
j∈J ′
Ω\ A j ∩Ω\ Ak

)

=P
(⋂

i∈I
Ai ∩

⋂
j∈J ′
Ω\ A j

)
−P

(⋂
i∈I

Ai ∩ Ak ∩
⋂
j∈J
Ω\ A j

)
=∏

i∈I

∏
j∈J ′

P(Ai )P
(
Ω\ A j

)−∏
i∈I

∏
j∈J ′

P(Ai )P
(
Ω\ A j

)
P(Ak ) (induction hypothesis)

=∏
i∈I

∏
j∈J ′

P(Ai )P
(
Ω\ A j

)
(1−P(Ak ))

=∏
i∈I

∏
j∈J
P(Ai )P

(
Ω\ A j

)
which completes the induction. Hence the σ-algebra generated by A1, ..., Ak are independent.

Question 2

Let X1, X2, . . . be independent uniformly distributed random variables on [0,1]. Let An be the event that a record high value
occurs at time n :

An = {Xn > Xm for all m < n}

Find the probability of An and show that A1, A2, . . . are independent. Deduce that, with probability one, infinitely many records
occur.

Now consider double records, that is two records in a row. What is the probability of infinitely many double records?

Proof. Let Yn = max
1ÉmÉn−1

Xm . Then by independence of X1, ..., Xn−1,

P(Yn É x) =P
(n−1⋂

m=1
{Xm É x}

)
=

n−1∏
m=1

P(Xm É x) = xn−1

The probability density function of Yn is fYn (y) = d

dx
P(Yn É x) = (n −1)xn−2. Since X1, ..., Xn are independent, Xn is inde-

You cannot. You use X_n/n instead.
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pendent of Yn . Hence the joint density of Xn and Y is given by fXn ,Yn (x, y) = (n −1)yn−2. Now

P(An) =P(Xn > Yn) =
Ï

{(x,y)∈[0,1]2:x>y}
fXn ,Yn (x, y)d(x ⊗ y) =

∫ 1

0

∫ x

0
(n −1)yn−2 dydx =

∫ 1

0
xn−1 dx = 1

n

To prove that (An)∞n=1 is an independent sequence of events, by Theorem 3.5 it suffices to verify that

P

(⋂
i∈I

Ak

)
=∏

i∈I
P(Ak )

for all finite subset I ⊆Z+. We shall prove by induction on the cardinality of I . The base case I = {∗} is trivial.

Induction case: Let I = {k1, ...,kn}, I ′ = {k2, ...,kn}, BI := ⋂
k∈I ′

Ak .

The joint distribution of X1, ..., Xk1 defines a pushforward measure on the product measure space [0,1]k1 . Since X1, ..., Xk1

are independent and identically uniformly distributed, for each σ ∈ Sk1 there is an isomorphism of measure spaces

σ̃ :
(
[0,1]k1 ,ℬ

(
[0,1]k1

)
,P◦X −1

1 ⊗·· ·⊗P◦X −1
k1

)
→

(
[0,1]k1 ,ℬ

(
[0,1]k1

)
,P◦X −1

σ(1) ⊗·· ·⊗P◦X −1
σ(k1)

)
In particular,

P
(

Ak1

)=P(
Xk1 = max

1ÉmÉk1

Xm

)
=P

(
Xσ(k1) = max

1ÉmÉk1

Xm

)
for anyσ ∈ Sk1 . Note thatP

(
Xi = X j

)= 0 for any i 6= j , as it is the Lebesgue measure of the hyperplane x = y in k1-dimensional
Euclidean space. Then we have

P(BI ) =
k1∑

i=1
P

(
BI ∩

{
Xi = max

1ÉmÉk1

Xm

})
=

k1∑
i=1
P
(
BI ∩ Ak1

)= k1P
(
BI ∩ Ak1

)= P(
⋂

k∈I Ak )

P
(

Ak1

)
By induction hypothesis, P(BI ) =

∏
k∈I ′

P(Ak ). Hence P

(⋂
k∈I

Ak

)
= ∏

k∈I
P(Ak ). This completes the induction. We deduce that

A1, A2, ... are independent.

Since
∞∑

n=1
An =

∞∑
i=1

1

n
=+∞, by the second Borel–Cantelli Lemma, An occurs infinitely often with probability 1.

Let Cn = An ∩ An+1. Then Cn represents the event that a double record occurs at the (n +1)-st time. Then

P(Cn) =P(An ∩ An+1) =P(An)P(An+1) = 1

n(n +1)
= 1

n
− 1

n +1
=⇒

∞∑
n=1

Cn = 1 <∞

By the first Borel–Cantelli Lemma, double records occur infinitely often with probability 0.

Question 3. Example 3.9

On ([0,1],B([0,1]),Leb) let Xn(ω) = 1b2nωc is odd ,n Ê 1, where 0 is even. Put differently, Xn(ω) is the nth digit in the binary
expansion of ω. Check that (Xn)nÊ1 is an i.i.d. sequence.

Proof. Let Ak
n :=

[
2k −1

2n ,
2k

2n

)
and An :=

2n−1⋃
k=1

Ak
n . Then we have Xn(ω) = 1An (ω). Note that m(An) = 1

2
. HenceP(Xn = 0) =P(Xn = 1) =

1

2
. The random variables Xn are identically distributed. To show that they are independent, by Corollary 3.8 it suffices to show

that
P(X1 É x1, ..., Xn É xn) =P(X1 É x1) · · ·P(Xn É xn)

for any x1, ..., xn ∈R and n ∈Z+. Since P(Xn É x) = m(An) for x ∈ [0,1), it suffices to verify that

m

(⋂
k∈I

Ak

)
= ∏

k∈I
m(Ak ) = 1

2−|I |

for any finite subset I ⊆Z+. We use induction on the cardinality of I . The base case I = {∗} is trivial.
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Induction case: Let n = max I , I ′ = I \ {n}, and `= max I ′. For a binary sequence

(ai ) =
∞∑

i=1
2−i ai ∈ [0,1], ai ∈ {0,1}

whether (ai ) ∈ ⋂
k∈I ′

Ak is uniquely determined by the values of ai where i ∈ I ′. In particular,

(ai ) ∼ (bi ) ⇐⇒ ∀i ∈ I ′ : ai = bi

defines an equivalence relation which partitions
⋂

k∈I ′
Ak into disjoint intervals, each of which has measure 2−`. Let B be one

of the intervals. Then B =
[

b

2`
,

b +1

2`

)
=

[
2n−`b

2n ,
2n−`(b +1)

2n

)
for some b ∈ {1, ...,2`}. therefore

B ∩ An =
2n−`−1(b+1)⋃

k=2n−`−1b+1

Ak
n =⇒ m(B ∩ An) = 2n−`−1 1

2n = 2−`−1 = 1

2
m(B)

Hence m

( ⋂
k∈I ′

Ak ∩ An

)
= 1

2
m (

⋂
k∈I ′ Ak ). By induction hypothesis, m

( ⋂
k∈I ′

Ak

)
= 2−|I

′|. Hence m

(⋂
k∈I

Ak

)
= 2−|I

′|−1 = 2−|I |.

This completes the induction.

Question 4

Let (Ω,F ,P) be a probability space. Let (Xn)nÊ1 be a sequence of independent identically distributed real-valued random
variables such that P [Xn = 1] = p,P [Xn =−1] = 1−p where p 6= 1/2. Let S0 := 0 and

Sn :=
n∑

k=1
Xk , n Ê 1

Show that the probability of the event {Sn = 0 i.o. } is zero.

[You might, or might not, find Stirling’s formula useful: n! ∼p
2πnnne−n .]

Proof. The question is discussed in Section 5.9.1 of Part A Probability.

Note that Sn is a Markov chain of period 2. So P(Sn = 0) = 0 for odd n. For S2m = 0, there are exactly m of X1, ..., X2m equal to
1 and the other m equal to -1. Hence by Stirling’s formula,

P(S2m = 0) =
(

2m

m

)
pm(1−p)m = (2m)!

(m!)2 pm(1−p)m ∼
p

2π(2m)2m+1/2 e−2m(p
2πmm+1/2 e−m

)2 pm(1−p)m = 1p
πm

(
4p(1−p)

)m

Since p 6= 1/2, 4p(1−p) < 1. So P(S2m = 0) → 0 exponentially as m →∞. Thus
∞∑

m=1
P(S2m = 0) <∞. By the first Borel-Cantelli

Lemma, P
(
Sn = 0 infinitely often

)ÉP(
S2m = 0 infinitely often

)= 0.

Question 5

Let (Ω,F ,P) be a probability space. Let (Xn)nÊ1 be a sequence of independent identically distributed real-valued random
variables such that

P [Xn = 1] =P [Xn =−1] = 1/2

Let S0 := 0 and, for all n Ê 1,Sn :=∑n
k=1 Xk .

For x ∈Z let

Ax := {
Sn = x for infinitely many n

}
, B− :=

{
liminf

n→∞ Sn =−∞
}

, B+ :=
{

limsup
n→∞

Sn =∞
}
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(a) Let Tn =σ (Xn+1, Xn+2 . . .) and T =⋂∞
n=1 Tn . Why is T a σ-algebra? Show that B± are T -measurable.

(b) Deduce, using Kolmogorov’s 0-1 law, that P [B−] ∈ {0,1} and P [B+] ∈ {0,1}. Prove that P [B−] =P [B+].

(c) Using a Borel-Cantelli lemma show that, for all k Ê 1,

limsup
n→∞

(Sn+k −Sn) = k a.s.

(d) Deduce from (c) that P
[
B c−∩B c+

]= 0, and therefore that P [B−] =P [B+] = 1.

Conclude that, for all x ∈Z,P [Ax ] = 1.

Proof. (a) T is a σ-algebra because it is an intersection of the σ-algebras Tn . Now we show that B+ ∈ T . The case of B− is
analogous. Fix n ∈Z+, we show that B+ ∈Tn .

B+ =
{

limsup
n→∞

Sn =∞
}
=

∞⋂
m=1

{
limsup

n→∞
Sn Ê m

}
=

∞⋂
m=1

∞⋂
k=1

⋃
`Êk

{S` Ê m} =
∞⋂

m=1

∞⋂
k=1

⋃
`Êk

{S`−Sn Ê m}

=
∞⋂

m=1

∞⋂
k=1

⋃
`Êk

{ ∑̀
i=n+1

Xi Ê m

}

By definition Xn+1, Xn+2, ... are Tn-measurable functions. Hence
∑̀

i=n+1
Xi is Tn-measurable for any `. Hence{ ∑̀

i=n+1
Xi Ê m

}
∈Tn . Hence B+ ∈Tn . Hence B+ ∈T .

(b) The same reasoning in (a) shows that limsup
n→∞

Sn and liminf
n→∞ Sn are T -measurable random variables. By Kolmogorov’s

0-1 law, they are constant almost surely. Hence P(B+),P(B−) ∈ {0,1}. Let Tn = −Sn =
n∑

k=1
−Xk . Then Tn and Sn has the

same distribution. Hence

P(B−) =P
(
liminf

n→∞ Sn =−∞
)
=P

(
liminf

n→∞ −Tn =−∞
)
=P

(
limsup

n→∞
Tn =∞

)
=P

(
limsup

n→∞
Sn =∞

)
=P(B+)

(c) We have {
limsup

n→∞
(Sn+k −Sn) = k

}
=

∞⋂
m=1

{
Sn+k −Sn Ê k − 1

m
for infinitely many n

}
= {

Sn+k −Sn = k for infinitely many n
}

= {
Xn+1 = ·· · = Xn+k = 1 for infinitely many n

}
Let An = {Xn+1 = ·· · = Xn+k = 1}. Then P(An) = 2−k and A0, Ak , A2k , ... are independent. We have

∞∑
n=0

P(Ank ) =∞. By the

second Borel–Cantelli Lemma, P
(
Xn+1 = ·· · = Xn+k = 1 for infinitely many n

)= 1. Hence limsup
n→∞

(Sn+k −Sn) = k almost

surely.

(d) We have

B c
+∩B c

− =
{

limsup
n→∞

Sn − liminf
n→∞ Sn <∞

}
=

∞⋃
m=1

{∀n ∈Z+ : |Sn | É m}

But

{∀n ∈Z+ : |Sn | É m} ⊆ {∀n ∈Z+ : |Sn+3m −Sn | É 2m} ⊆
{

limsup
n→∞

|Sn+3m −Sn | É 2m

}
which has probability 0 by (c). Hence P

(
B c+∩B c−

)= 0. Then P(B+∪B−) = 1. Since P(B+) =P(B−) ∈ {0,1}, we deduce that
P(B+) =P(B−) = 1.

Finally, for x ∈Rwe have

Ac
x = {

Sn = x for finitely many n
}= {∃N ∈N ∀n > N Sn > x}

⋃
{∃N ∈N ∀n > N Sn < x}

=
{

liminf
n→∞ Sn > x

}⋃{
limsup

n→∞
Sn < x

}
⊆ B c

+∪B c
−
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Then P
(

Ac
x

)ÉP(
B c+∪B c−

)ÉP(
B c+

)+P(
B c−

)= 0. We conclude that P(Ax ) = 1.

Question 6

Let X1, X2 be independent exponentially distributed random variables with parameter one. Let Y1 = min{X1, X2} and Y2 =
max{X1, X2}−Y1. Show that Y1 and Y2 are independent. Generalize this to the case of three independent exponential random
variables with parameter one.

Proof. X1, X2 ∼ Exp(1) i.i.d. Then the distribution functions are FXi (x) =P(Xi É x) = 1−e−x . The distribution function of Y1:

FY1 (x) = 1−P(Y1 > x) = 1−P(X1 > x)P(X2 > x) = 1−e−2x

The distribution function of Z = max{X1, X2}:

FZ (x) =P(Z É x) =P(X1 É x)P(X2 É x) = (1−e−x )2

Then the distribution function of Y2:

FY2 (x) =P(Z −Y1 É x) =
∫ ∞

0
P
(
Z −Y1 É x | Y1 = y

)
fY1 (y)dy

=
∫ ∞

0
P
(
Z É x + y

)
fY1 (y)dy =

∫ ∞

0

(
1−e−(x+y))2 ·2e−2y dy

= 1− 4

3
e−x +1

2
e−2x

The joint distribution function of Y1 and Y2:

FY1,Y2 (y1, y2) =P(
Y1 É y1,Y2 É y2

)=P(
min{X1, X2} É y1,max{X1, X2} É y2 − y1

)
=P(

Z É y2 − y1
)−P(

min{X1, X2} > y1,max{X1, X2} É y2 − y1
)

=P(
Z É y2 − y1

)−P(
y1 < X1 É y2 − y1

)
P
(
y1 < X2 É y2 − y1

)
= (

1−e−(y2−y1))2 − (
e−y1 −e−(y2−y1))2

Question 7

For X ∈L 2(Ω,F ,P) show that c = E[X ] attains the infimum in

inf
c∈R

E
[
(X −c)2]

Proof. By linearity of the expectation,

E
[
(X − c)2]= E[

(X −E[X ]+E[x]− c)2]= E[
(X −E[X ])2 + (E[X ]− c)2 +2(X −E[X ])(E[X ]−c)

]
= E[

(X −E[X ])2]+ (E[X ]−c)2 +2(E[X ]−E[X ])(E[X ]− c) = E[
(X −E[X ])2]+ (E[X ]− c)2

Ê E[
(X −E[X ])2]

with equality holds if and only if c = E[X ].

Question 8

Let (Xn)nÊ2 be a sequence of independent random variables such that

P [Xn = n] =P [Xn =−n] = 1

2n logn
; P [Xn = 0] = 1− 1

n logn

Let Sn = X2 + . . .+Xn . Prove that Sn
n → 0 in probability, but not almost surely.

Seems to me 
you assumed independence here?
Try to evaluate joint integral.
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[Hint: show that the variance of Sn is bounded from above by n2/log(n) and deduce the convergence in probability; use a
Borel-Cantelli lemma to consider the almost sure convergence].

Proof. From the given distribution we can compute that E[Xn] = 0 and Var(Xn) = n

logn
. By independence of X1, ..., Xn we have

Var

(
Sn

n

)
= 1

n2 Var(Sn) = 1

n2

n∑
k=2

k

logk
< 1

n2 ·n
n

logn
= 1

logn

By Chebyshev’s inequality, for any ε> 0,

P

(∣∣∣∣Sn

n
−E

[
Sn

n

]∣∣∣∣> ε)É Var(Sn/n)

ε2 =⇒ P

(∣∣∣∣Sn

n

∣∣∣∣> ε)É 1

ε2 logn
→ 0

as n →∞. Hence Sn/n → 0 in probability.

Consider the events An := {|Sn | Ê n}. Then

P(An) =P(|Sn | Ê n)

ÊP(Sn−1 > 0 ∧ Xn = n)+P(Sn−1 É 0 ∧ Xn =−n)

=P(Sn−1 > 0)P(Xn = n)+P(Sn−1 É 0)P(Xn =−n)

=P(Sn−1 > 0)
1

2n logn
+P(Sn−1 É 0)

1

2n logn

= 1

2n logn

Hence
∞∑

n=2
P(An) Ê

∞∑
n=2

1

2n logn
= +∞. If we can prove that the sequence of events {An} are independent, then by the Second

Borel–Cantelli Lemma, we have P
(

An infinitely often
)= 1. But

{
An infinitely often

}= {∣∣∣∣Sn

n

∣∣∣∣Ê 1 for infinitely many n

}
⊆

{
lim

n→∞
Sn

n
→ 0

}c

Hence

P

(
lim

n→∞
Sn

n
→ 0

)
= 0

The convergence is not almost sure.

Question 9. Lemma 5.15

Let X ,Y be two positive random variables such that

xP(X Ê x) É E[
Y 1{XÊx}

]
, ∀x > 0

Show that for, p > 1 and q = p/(p −1), we have ‖X ‖p É q‖Y ‖p .

Proof. First we prove the inequality in the case X ∈ℒ p . The case Y ∉ℒ p is trivial so we assume that Y i nℒ p .

Let f (x,ω) = 1{(x,ω):0ÉxÉX (ω)} be a map from [0,∞)×Ω to R. Then we have∫ ∞

0
f (x,ω)dx = X (ω),

∫
Ω

f (x,ω)dP(ω) =P(X Ê x)

The assumption can be expressed as

x
∫
Ω

f dPÉ
∫
Ω

Y f dP =⇒ xp
∫
Ω

f dPÉ xp−1
∫
Ω

Y f dP

Integrating on [0,∞) and using Fubini’s Theorem:∫ ∞

0
xp

∫
Ω

f dPdx É
∫ ∞

0

∫
Ω

xp−1Y f dPdx =⇒
∫
Ω

(∫ ∞

0
xp f dx

)
dPÉ

∫
Ω

(∫ ∞

0
xp−1 f dx

)
Y dP

Consider the event |X_n|>=n.

96498
附注
We say that X is dominated by Y in distribution if P(X > s) \leq E[Y 1_{X>s}]/s.

96498
附注
Application: Doob's Maximum Inequality
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=⇒ 1

p

∫
Ω

X p dPÉ 1

p −1

∫
Ω

X p−1Y dP

=⇒ E
[

X p]É qE
[

X p−1Y
]

Since q = p/(1−p), 1 = p−1 +q−1. By Hölder’s inequality:

E
[

X p−1Y
]É ∥∥X p−1∥∥

q ‖Y ‖p = ∥∥X p/q∥∥
q ‖Y ‖p = ‖Y ‖p

(∫
Ω

X p dP

)1/q

= ‖X ‖p/q
p ‖Y ‖p

Hence
‖X ‖p

p = E[X p]É qE
[

X p−1Y
]É q ‖X ‖p/q

p ‖Y ‖p =⇒ ‖X ‖p É q ‖Y ‖p

Next we assume that X ∉ℒ p . Consider Xn := max{X ,n} for n ∈N. Then Xn is bounded onΩ. SinceΩ has finite measure, we
have Xn ∈ℒ p . Moreover, Xn satifies the inequality:

xP(Xn Ê x) É xP(X Ê x) É E[
Y 1{XÊx}

]
By the discussion above, we deduce that ‖Xn‖p É q ‖Y ‖p . Since Xn ↑ X , by Monotone Convergence Theorem we have

‖X ‖p = lim
n→∞‖Xn‖p É q ‖Y ‖p

Question 10

Let (Ω,F ,µ) be a probability space and Y ∈ L 1. Show that
{

X ∈L 0 : |X | É |Y |} is a uniformly integrable family of random
variables. Suppose now that X1, X2, . . . ∈L 1 and E [|Xn −Y |] → 0 as n →∞. Show that {Xn : n Ê 1} is uniformly integrable.

Proof. Let {Xn} be a sequence in A = {
X ∈L 0 : |X | É |Y |}. By Reverse Fatou’s Lemma,

limsup
n→∞

∫
Ω

Xn dPÉ
∫
Ω

limsup
n→∞

Xn dPÉ
∫
Ω

sup
X∈A

X dP =⇒ sup
X∈A

∫
Ω

X dPÉ
∫
Ω

sup
X∈A

X dP

Let fn = sup
X∈A

X 1{|X |>n}. Then fn → 0 pointwise (if we allow random variables to take infinite values on a null set, then this is a

almost everywhere convergence). Since fn É |Y | ∈ℒ 1, by Dominated Convergence Theorem,

lim
n→∞

∫
Ω

fn dP=
∫
Ω

lim
n→∞ fn dP= 0

Hence
lim

n→∞sup
X∈A

∫
Ω

X 1{|X |>n} dPÉ lim
n→∞

∫
Ω

fn dP= 0

We deduce that A is uniformly integrable.

Next, suppose that Xn → Y in ℒ 1. We have∫
{|Xn |>K }

|Xn |dPÉ
∫

{|Xn |>K }
|Y |dP+

∫
{|Xn |>K }

|Xn −Y |dP

for each n ∈Z+. Fix ε> 0. Since |Y | ∈ℒ 1, by Dominated Convergence Theorem,∫
E
|Y |dP→ 0 as P(E) → 0

There exists δ> 0 such that
P(E) < δ =⇒

∫
E
|Y |dP< ε

2

Since E[|Xn −Y |] → 0, by Lemma 4.14 E[|Xn |] → E[|Y |]. In particular sup
n∈Z+

E[|Xn |] < M for some M > 0. By Markow’s inequality,

P(|Xn | > K ) É E[Xn]

K
É M

K
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Let K0 = M/δ. So whenever K > K0,

P(|Xn | > K ) É M

K
< δ =⇒ sup

n∈Z+

∫
{|Xn |>K }

|Y |dP< ε

2

E[|Xn −Y |] → 0 implies that there exists N ∈ N such that E[|Xn −Y |] < ε/2 whenever n > N . For n ∈ {1, ..., N }, there exists
Kn > 0 such that

K > Kn =⇒
∫

{|Xn |>K }
|Xn −Y |dP< ε

2

Hence for K > max{K0,K1, ...,Kn}, for n > N ,∫
{|Xn |>K }

|Xn −Y |dPÉ E[|Xn −Y |] < ε

2

and for n É N , ∫
{|Xn |>K }

|Xn −Y |dP< ε

2

Hence
sup
n∈Z+

∫
{|Xn |>K }

|Xn −Y |dP< ε

2

Hence
sup
n∈Z+

∫
{|Xn |>K }

|Xn |dPÉ sup
n∈Z+

∫
{|Xn |>K }

|Y |dP+ sup
n∈Z+

∫
{|Xn |>K }

|Xn −Y |dP< ε

2
+ ε

2
= ε

We conclude that {Xn} is uniformly integrable.




