Grade: Alpha Great work! See my comments for the two problems you have.

Peize Liu St. Peter's College University of Oxford

Problem Sheet 2

B8.1: Probability, Measure & Martingales

Remark. I attempted all Questions in Section 1.

For Question 6, I fail to show the independence because the distribution function I get is not consistent.

For Question 8, I am not able to prove that the events $\{|S_n/n| \ge 1\}$ are independent. You cannot. You use X n/n instead.

Section 1

Question 1. Proof of Lemma 3.3 for any n

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and A_1, \ldots, A_n some events in \mathcal{F} . Show that their generated σ -algebras are independent if and only if for any $J \subseteq \{1, \ldots, n\}$

$$\mathbb{P}\left(\bigcap_{i\in J}A_i\right) = \prod_{i\in J}\mathbb{P}\left(A_i\right)$$

Proof. The direction " \Longrightarrow " is clear. For the " \Longleftrightarrow " direction, it suffices to prove that

$$\mathbb{P}\left(\bigcap_{i\in I} A_i \cap \bigcap_{j\in J} \Omega \setminus A_j\right) = \prod_{i\in I} \prod_{j\in J} \mathbb{P}(A_i) \mathbb{P}\left(\Omega \setminus A_j\right)$$

for any $I, J \subseteq \{1, ..., n\}$ with $I \cap J = \emptyset$. We use induction on the cardinality of J. Base case $J = \emptyset$ is our assumption. For the induction case, fix $k \in J$. Write $J' = J \setminus \{k\}$. Then

$$\mathbb{P}\left(\bigcap_{i \in I} A_{i} \cap \bigcap_{j \in J} \Omega \setminus A_{j}\right) = \mathbb{P}\left(\bigcap_{i \in I} A_{i} \cap \bigcap_{j \in J'} \Omega \setminus A_{j} \cap \Omega \setminus A_{k}\right)$$

$$= \mathbb{P}\left(\bigcap_{i \in I} A_{i} \cap \bigcap_{j \in J'} \Omega \setminus A_{j}\right) - \mathbb{P}\left(\bigcap_{i \in I} A_{i} \cap A_{k} \cap \bigcap_{j \in J} \Omega \setminus A_{j}\right)$$

$$= \prod_{i \in I} \prod_{j \in J'} \mathbb{P}(A_{i})\mathbb{P}(\Omega \setminus A_{j}) - \prod_{i \in I} \prod_{j \in J'} \mathbb{P}(A_{i})\mathbb{P}(\Omega \setminus A_{j})\mathbb{P}(A_{k})$$

$$= \prod_{i \in I} \prod_{j \in J'} \mathbb{P}(A_{i})\mathbb{P}(\Omega \setminus A_{j}) (1 - \mathbb{P}(A_{k}))$$

$$= \prod_{i \in I} \prod_{j \in J} \mathbb{P}(A_{i})\mathbb{P}(\Omega \setminus A_{j})$$

$$\checkmark$$
(induction hypothesis)

which completes the induction. Hence the σ -algebra generated by $A_1,...,A_k$ are independent.

Question 2

Let $X_1, X_2,...$ be independent uniformly distributed random variables on [0,1]. Let A_n be the event that a record high value occurs at time n:

$$A_n = \{X_n > X_m \text{ for all } m < n\}$$

Find the probability of A_n and show that A_1, A_2, \ldots are independent. Deduce that, with probability one, infinitely many records occur.

Now consider double records, that is two records in a row. What is the probability of infinitely many double records?

Proof. Let
$$Y_n = \max_{1 \le m \le n-1} X_m$$
. Then by independence of $X_1, ..., X_{n-1}$,

$$\mathbb{P}(Y_n \le x) = \mathbb{P}\left(\bigcap_{m=1}^{n-1} \{X_m \le x\}\right) = \prod_{m=1}^{n-1} \mathbb{P}(X_m \le x) = x^{n-1}$$

The probability density function of Y_n is $f_{Y_n}(y) = \frac{\mathrm{d}}{\mathrm{d}x} \mathbb{P}(Y_n \le x) = (n-1)x^{n-2}$. Since $X_1, ..., X_n$ are independent, X_n is inde-

pendent of Y_n . Hence the joint density of X_n and Y is given by $f_{X_n,Y_n}(x,y) = (n-1)y^{n-2}$. Now

$$\mathbb{P}(A_n) = \mathbb{P}(X_n > Y_n) = \iint_{\{(x,y) \in [0,1]^2: x > y\}} f_{X_n,Y_n}(x,y) \, \mathrm{d}(x \otimes y) = \int_0^1 \int_0^x (n-1) \, y^{n-2} \, \mathrm{d}y \, \mathrm{d}x = \int_0^1 x^{n-1} \, \mathrm{d}x = \frac{1}{n}$$

To prove that $(A_n)_{n=1}^{\infty}$ is an independent sequence of events, by Theorem 3.5 it suffices to verify that

$$\mathbb{P}\left(\bigcap_{i\in I}A_k\right) = \prod_{i\in I}\mathbb{P}(A_k)$$

for all finite subset $I \subseteq \mathbb{Z}_+$. We shall prove by induction on the cardinality of I. The base case $I = \{*\}$ is trivial.

Induction case: Let
$$I = \{k_1, ..., k_n\}, I' = \{k_2, ..., k_n\}, B_I := \bigcap_{k \in I'} A_k$$
.

The joint distribution of $X_1,...,X_{k_1}$ defines a pushforward measure on the product measure space $[0,1]^{k_1}$. Since $X_1,...,X_{k_1}$ are independent and identically uniformly distributed, for each $\sigma \in S_{k_1}$ there is an isomorphism of measure spaces

$$\widetilde{\sigma}: \left([0,1]^{k_1}, \mathcal{B}\left([0,1]^{k_1}\right), \mathbb{P} \circ X_1^{-1} \otimes \cdots \otimes \mathbb{P} \circ X_{k_1}^{-1}\right) \rightarrow \left([0,1]^{k_1}, \mathcal{B}\left([0,1]^{k_1}\right), \mathbb{P} \circ X_{\sigma(1)}^{-1} \otimes \cdots \otimes \mathbb{P} \circ X_{\sigma(k_1)}^{-1}\right)$$

In particular,

$$\mathbb{P}(A_{k_1}) = \mathbb{P}\left(X_{k_1} = \max_{1 \le m \le k_1} X_m\right) = \mathbb{P}\left(X_{\sigma(k_1)} = \max_{1 \le m \le k_1} X_m\right) \quad \checkmark$$

for any $\sigma \in S_{k_1}$. Note that $\mathbb{P}(X_i = X_j) = 0$ for any $i \neq j$, as it is the Lebesgue measure of the hyperplane x = y in k_1 -dimensional Euclidean space. Then we have

$$\mathbb{P}(B_I) = \sum_{i=1}^{k_1} \mathbb{P}\Big(B_I \cap \left\{X_i = \max_{1 \leq m \leq k_1} X_m\right\}\Big) = \sum_{i=1}^{k_1} \mathbb{P}\big(B_I \cap A_{k_1}\big) = k_1 \mathbb{P}\big(B_I \cap A_{k_1}\big) = \frac{\mathbb{P}(\bigcap_{k \in I} A_k)}{\mathbb{P}(A_{k_1})} \checkmark$$

By induction hypothesis, $\mathbb{P}(B_I) = \prod_{k \in I'} \mathbb{P}(A_k)$. Hence $\mathbb{P}\left(\bigcap_{k \in I} A_k\right) = \prod_{k \in I} \mathbb{P}(A_k)$. This completes the induction. We deduce that A_1, A_2, \dots are independent.

Since $\sum_{n=1}^{\infty} A_n = \sum_{i=1}^{\infty} \frac{1}{n} = +\infty$, by the second Borel–Cantelli Lemma, A_n occurs infinitely often with probability 1.

Let $C_n = A_n \cap A_{n+1}$. Then C_n represents the event that a double record occurs at the (n+1)-st time. Then

$$\mathbb{P}(C_n) = \mathbb{P}(A_n \cap A_{n+1}) = \mathbb{P}(A_n)\mathbb{P}(A_{n+1}) = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \implies \sum_{n=1}^{\infty} C_n = 1 < \infty$$

П

By the first Borel–Cantelli Lemma, double records occur infinitely often with probability 0.

Question 3. Example 3.9

On $([0,1], \mathcal{B}([0,1]), \text{Leb})$ let $X_n(\omega) = \mathbf{1}_{\lfloor 2^n \omega \rfloor \text{ is odd}}$, $n \ge 1$, where 0 is even. Put differently, $X_n(\omega)$ is the n^{th} digit in the binary expansion of ω . Check that $(X_n)_{n\ge 1}$ is an i.i.d. sequence.

Proof. Let $A_n^k := \left[\frac{2k-1}{2^n}, \frac{2k}{2^n}\right]$ and $A_n := \bigcup_{k=1}^{2^{n-1}} A_n^k$. Then we have $X_n(\omega) = \mathbf{1}_{A_n}(\omega)$. Note that $m(A_n) = \frac{1}{2}$. Hence $\mathbb{P}(X_n = 0) = \mathbb{P}(X_n = 1) = \frac{1}{2}$. The random variables X_n are identically distributed. To show that they are independent, by Corollary 3.8 it suffices to show

$$\mathbb{P}(X_1 \leq x_1,...,X_n \leq x_n) = \mathbb{P}(X_1 \leq x_1) \cdots \mathbb{P}(X_n \leq x_n)$$

for any $x_1,...,x_n\in\overline{\mathbb{R}}$ and $n\in\mathbb{Z}_+$. Since $\mathbb{P}(X_n\leqslant x)=m(A_n)$ for $x\in[0,1)$, it suffices to verify that

$$m\left(\bigcap_{k\in I}A_k\right) = \prod_{k\in I}m(A_k) = \frac{1}{2^{-|I|}}$$

for any finite subset $I \subseteq \mathbb{Z}_+$. We use induction on the cardinality of I. The base case $I = \{*\}$ is trivial.

Induction case: Let $n = \max I$, $I' = I \setminus \{n\}$, and $\ell = \max I'$. For a binary sequence

$$(a_i) = \sum_{i=1}^{\infty} 2^{-i} a_i \in [0,1], \quad a_i \in \{0,1\}$$

whether $(a_i) \in \bigcap_{k \in I'} A_k$ is uniquely determined by the values of a_i where $i \in I'$. In particular,

$$(a_i) \sim (b_i) \iff \forall i \in I' : a_i = b_i$$

defines an equivalence relation which partitions $\bigcap_{k \in I'} A_k$ into disjoint intervals, each of which has measure $2^{-\ell}$. Let B be one

of the intervals. Then $B = \left[\frac{b}{2^{\ell}}, \frac{b+1}{2^{\ell}}\right] = \left[\frac{2^{n-\ell}b}{2^n}, \frac{2^{n-\ell}(b+1)}{2^n}\right]$ for some $b \in \{1, ..., 2^{\ell}\}$. therefore

$$B \cap A_n = \bigcup_{k=2^{n-\ell-1}(b+1)}^{2^{n-\ell-1}(b+1)} A_n^k \Longrightarrow m(B \cap A_n) = 2^{n-\ell-1} \frac{1}{2^n} = 2^{-\ell-1} = \frac{1}{2} m(B)$$

Hence $m\left(\bigcap_{k\in I'}A_k\cap A_n\right)=\frac{1}{2}m\left(\bigcap_{k\in I'}A_k\right)$. By induction hypothesis, $m\left(\bigcap_{k\in I'}A_k\right)=2^{-|I'|}$. Hence $m\left(\bigcap_{k\in I}A_k\right)=2^{-|I'|-1}=2^{-|I|}$. This completes the induction.

Question 4

Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space. Let $(X_n)_{n \ge 1}$ be a sequence of independent identically distributed real-valued random variables such that $\mathbb{P}[X_n = 1] = p$, $\mathbb{P}[X_n = -1] = 1 - p$ where $p \ne 1/2$. Let $S_0 := 0$ and

$$S_n := \sum_{k=1}^n X_k, \quad n \ge 1$$

Show that the probability of the event $\{S_n = 0 \text{ i.o. }\}$ is zero.

[You might, or might not, find Stirling's formula useful: $n! \sim \sqrt{2\pi n} n^n e^{-n}$.]

Proof. The question is discussed in Section 5.9.1 of Part A Probability.

Note that S_n is a Markov chain of period 2. So $\mathbb{P}(S_n = 0) = 0$ for odd n. For $S_{2m} = 0$, there are exactly m of $X_1, ..., X_{2m}$ equal to 1 and the other m equal to -1. Hence by Stirling's formula,

$$\mathbb{P}(S_{2m}=0) = \binom{2m}{m} p^m (1-p)^m = \frac{(2m)!}{(m!)^2} p^m (1-p)^m \sim \frac{\sqrt{2\pi} (2m)^{2m+1/2} e^{-2m}}{\left(\sqrt{2\pi} m^{m+1/2} e^{-m}\right)^2} p^m (1-p)^m = \frac{1}{\sqrt{\pi m}} \left(4p(1-p)\right)^m$$

Since $p \neq 1/2$, 4p(1-p) < 1. So $\mathbb{P}(S_{2m} = 0) \to 0$ exponentially as $m \to \infty$. Thus $\sum_{m=1}^{\infty} \mathbb{P}(S_{2m} = 0) < \infty$. By the first Borel-Cantelli Lemma, $\mathbb{P}(S_n = 0)$ infinitely often = 0.

Question 5

Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space. Let $(X_n)_{n \ge 1}$ be a sequence of independent identically distributed real-valued random variables such that

$$\mathbb{P}[X_n = 1] = \mathbb{P}[X_n = -1] = 1/2$$

Let $S_0 := 0$ and, for all $n \ge 1$, $S_n := \sum_{k=1}^n X_k$.

For $x \in \mathbb{Z}$ let

$$A_x := \left\{ S_n = x \text{ for infinitely many } n \right\}, \quad B_- := \left\{ \liminf_{n \to \infty} S_n = -\infty \right\}, \quad B_+ := \left\{ \limsup_{n \to \infty} S_n = \infty \right\}$$

- (a) Let $\mathcal{T}_n = \sigma(X_{n+1}, X_{n+2}...)$ and $\mathcal{T} = \bigcap_{n=1}^{\infty} \mathcal{T}_n$. Why is \mathcal{T} a σ -algebra? Show that B_{\pm} are \mathcal{T} -measurable.
- (b) Deduce, using Kolmogorov's 0-1 law, that $\mathbb{P}[B_-] \in \{0,1\}$ and $\mathbb{P}[B_+] \in \{0,1\}$. Prove that $\mathbb{P}[B_-] = \mathbb{P}[B_+]$.
- (c) Using a Borel-Cantelli lemma show that, for all $k \ge 1$,

$$\limsup_{n\to\infty} (S_{n+k} - S_n) = k \text{ a.s.}$$

(d) Deduce from (c) that $\mathbb{P}\left[B_{-}^{c} \cap B_{+}^{c}\right] = 0$, and therefore that $\mathbb{P}\left[B_{-}\right] = \mathbb{P}\left[B_{+}\right] = 1$.

Conclude that, for all $x \in \mathbb{Z}$, $\mathbb{P}[A_x] = 1$.

Proof. (a) \mathcal{T} is a σ -algebra because it is an intersection of the σ -algebras \mathcal{T}_n . Now we show that $B_+ \in \mathcal{T}$. The case of B_- is analogous. Fix $n \in \mathbb{Z}_+$, we show that $B_+ \in \mathcal{T}_n$.

$$B_{+} = \left\{ \limsup_{n \to \infty} S_{n} = \infty \right\} = \bigcap_{m=1}^{\infty} \left\{ \limsup_{n \to \infty} S_{n} \ge m \right\} = \bigcap_{m=1}^{\infty} \bigcap_{k=1}^{\infty} \bigcup_{\ell \ge k} \left\{ S_{\ell} \ge m \right\} = \bigcap_{m=1}^{\infty} \bigcap_{k=1}^{\infty} \bigcup_{\ell \ge k} \left\{ S_{\ell} - S_{n} \ge m \right\}$$

$$= \bigcap_{m=1}^{\infty} \bigcap_{k=1}^{\infty} \bigcup_{\ell \ge k} \left\{ \sum_{i=n+1}^{\ell} X_{i} \ge m \right\}$$

By definition $X_{n+1}, X_{n+2}, ...$ are \mathcal{T}_n -measurable functions. Hence $\sum_{i=n+1}^{\ell} X_i$ is \mathcal{T}_n -measurable for any ℓ . Hence $\sum_{i=n+1}^{\ell} X_i > m$ $\in \mathcal{T}_n$. Hence $B_+ \in \mathcal{T}_n$.

(b) The same reasoning in (a) shows that $\limsup_{n\to\infty} S_n$ and $\liminf_{n\to\infty} S_n$ are \mathcal{T} -measurable random variables. By Kolmogorov's 0-1 law, they are constant almost surely. Hence $\mathbb{P}(B_+), \mathbb{P}(B_-) \in \{0,1\}$. Let $T_n = -S_n = \sum_{k=1}^n -X_k$. Then T_n and S_n has the same distribution. Hence

$$\mathbb{P}(B_{-}) = \mathbb{P}\left(\liminf_{n \to \infty} S_n = -\infty\right) = \mathbb{P}\left(\liminf_{n \to \infty} -T_n = -\infty\right) = \mathbb{P}\left(\limsup_{n \to \infty} T_n = \infty\right) = \mathbb{P}\left(\limsup_{n \to \infty} S_n = \infty\right) = \mathbb{P}(B_{+})$$

(c) We have

$$\begin{cases} \limsup_{n \to \infty} (S_{n+k} - S_n) = k \end{cases} = \bigcap_{m=1}^{\infty} \left\{ S_{n+k} - S_n \ge k - \frac{1}{m} \text{ for infinitely many } n \right\}$$
$$= \left\{ S_{n+k} - S_n = k \text{ for infinitely many } n \right\}$$
$$= \left\{ X_{n+1} = \dots = X_{n+k} = 1 \text{ for infinitely many } n \right\}$$

Let $A_n = \{X_{n+1} = \dots = X_{n+k} = 1\}$. Then $\mathbb{P}(A_n) = 2^{-k}$ and A_0, A_k, A_{2k}, \dots are independent. We have $\sum_{n=0}^{\infty} \mathbb{P}(A_{nk}) = \infty$. By the second Borel–Cantelli Lemma, $\mathbb{P}(X_{n+1} = \dots = X_{n+k} = 1 \text{ for infinitely many } n) = 1$. Hence $\limsup_{n \to \infty} (S_{n+k} - S_n) = k$ almost surely.

(d) We have

$$B_{+}^{c} \cap B_{-}^{c} = \left\{ \limsup_{n \to \infty} S_{n} - \liminf_{n \to \infty} S_{n} < \infty \right\} = \bigcup_{m=1}^{\infty} \left\{ \forall n \in \mathbb{Z}_{+} : |S_{n}| \leq m \right\}$$

But

$$\{\forall\; n\in\mathbb{Z}_+: |S_n|\leqslant m\}\subseteq \{\forall\; n\in\mathbb{Z}_+: |S_{n+3m}-S_n|\leqslant 2m\}\subseteq \left\{\limsup_{n\to\infty}|S_{n+3m}-S_n|\leqslant 2m\right\} \checkmark$$

which has probability 0 by (c). Hence $\mathbb{P}(B_+^c \cap B_-^c) = 0$. Then $\mathbb{P}(B_+ \cup B_-) = 1$. Since $\mathbb{P}(B_+) = \mathbb{P}(B_-) \in \{0, 1\}$, we deduce that $\mathbb{P}(B_+) = \mathbb{P}(B_-) = 1$.

Finally, for $x \in \mathbb{R}$ we have

$$A_{x}^{c} = \left\{ S_{n} = x \text{ for finitely many } n \right\} = \left\{ \exists N \in \mathbb{N} \ \forall \ n > N \ S_{n} > x \right\} \bigcup \left\{ \exists N \in \mathbb{N} \ \forall \ n > N \ S_{n} < x \right\}$$

$$= \left\{ \liminf_{n \to \infty} S_{n} > x \right\} \bigcup \left\{ \limsup_{n \to \infty} S_{n} < x \right\} \subseteq B_{+}^{c} \cup B_{-}^{c}$$

Then $\mathbb{P}(A_x^c) \leq \mathbb{P}(B_+^c \cup B_-^c) \leq \mathbb{P}(B_+^c) + \mathbb{P}(B_-^c) = 0$. We conclude that $\mathbb{P}(A_x) = 1$

Question 6

 $\max\{X_1, X_2\} - Y_1$. Show that Y_1 and Y_2 are independent. Generalize this to the case of three independent exponential random variables with parameter one.

Proof. $X_1, X_2 \sim \text{Exp}(1)$ i.i.d. Then the distribution functions are $F_{X_i}(x) = \mathbb{P}(X_i \leq x) = 1 - e^{-x}$. The distribution function of Y_1 :

$$F_{Y_1}(x) = 1 - \mathbb{P}(Y_1 > x) = 1 - \mathbb{P}(X_1 > x)\mathbb{P}(X_2 > x) = 1 - e^{-2x}$$

The distribution function of $Z = \max\{X_1, X_2\}$:

$$F_Z(x) = \mathbb{P}(Z \le x) = \mathbb{P}(X_1 \le x)\mathbb{P}(X_2 \le x) = (1 - e^{-x})^2$$

Then the distribution function of Y_2 :

 $F_{Y_2}(x) = \mathbb{P}(Z - Y_1 \le x) = \int_0^\infty \mathbb{P}(Z - Y_1 \le x \mid Y_1 = y) f_{Y_1}(y) \, dy$ you assumed independence here? $\mathbf{X} = \int_0^\infty \mathbb{P}\big(Z \le x + y\big) f_{Y_1}(y) \,\mathrm{d}y = \int_0^\infty \big(1 - \mathrm{e}^{-(x+y)}\big)^2 \cdot 2\,\mathrm{e}^{-2y} \,\mathrm{d}y$ Try to evaluate joint integral. $=1-\frac{4}{3}e^{-x}+\frac{1}{2}e^{-2x}$

The joint distribution function of Y_1 and Y_2 :

$$\begin{split} F_{Y_1,Y_2}(y_1,y_2) &= \mathbb{P}\big(Y_1 \leqslant y_1,Y_2 \leqslant y_2\big) = \mathbb{P}\big(\min\{X_1,X_2\} \leqslant y_1,\max\{X_1,X_2\} \leqslant y_2 - y_1\big) \\ &= \mathbb{P}\big(Z \leqslant y_2 - y_1\big) - \mathbb{P}\big(\min\{X_1,X_2\} > y_1,\max\{X_1,X_2\} \leqslant y_2 - y_1\big) \\ &= \mathbb{P}\big(Z \leqslant y_2 - y_1\big) - \mathbb{P}\big(y_1 < X_1 \leqslant y_2 - y_1\big) \mathbb{P}\big(y_1 < X_2 \leqslant y_2 - y_1\big) \\ &= \big(1 - \mathrm{e}^{-(y_2 - y_1)}\big)^2 - \big(\mathrm{e}^{-y_1} - \mathrm{e}^{-(y_2 - y_1)}\big)^2 \end{split}$$

Question 7

For $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ show that $c = \mathbb{E}[X]$ attains the infimum in

$$\inf_{c \in \mathbb{R}} \mathbb{E}\left[(X - c)^2 \right]$$

Proof. By linearity of the expectation,

$$\begin{split} \mathbb{E} \left[(X - c)^2 \right] &= \mathbb{E} \left[(X - \mathbb{E}[X] + \mathbb{E}[x] - c)^2 \right] = \mathbb{E} \left[(X - \mathbb{E}[X])^2 + (\mathbb{E}[X] - c)^2 + 2(X - \mathbb{E}[X])(\mathbb{E}[X] - c) \right] \\ &= \mathbb{E} \left[(X - \mathbb{E}[X])^2 \right] + (\mathbb{E}[X] - c)^2 + 2(\mathbb{E}[X] - \mathbb{E}[X])(\mathbb{E}[X] - c) = \mathbb{E} \left[(X - \mathbb{E}[X])^2 \right] + (\mathbb{E}[X] - c)^2 \\ &\geqslant \mathbb{E} \left[(X - \mathbb{E}[X])^2 \right] \end{split}$$

with equality holds if and only if $c = \mathbb{E}[X]$.

Question 8

Let $(X_n)_{n\geq 2}$ be a sequence of independent random variables such that

$$\mathbb{P}[X_n = n] = \mathbb{P}[X_n = -n] = \frac{1}{2n\log n}; \quad \mathbb{P}[X_n = 0] = 1 - \frac{1}{n\log n}$$

Let $S_n = X_2 + ... + X_n$. Prove that $\frac{S_n}{n} \to 0$ in probability, but not almost surely.

[Hint: show that the variance of S_n is bounded from above by $n^2/\log(n)$ and deduce the convergence in probability; use a Borel-Cantelli lemma to consider the almost sure convergence].

Proof. From the given distribution we can compute that $\mathbb{E}[X_n] = 0$ and $\text{Var}(X_n) = \frac{n}{\log n}$. By independence of $X_1, ..., X_n$ we have

$$\operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{1}{n^2} \operatorname{Var}(S_n) = \frac{1}{n^2} \sum_{k=2}^n \frac{k}{\log k} < \frac{1}{n^2} \cdot n \frac{n}{\log n} = \frac{1}{\log n}$$

By Chebyshev's inequality, for any $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mathbb{E}\left[\frac{S_n}{n}\right]\right| > \varepsilon\right) \le \frac{\operatorname{Var}(S_n/n)}{\varepsilon^2} \implies \mathbb{P}\left(\left|\frac{S_n}{n}\right| > \varepsilon\right) \le \frac{1}{\varepsilon^2 \log n} \to 0$$

as $n \to \infty$. Hence $S_n/n \to 0$ in probability.

Consider the events $A_n := \{|S_n| \ge n\}$. Then

$$\begin{split} \mathbb{P}(A_n) &= \mathbb{P}(|S_n| \ge n) \\ &\ge \mathbb{P}(S_{n-1} > 0 \ \land \ X_n = n) + \mathbb{P}(S_{n-1} \le 0 \ \land \ X_n = -n) \\ &= \mathbb{P}(S_{n-1} > 0) \mathbb{P}(X_n = n) + \mathbb{P}(S_{n-1} \le 0) \mathbb{P}(X_n = -n) \\ &= \mathbb{P}(S_{n-1} > 0) \frac{1}{2n \log n} + \mathbb{P}(S_{n-1} \le 0) \frac{1}{2n \log n} \\ &= \frac{1}{2n \log n} \end{split}$$

Hence $\sum_{n=2}^{\infty} \mathbb{P}(A_n) \geqslant \sum_{n=2}^{\infty} \frac{1}{2n \log n} = +\infty$. If we can prove that the sequence of events $\{A_n\}$ are independent, then by the Second Borel–Cantelli Lemma, we have $\mathbb{P}(A_n \text{ infinitely often}) = 1$. But Consider the event $|X_n| > = n$.

$$\{A_n \text{ infinitely often}\} = \left\{ \left| \frac{S_n}{n} \right| \ge 1 \text{ for infinitely many } n \right\} \subseteq \left\{ \lim_{n \to \infty} \frac{S_n}{n} \to 0 \right\}^c$$

Hence

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{S_n}{n}\to 0\right)=0$$

The convergence is not almost sure.

Question 9. Lemma 5.15

Let X, Y be two positive random variables such that

$$x\mathbb{P}(X \ge x) \le \mathbb{E}[Y\mathbf{1}_{\{X \ge x\}}], \quad \forall x > 0$$

Show that for, p > 1 and q = p/(p-1), we have $||X||_p \le q||Y||_p$.

Proof. First we prove the inequality in the case $X \in \mathcal{L}^p$. The case $Y \notin \mathcal{L}^p$ is trivial so we assume that $Y in \mathcal{L}^p$.

Let $f(x,\omega) = \mathbf{1}_{\{(x,\omega):0 \le x \le X(\omega)\}}$ be a map from $[0,\infty) \times \Omega$ to \mathbb{R} . Then we have

$$\int_0^\infty f(x,\omega) \, \mathrm{d}x = X(\omega), \qquad \int_\Omega f(x,\omega) \, \mathrm{d}\mathbb{P}(\omega) = \mathbb{P}(X \geqslant x)$$

The assumption can be expressed as

$$x \int_{\Omega} f \, d\mathbb{P} \le \int_{\Omega} Y f \, d\mathbb{P} \implies x^{p} \int_{\Omega} f \, d\mathbb{P} \le x^{p-1} \int_{\Omega} Y f \, d\mathbb{P}$$

Integrating on $[0,\infty)$ and using Fubini's Theorem:

$$\int_0^\infty x^p \int_\Omega f \, \mathrm{d}\mathbb{P} \, \mathrm{d}x \leq \int_0^\infty \int_\Omega x^{p-1} Y f \, \mathrm{d}\mathbb{P} \, \mathrm{d}x \\ \Longrightarrow \int_\Omega \left(\int_0^\infty x^p f \, \mathrm{d}x \right) \mathrm{d}\mathbb{P} \leq \int_\Omega \left(\int_0^\infty x^{p-1} f \, \mathrm{d}x \right) Y \, \mathrm{d}\mathbb{P}$$

$$\implies \frac{1}{p} \int_{\Omega} X^{p} \, \mathrm{d}\mathbb{P} \leq \frac{1}{p-1} \int_{\Omega} X^{p-1} Y \, \mathrm{d}\mathbb{P}$$

$$\implies \mathbb{E}[X^{p}] \leq q \mathbb{E}[X^{p-1} Y]$$

Since q = p/(1-p), $1 = p^{-1} + q^{-1}$. By Hölder's inequality:

$$\mathbb{E} \big[X^{p-1} Y \big] \leq \left\| X^{p-1} \right\|_q \| Y \|_p = \left\| X^{p/q} \right\|_q \| Y \|_p = \| Y \|_p \left(\int_{\Omega} X^p \, \mathrm{d} \mathbb{P} \right)^{1/q} = \| X \|_p^{p/q} \| Y \|_p$$

Hence

$$\|X\|_{p}^{p} = \mathbb{E}[X^{p}] \le q\mathbb{E}[X^{p-1}Y] \le q\|X\|_{p}^{p/q}\|Y\|_{p} \implies \|X\|_{p} \le q\|Y\|_{p} \checkmark$$

Next we assume that $X \notin \mathcal{L}^p$. Consider $X_n := \max\{X, n\}$ for $n \in \mathbb{N}$. Then X_n is bounded on Ω . Since Ω has finite measure, we have $X_n \in \mathcal{L}^p$. Moreover, X_n satisfies the inequality:

$$x\mathbb{P}(X_n \ge x) \le x\mathbb{P}(X \ge x) \le \mathbb{E}\left[Y\mathbf{1}_{\{X \ge x\}}\right]$$

By the discussion above, we deduce that $||X_n||_p \le q ||Y||_p$. Since $X_n \uparrow X$, by Monotone Convergence Theorem we have

$$||X||_p = \lim_{n \to \infty} ||X_n||_p \le q ||Y||_p$$

Question 10

Let $(\Omega, \mathscr{F}, \mu)$ be a probability space and $Y \in \mathscr{L}^1$. Show that $\{X \in \mathscr{L}^0 : |X| \le |Y|\}$ is a uniformly integrable family of random variables. Suppose now that $X_1, X_2, \ldots \in \mathscr{L}^1$ and $\mathbb{E}[|X_n - Y|] \to 0$ as $n \to \infty$. Show that $\{X_n : n \ge 1\}$ is uniformly integrable.

Proof. Let $\{X_n\}$ be a sequence in $A = \{X \in \mathcal{L}^0 : |X| \le |Y|\}$. By Reverse Fatou's Lemma,

$$\limsup_{n\to\infty}\int_{\Omega}X_n\,\mathrm{d}\mathbb{P}\leqslant\int_{\Omega}\limsup_{n\to\infty}X_n\,\mathrm{d}\mathbb{P}\leqslant\int_{\Omega}\sup_{X\in A}X\,\mathrm{d}\mathbb{P}\implies\sup_{X\in A}\int_{\Omega}X\,\mathrm{d}\mathbb{P}\leqslant\int_{\Omega}\sup_{X\in A}X\,\mathrm{d}\mathbb{P}$$

Let $f_n = \sup_{X \in A} X \mathbf{1}_{\{|X| > n\}}$. Then $f_n \to 0$ pointwise (if we allow random variables to take infinite values on a null set, then this is a almost everywhere convergence). Since $f_n \le |Y| \in \mathcal{L}^1$, by Dominated Convergence Theorem,

$$\lim_{n\to\infty} \int_{\Omega} f_n \, \mathrm{d}\mathbb{P} = \int_{\Omega} \lim_{n\to\infty} f_n \, \mathrm{d}\mathbb{P} = 0 \qquad \checkmark$$

Hence

$$\lim_{n\to\infty}\sup_{X\in A}\int_{\Omega}X\mathbf{1}_{\{|X|>n\}}\,\mathrm{d}\mathbb{P}\leqslant\lim_{n\to\infty}\int_{\Omega}f_n\,\mathrm{d}\mathbb{P}=0\quad \checkmark$$

We deduce that *A* is uniformly integrable.

Next, suppose that $X_n \to Y$ in \mathcal{L}^1 . We have

$$\int_{\{|X_n| > K\}} |X_n| \, \mathrm{d}\mathbb{P} \leq \int_{\{|X_n| > K\}} |Y| \, \mathrm{d}\mathbb{P} + \int_{\{|X_n| > K\}} |X_n - Y| \, \mathrm{d}\mathbb{P} \checkmark$$

for each $n \in \mathbb{Z}_+$. Fix $\varepsilon > 0$. Since $|Y| \in \mathcal{L}^1$, by Dominated Convergence Theorem,

$$\int_{E} |Y| \, d\mathbb{P} \to 0 \text{ as } \mathbb{P}(E) \to 0 \quad \checkmark$$

There exists $\delta > 0$ such that

$$\mathbb{P}(E) < \delta \implies \int_{E} |Y| \, \mathrm{d}\mathbb{P} < \frac{\varepsilon}{2} \qquad \checkmark$$

Since $\mathbb{E}[|X_n - Y|] \to 0$, by Lemma 4.14 $\mathbb{E}[|X_n|] \to \mathbb{E}[|Y|]$. In particular $\sup_{n \in \mathbb{Z}_+} \mathbb{E}[|X_n|] < M$ for some M > 0. By Markow's inequality,

$$\mathbb{P}(|X_n| > K) \leq \frac{\mathbb{E}[X_n]}{K} \leq \frac{M}{K} \qquad \checkmark$$

Let $K_0 = M/\delta$. So whenever $K > K_0$,

$$\mathbb{P}(|X_n| > K) \le \frac{M}{K} < \delta \implies \sup_{n \in \mathbb{Z}_+} \int_{\{|X_n| > K\}} |Y| \, \mathrm{d}\mathbb{P} < \frac{\varepsilon}{2}$$

 $\mathbb{E}[|X_n - Y|] \to 0$ implies that there exists $N \in \mathbb{N}$ such that $\mathbb{E}[|X_n - Y|] < \varepsilon/2$ whenever n > N. For $n \in \{1, ..., N\}$, there exists $K_n > 0$ such that

$$K > K_n \Longrightarrow \int_{\{|X_n| > K\}} |X_n - Y| \, d\mathbb{P} < \frac{\varepsilon}{2} \quad \checkmark$$

Hence for $K > \max\{K_0, K_1, ..., K_n\}$, for n > N,

$$\int_{\{|X_n|>K\}} |X_n-Y|\,\mathrm{d}\mathbb{P} \leq \mathbb{E}[|X_n-Y|] < \frac{\varepsilon}{2}$$

and for $n \leq N$,

$$\int_{\{|X_n|>K\}} |X_n-Y|\,\mathrm{d}\mathbb{P} < \frac{\varepsilon}{2}$$

Hence

$$\sup_{n\in\mathbb{Z}_+}\int_{\{|X_n|>K\}}|X_n-Y|\,\mathrm{d}\mathbb{P}<\frac{\varepsilon}{2}$$

Hence

$$\sup_{n\in\mathbb{Z}_+}\int_{\{|X_n|>K\}}|X_n|\,\mathrm{d}\mathbb{P}\leq \sup_{n\in\mathbb{Z}_+}\int_{\{|X_n|>K\}}|Y|\,\mathrm{d}\mathbb{P}+\sup_{n\in\mathbb{Z}_+}\int_{\{|X_n|>K\}}|X_n-Y|\,\mathrm{d}\mathbb{P}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

We conclude that $\{X_n\}$ is uniformly integrable.

