Problem Sheet 2 B4.3: Distribution Theory

Ouestion 1

Let $f, g \in C^1(\mathbb{R})$ and define

$$u(x) = \begin{cases} f(x) & \text{if } x < 0 \\ g(x) & \text{if } x \ge 0 \end{cases}$$

Explain why $u \in \mathcal{D}'(\mathbb{R})$ and calculate the distributional derivative u'. What can you say about the function

$$v(x) = \begin{cases} f(x) & \text{if } x < 0 \\ a & \text{if } x = 0 \\ g(x) & \text{if } x > 0 \end{cases}$$

where $a \in \mathbb{R}$ is a constant that is different from both f(0) and g(0)?

Proof. Since $f,g \in C^1(\mathbb{R})$, u is continuous almost everywhere. In particular it is locally Lebesgue integrable. Hence u defines a regular distribution $T_u \in \mathcal{D}'(\mathbb{R})$.

For $\varphi \in \mathcal{D}(\mathbb{R})$, the distributional derivative

$$\langle u', \varphi \rangle := \langle u, -\varphi' \rangle = \int_{\mathbb{R}} -u(x)\varphi'(x) \, \mathrm{d}x = \int_{-\infty}^{0} -f(x)\varphi'(x) \, \mathrm{d}x + \int_{0}^{+\infty} -g(x)\varphi'(x) \, \mathrm{d}x$$

By integration by parts,

$$\langle u', \varphi \rangle = -f(0)\varphi(0) + \int_{-\infty}^{0} f'(x)\varphi(x) \, dx + g(0)\varphi(0) + \int_{0}^{+\infty} g'(x)\varphi(x) \, dx = (g(0) - f(0))\varphi(0) + \int_{\mathbb{R}} u'(x)\varphi(x) \, dx$$

The u' in the integrand is the almost everywhere derivative of function u.

It is clear that u and v define the same distribution in $\mathcal{D}'(\Omega)$ because u = v almost everywhere.

Question 2

(a) Prove that if $f: \mathbb{R} \to \mathbb{R}$ is piecewise continuous and $k \in \mathbb{R}$, then the function $u(x,t) = f(x-kt), (x,t) \in \mathbb{R}^2$, is locally integrable on \mathbb{R}^2 . Conclude that it defines a distribution and show that it satisfies the one-dimensional wave equation:

$$\frac{\partial^2 u}{\partial t^2} = k^2 \frac{\partial^2 u}{\partial x^2}$$

in the sense of distributions on \mathbb{R}^2 .

(b) Prove that $u(x, y) = \log(x^2 + y^2)$ is locally integrable on \mathbb{R}^2 , and that we have

$$\Delta u = 4\pi\delta_0$$

in the sense of distributions on \mathbb{R}^2 , where δ_0 is the Dirac delta function on \mathbb{R}^2 concentrated at the origin.

(a) I assume that piecewise continuous functions are locally bounded. Under this notion, f is locally bounded and hence Proof. locally integrable. Then $x \mapsto f(x-kt)$ and $t \mapsto f(x-kt)$ are locally integrable. By Tonelli's Theorem u(x,t) = f(x-kt)is locally integrable on \mathbb{R}^2 .

By Example 3.6 u defines a regular distribution T_u given by

egular distribution
$$T_u$$
 given by
$$\langle u, \varphi \rangle := \iint_{\mathbb{R}^2} u(x, t) \varphi(x, t) dx dt = \iint_{\mathbb{R}^2} f(x - kt) \varphi(x, t) dx dt \quad \text{that } \forall \chi \in \mathbb{R}^2$$
 al derivatives
$$\begin{cases} \chi - kt : (\chi, t) \in K \end{cases} \subset \widetilde{K}.$$

Then the distributional partial derivatives

$$\left\langle \left(\partial_t^2 - k^2 \partial_x^2 \right) u, \varphi \right\rangle = \left\langle u, \left(\partial_t^2 - k^2 \partial_x^2 \right) \varphi \right\rangle = \iint_{\mathbb{R}^2} f(x - kt) \left(\frac{\partial^2 \varphi}{\partial t^2} - k^2 \frac{\partial^2 \varphi}{\partial x^2} \right) dx dt$$

Change of variables $(x, t) \mapsto (v, w)$, where v = x - kt and w = x + kt. The Jacobian $\left| \frac{\partial(x, t)}{\partial(v, w)} \right| = \frac{1}{2k}$. Let $\widetilde{\varphi}(v, w) = \varphi(x, t)$.

Then

$$\frac{\partial^2 \varphi}{\partial x^2} = \frac{\partial^2 \widetilde{\varphi}}{\partial v^2} + \frac{\partial^2 \widetilde{\varphi}}{\partial w^2} + 2 \frac{\partial^2 \widetilde{\varphi}}{\partial v \partial w}, \qquad \frac{\partial^2 \varphi}{\partial t^2} = k^2 \left(\frac{\partial^2 \widetilde{\varphi}}{\partial v^2} + \frac{\partial^2 \widetilde{\varphi}}{\partial w^2} - 2 \frac{\partial^2 \widetilde{\varphi}}{\partial v \partial w} \right)$$

Hence

$$\iint_{\mathbb{R}^2} f(x - kt) \left(\frac{\partial^2 \varphi}{\partial t^2} - k^2 \frac{\partial^2 \varphi}{\partial x^2} \right) dx dt = \iint_{\mathbb{R}^2} 2k f(v) \frac{\partial^2 \widetilde{\varphi}}{\partial v \partial w} dv dw = \int_{\mathbb{R}} 2k f(v) \left(\int_{\mathbb{R}} \frac{\partial^2 \widetilde{\varphi}}{\partial v \partial w} dw \right) dv$$

But

$$\int_{\mathbb{R}} \frac{\partial^2 \widetilde{\varphi}}{\partial v \partial w} \, \mathrm{d}w = \left. \frac{\partial \widetilde{\varphi}}{\partial v} \right|_{-\infty}^{+\infty} = 0$$

since φ is compactly supported. Hence $\left(\partial_t^2 - k^2\partial_x^2\right)u$ is the zero distribution. We deduce that

$$\frac{\partial^2 u}{\partial t^2} = k^2 \frac{\partial^2 u}{\partial x^2}$$

in the sence of distributions.

(b) For any compact subset $K \subseteq \mathbb{R}^2$, we take a closed disk $\overline{B(0,R)}$ such that $K \subseteq \overline{B(0,R)}$. Then

$$\iint_{K} u(x, y) \, \mathrm{d}x \, \mathrm{d}y \le \iint_{\overline{B(0, R)}} \log(x^2 + y^2) \, \mathrm{d}x \, \mathrm{d}y = 2\pi \int_{0}^{R} r \log r^2 \, \mathrm{d}r = 2\pi R^2 \log R$$

is finite. We deduce that u is locally integrable on \mathbb{R}^2 .

For $\varphi \in \mathcal{D}(\mathbb{R}^2)$,

$$\langle \nabla^2 u, \varphi \rangle := \langle u, \nabla^2 \varphi \rangle = \iint_{\mathbb{R}^2} u \nabla^2 \varphi \, \mathrm{d}x \, \mathrm{d}y$$

To prove that $\nabla^2 u = 4\pi\delta_0$, we need to prove that

$$\iint_{\mathbb{R}^2} u \nabla^2 \varphi \, \mathrm{d}x \mathrm{d}y = \varphi(0)$$

Since φ is compactly supported, there exists R > 0 such that supp $\varphi \subseteq \overline{B(0,R)}$. Let $A = \{x \in \mathbb{R}^2 : r < \|x\| < R\}$.

$$I(r) = \iint_{\Delta} u \nabla^2 \varphi \, \mathrm{d}x \mathrm{d}y$$

$$I(r) = \iint_A u \nabla^2 \varphi \, \mathrm{d}x \mathrm{d}y$$
 Using Gauss-Green Formula in \mathbb{R}^2 and that $\nabla \varphi = 0$ on $\|x\| = R$,
$$I(r) = -\iint_A \nabla u \cdot \nabla \varphi \, \mathrm{d}x \mathrm{d}y + \oint_{\partial B(0,r)} u \nabla \varphi \cdot n \, \mathrm{d}s = -\oint_{\partial B(0,r)} \varphi \nabla u \cdot n \, \mathrm{d}s + \oint_{\partial B(0,r)} u \nabla \varphi \cdot n \, \mathrm{d}s$$

On ||x|| = r, $u(x) = 2 \log r$. Hence

$$-\oint_{\partial B(0,r)} \varphi \nabla u \cdot n \, \mathrm{d}s = \oint_{\partial B(0,r)} \varphi(x) \cdot \frac{2}{r} \, \mathrm{d}s = 2 \oint_{\partial S^1} \varphi(rx) \, \mathrm{d}s \to 4\pi \varphi(0)$$

as $r \to 0$. For the other integral,

$$\left| \oint_{\partial B(0,r)} u \nabla \varphi \cdot \mathbf{n} \, \mathrm{d}s \right| \leq 2\pi r \cdot 2r \log r \sup_{\partial B(0,r)} \| \nabla \varphi \| \to 0$$

as $r \rightarrow 0$. Hence

$$I = \lim_{r \to 0} I(r) = 4\pi\varphi(0)$$

We deduce that $\nabla^2 u = 4\pi \delta_0$.

Question 3

Let a > 0. For each $\varphi \in \mathcal{D}(\mathbb{R})$ we let

$$\langle T_a, \varphi \rangle = \left(\int_{-\infty}^{-a} + \int_a^{\infty} \frac{\varphi(x)}{|x|} dx + \int_{-a}^{a} \frac{\varphi(x) - \varphi(0)}{|x|} dx \right)$$

Show that T_a hereby is well-defined and that it is a distribution on \mathbb{R} . Now assume that $\varphi \in \mathcal{D}(\mathbb{R})$ satisfies $\varphi(0) = 0$. Show that then

$$\langle T_a, \varphi \rangle = \int_{-\infty}^{\infty} \frac{\varphi(x)}{|x|} dx$$

What distribution is $T_a - T_b$ for 0 < b < a?

Proof. It is clear from the definition that T_a is a linear functional. First we need to verify that $\langle T_a, \varphi \rangle$ is finite for all $\varphi \in \mathcal{D}(\mathbb{R})$.

Note that both $\varphi(x) - \varphi(0)$ and x tends to 0 as $x \setminus 0$. By l'Hôptial's rule,

$$\lim_{x \searrow 0} \frac{\varphi(x) - \varphi(0)}{|x|} = \lim_{x \searrow 0} \varphi'(x) = \varphi'(0)$$

It is similar for $x \nearrow 0$. Hence the second integrand in the definition of T_a is continuous in (-a, a). So the second integral is finite. Since φ is compactly supported, the first integral is also finite. We deduce that T_a is well-defined.

Next we show that T_a is a distribution. Consider $\{\varphi_n\}\subseteq \mathcal{D}(\mathbb{R})$ and $\varphi\in \mathcal{D}(\mathbb{R})$, such that $\varphi_n\to \varphi$ in \mathcal{D} . Let R>a such that $\sup \varphi_n$, $\sup \varphi\subseteq [-R,R]$. Then

$$\left\langle T_{a},\varphi_{n}\right\rangle -\left\langle T_{a},\varphi\right\rangle =\left(\int_{-R}^{-a}+\int_{a}^{R}\right)\frac{\varphi_{n}(x)-\varphi(x)}{|x|}\mathrm{d}x+\int_{-a}^{a}\frac{\varphi_{n}(x)-\varphi(x)-\left(\varphi_{n}(0)-\varphi(0)\right)}{|x|}\mathrm{d}x\rightarrow0$$

as $n \to \infty$, by the uniform convergence $\varphi_n \to \varphi$ on [-R, R]. Hence T_a is a distribution.

For $\varphi \in \mathcal{D}(\mathbb{R})$ with $\varphi(0) = 0$,

$$\langle T_a, \varphi \rangle = \left(\int_{-\infty}^{-a} + \int_a^{\infty} \right) \frac{\varphi(x)}{|x|} dx + \int_{-a}^{a} \frac{\varphi(x)}{|x|} dx = \int_{-\infty}^{+\infty} \frac{\varphi(x)}{|x|} dx$$

The distribution $T_a - T_b$ is given by

$$\langle T_a - T_b, \varphi \rangle = \left(\int_{-a}^{-b} + \int_{b}^{a} \right) \frac{\varphi(x) - \varphi(0)}{|x|} \, \mathrm{d}x - \left(\int_{-a}^{-b} + \int_{b}^{a} \right) \frac{\varphi(x)}{|x|} \, \mathrm{d}x = -\left(\int_{-a}^{-b} + \int_{b}^{a} \right) \frac{\varphi(0)}{|x|} \, \mathrm{d}x$$

Question 4

- (a) Let $\alpha \in (-n, \infty)$ and $u_{\alpha}(x) = |x|^{\alpha}$ for $x \in \mathbb{R}^n \setminus \{0\}$. Show that u_{α} is a regular distribution on \mathbb{R}^n . (*Hint: Use polar coordinates.*)
- (b) For each r > 0 we define the r-dilation of a test function $\varphi \in \mathcal{D}(\mathbb{R}^n)$ by the rule

$$(d_r \varphi)(x) = \varphi(rx), \quad x \in \mathbb{R}^n$$

Extend the *r*-dilation to distributions $u \in \mathcal{D}'(\mathbb{R}^n)$.

- (c) Show that for the distribution u_{α} defined in (a) we have $d_r u_{\alpha} = r^{\alpha} u_{\alpha}$ for all r > 0. We express this by saying that u_{α} is homogeneous of degree α .
- (d) Show that the Dirac delta function δ_0 concentrated at the origin $0 \in \mathbb{R}^n$ is homogeneous of degree -n.
- (e) Let $u \in \mathcal{D}'(\mathbb{R}^n)$ be homogeneous of degree $\beta \in \mathbb{R}$: $d_r u = r^{\beta} u$ for all r > 0. Show that for each $j \in \{1, ..., n\}$ the distribution $x_j u$ is homogeneous of degree $\beta + 1$ and that the distribution $D_j u$ is homogeneous of degree $\beta 1$. Finally show that

$$\sum_{j=1}^{n} x_j D_j u = \beta u$$

This PDE is known as Euler's relation for β -homogeneous distributions.

(f) Show that a distribution $u \in \mathcal{D}'(\mathbb{R}^n)$ that satisfies (1) must be homogeneous of degree β .

Proof. (a) For any compact subset $K \subseteq \mathbb{R}^n$, we take a closed ball $\overline{B(0,R)}$ such that $K \subseteq \overline{B(0,R)}$. Then

$$\int_K \|\boldsymbol{x}\|^{\alpha} \, \mathrm{d}\boldsymbol{x}^n \leq \int_{\overline{B(0,R)}} \|\boldsymbol{x}\|^{\alpha} \, \mathrm{d}\boldsymbol{x}^n = \int_{S^{n-1}} \int_0^R r^{\alpha} \, r^{n-1} \, \mathrm{d}\boldsymbol{r} \mathrm{d}\Omega = \int_{S^{n-1}} \mathrm{d}\Omega \frac{1}{\alpha+n} r^{\alpha+n} \bigg|_0^R = \int_{S^{n-1}} \mathrm{d}\Omega \, \frac{1}{\alpha+n} R^{\alpha+n} < \infty$$

where we used $\alpha + n > 0$. Hence u_{α} is locally integrable. It defines a regular distribution in $\mathcal{D}'(\mathbb{R})$ via

$$\langle u_{\alpha}, \varphi \rangle = \int_{\mathbb{R}^n} \|\mathbf{x}\|^{\alpha} \varphi(\mathbf{x}) \, \mathrm{d}x^n$$

(b) The *r*-dilation of a distribution $u \in \mathcal{D}'(\mathbb{R}^n)$ is $d_r u \in \mathcal{D}'(\mathbb{R}^n)$ such that for $\varphi \in \mathcal{D}(\mathbb{R})$,

$$\langle d_r u, \varphi \rangle = r^{-n} \langle u, d_{1/r} \varphi \rangle = r^{-n} \langle u, \varphi(x/r) \rangle$$

We should check that this definition is consistent on the regular distributions. For $u \in L^1_{loc}(\mathbb{R}^n)$,

$$\left\langle d_r u, \varphi \right\rangle = \int_{\mathbb{R}^n} u(rx) \varphi(x) \, \mathrm{d} x^n = r^{-n} \int_{\mathbb{R}^n} u(t) \varphi(t/r) \, \mathrm{d} t^n = r^{-n} \left\langle u, d_{1/r} \varphi \right\rangle$$

- (c) $d_r u_\alpha = u_\alpha(rx) = \|rx\|^\alpha = r^\alpha \|x\|^\alpha = r^\alpha u_\alpha$. Then u_α is homogeneous of degree α .
- (d) For $\varphi \in \mathcal{D}(\mathbb{R})$,

$$\langle d_r \delta_0, \varphi \rangle = r^{-n} \langle \delta_0, d_{1/r} \varphi \rangle = r^{-n} \varphi(0) = r^{-n} \langle \delta_0, \varphi \rangle$$

 δ_0 is homogeneous of degree $-n$.

Hence $d_r \delta_0 = r^{-n} \delta_0$. We say that δ_0 is homogeneous of degree -n.

(e) For $\varphi \in \mathcal{D}(\mathbb{R})$,

 $\langle d_r x_i u, \varphi \rangle = r^{-n} \langle x_i u, d_{1/r} \varphi \rangle$ $= r^{-n} \langle u, x_i d_{1/r} \varphi \rangle$ $=r^{-n+1}\langle u,d_{1/r}(x_i\varphi(x))\rangle$ $=r^{\beta+1}\langle u,x_i\varphi\rangle$ $=r^{\beta+1}\langle x_iu,\varphi\rangle$

houses the gall

Hence $d_r x_i u = r^{\beta+1} x_i u$ and $x_i u$ is homogeneous of degree $\beta + 1$.

$$\begin{split} \left\langle d_r D_j u, \varphi \right\rangle &= r^{-n} \left\langle D_j u, d_{1/r} \varphi \right\rangle \\ &= r^{-n} \left\langle u, -D_j \varphi(x/r) \right\rangle \\ &= r^{-n-1} \left\langle u, -d_{1/r} D_j \varphi \right\rangle \\ &= r^{-1} \left\langle d_r u, -D_j \varphi \right\rangle \\ &= r^{\beta-1} \left\langle u, -D_j \varphi \right\rangle \\ &= r^{\beta-1} \left\langle D_j u, \varphi \right\rangle \end{split}$$

Hence $d_r D_j u = r^{\beta-1} D_j u$ and $D_j u$ is homogeneous of degree $\beta - 1$.

The proof of the Euler's relation for distributions is essentially the same as for functions. Starting from $d_r u = r^{\beta} u$, we can differentiate both sides by r. Since the derivatives are transmitted to the test function φ , we still have the chain rule for distributions:

$$\frac{\partial}{\partial r} d_r u = \frac{\partial}{\partial r} (r^{\beta} u) \implies \sum_{j=1}^n x_j d_r D_j u = \beta r^{\beta - 1} u$$

Since $D_j u$ is homogeneous of degree $\beta - 1$, we have

$$\sum_{j=1}^n x_j r^{\beta-1} D_j u = \beta r^{\beta-1} u \Longrightarrow \sum_{j=1}^n x_j D_j u = \beta u$$

(f) Let $v = r^{-\beta} d_r u - u \in \mathcal{D}'(\mathbb{R}^{n+1})$. Then

$$\frac{\partial v}{\partial r} = -\beta r^{-\beta - 1} d_r u + r^{-\beta} \sum_{j=1}^n x_j d_r D_j u = r^{-\beta - 1} d_r \left(\sum_{j=1}^n x_j D_j u - \beta u \right) = 0$$

 $\frac{\partial}{\partial r} d_r u = \frac{\partial}{\partial r} (r^{\beta} u) \implies \sum_{j=1}^n x_j d_r D_j u = \beta r^{\beta-1} u$ Show work $\text{se } \beta - 1, \text{ we have}$ $\sum_{j=1}^n x_j d_r D_j u = \beta r^{\beta-1} u \implies \sum_{j=1}^n x_j D_j u = \beta u$ Now please

Hence $\langle v, -\frac{\partial \psi}{\partial r} \rangle = 0$ for any $\psi(x, r) \in \mathcal{D}(\mathbb{R}^{n+1})$. But for every $\psi(x, r) \in \mathcal{D}'(\mathbb{R}^{n+1})$,

$$\psi(x,r) = \frac{\partial}{\partial r} \int_{-\infty}^{r} \psi(x,r') \, \mathrm{d}r'$$

Hence $\langle v, \psi \rangle = 0$ for all $\psi(x, r) \in \mathcal{D}'(\mathbb{R}^{n+1})$. v = 0. We deduce that $d_r u = r^{\beta} u$. So u is homogeneous of degree β .

Question 5

Show that δ_a , the Dirac delta function concentrated at $a \in \mathbb{R}$, satisfies the equation

$$(x-a)u=0$$

Find the general solution $u \in \mathcal{D}'(\mathbb{R})$ to (2).

(Hint: See Corollary 1.10 in the Lecture Notes.)

Proof. Let $u = \delta_a$. Then for any $\varphi \in \mathcal{D}(\mathbb{R})$,

Hence $(x-a)\delta_a=0$. Note that for any $\varphi\in\mathscr{D}(\mathbb{R})$, there exists $\psi\in\mathscr{D}(\mathbb{R})$ such that $\varphi(x)=\varphi(a)+(x-a)\psi(x)$ and $\varphi'(a)=\psi(a)$. Then $\varphi'(a) = \psi(a)$. Then

$$\langle u, \varphi \rangle = \langle u, \varphi(a) \rangle + \langle (x - a)u, \psi \rangle = \langle u, \varphi(a) \rangle = \varphi(a) \langle u, 1 \rangle = c \langle \delta_a, \varphi \rangle$$

for some constant $c \in \mathbb{R}$. Hence the general solution is given by $u = c\delta_a$.

wright i dea whough!

Question 6. Distribution defined by principal value integral

Define for each $\varphi \in \mathcal{D}(\mathbb{R})$

$$\left\langle \operatorname{pv}\left(\frac{1}{x}\right), \varphi \right\rangle = \lim_{a \to 0^+} \left(\int_{-\infty}^{-a} + \int_{a}^{\infty} \right) \frac{\varphi(x)}{x} \mathrm{d}x$$

(a) Show that hereby $\operatorname{pv}\left(\frac{1}{r}\right) \in \mathcal{D}'(\mathbb{R})$ and that it is homogeneous of order -1 (see Problem 4). Check that

$$\frac{\mathrm{d}}{\mathrm{d}x}\log|x| = \mathrm{pv}\left(\frac{1}{x}\right)$$

(b) Show that $u = pv(\frac{1}{r})$ solves the equation

$$xu = 1$$

in the sense of $\mathcal{D}'(\mathbb{R})$. What is the general solution $u \in \mathcal{D}'(\mathbb{R})$ to (3)?

(a) pv(1/x) is given by Proof.

$$\left\langle \operatorname{pv}\left(\frac{1}{x}\right), \varphi \right\rangle = \lim_{a \to 0^+} \left(\int_{-\infty}^{-a} + \int_{a}^{\infty} \right) \frac{\varphi(x)}{x} \, \mathrm{d}x = \lim_{a \to 0^+} \int_{a}^{\infty} \frac{\varphi(x) - \varphi(-x)}{x} \, \mathrm{d}x = \int_{0}^{\infty} \frac{\varphi(x) - \varphi(-x)}{x} \, \mathrm{d}x$$

By l'Hôpital's rule,

$$\lim_{x \to 0^+} \frac{\varphi(x) - \varphi(-x)}{x} = \lim_{x \to 0^+} \left(\varphi'(x) + \varphi'(-x) \right) = 2\varphi'(0)$$

Hence the integrand is bounded near x=0. In particular $\operatorname{pv}(1/\lambda)$ to well defined functional. Following the same argument in Question 3 we deduce that $\operatorname{pv}(1/\lambda) \in \mathcal{D}'(\mathbb{R})$. Hence the integrand is bounded near x = 0. In particular pv(1/x) is well-defined. It is clear that pv(1/x) is a linear

$$\left\langle d_r \operatorname{pv}\left(\frac{1}{x}\right), \varphi \right\rangle = r^{-1} \left\langle \operatorname{pv}\left(\frac{1}{x}\right), d_{1/r}\varphi \right\rangle = r^{-1} \int_0^\infty \frac{\varphi(rx) - \varphi(-rx)}{x} \, \mathrm{d}x = r^{-1} \int_0^\infty \frac{\varphi(t) - \varphi(-t)}{t} \, \mathrm{d}t = \left\langle r^{-1} \operatorname{pv}\left(\frac{1}{x}\right), \varphi \right\rangle$$

T NO. You need to keep in the form of limits & work from those.

Hence pv(1/x) is homogeneous of degree -1.

For $\varphi \in \mathcal{D}(\mathbb{R})$,

eneous of degree -1. Write y and y the eneous of degree -1. Write y and y the eneous of degree -1. Write y and y the eneous of degree -1. Write y and y are y and y are y and y are y are y and y are y are

For $x \to \infty$, $\log x (\varphi(x) - \varphi(-x)) = 0$ because φ is compactly supported. For $x \to 0^+$, by l'Hôptial's rule,

$$\lim_{x \to 0} \log x \left(\varphi(x) - \varphi(-x) \right) = \lim_{x \to 0} -x \log^2 x \left(\varphi'(x) + \varphi'(-x) \right) = 0$$

Hence

$$\left\langle \frac{\mathrm{d}}{\mathrm{d}x} \log |x|, \varphi \right\rangle = \int_0^\infty \frac{1}{x} \left(\varphi(x) - \varphi(-x) \right) \mathrm{d}x = \left\langle \operatorname{pv} \left(\frac{1}{x} \right), \varphi \right\rangle$$

We deduce that $\frac{d}{dx} \log |x| = pv \left(\frac{1}{x}\right)$.

(b) For $\varphi \in \mathcal{D}(\mathbb{R})$,

$$\left\langle x\operatorname{pv}\left(\frac{1}{r}\right),\varphi\right\rangle = \int_{0}^{\infty} (\varphi(x) - \varphi(-x)) \,\mathrm{d}x = \int_{-\infty}^{\infty} \varphi(x) \,\mathrm{d}x = \left\langle 1,\varphi\right\rangle$$

Hence pv(1/x) is a solution to xu = 1.

Let $u \in \mathcal{D}'(\mathbb{R})$ such that xu = 1. Note that for any $\varphi \in \mathcal{D}(\mathbb{R})$, there exists $\psi \in \mathcal{D}(\mathbb{R})$ such that $\varphi(x) = \varphi(0) + x\psi(x)$ and $\varphi'(0) = \psi(0)$. Then

Then
$$\langle u, \varphi \rangle = \langle u, \varphi(0) \rangle + \langle xu, \psi \rangle = \varphi(0) \langle u, 1 \rangle + \langle 1, \frac{\varphi(x) - \varphi(0)}{x} \rangle = \varphi(0) \langle u, 1 \rangle + \int_{\mathbb{R}} \frac{\varphi(x) - \varphi(0)}{x} \, dx$$

$$= \varphi(0) \langle u, 1 \rangle + \int_{0}^{\infty} \frac{\varphi(x) - \varphi(-x)}{x} \, dx = \langle \langle u, 1 \rangle \, \delta_{0} + \text{pv} \left(\frac{1}{x}\right), \varphi \rangle$$

Hence the general solution is given by $u = c\delta_0 + pv\left(\frac{1}{x}\right)$ for some constant $c \in \mathbb{R}$.

Better proof: let
$$v$$
 solve $xv = 1$.

=) $x(v - pv(\frac{1}{x})) = 0$

=) $v = pv(\frac{1}{x}) = coo by qv \cdot S$

=) general solv is $pv = coo$.

Hence pv(1/x) is homogeneous of degree -1.

For $\varphi \in \mathcal{D}(\mathbb{R})$,

$$\left\langle \frac{\mathrm{d}}{\mathrm{d}x} \log|x|, \varphi \right\rangle = \left\langle \log|x|, -\varphi' \right\rangle = -\int_{\mathbb{R}} \log|x| \varphi'(x) \, \mathrm{d}x$$

$$= -\int_{-\infty}^{0} \log(-x) \varphi'(x) \, \mathrm{d}x - \int_{0}^{\infty} \log(x) \varphi'(x) \, \mathrm{d}x$$

$$= -\int_{0}^{\infty} \log x \left(\varphi'(x) + \varphi'(-x) \right) \, \mathrm{d}x$$

$$= -\log x \left(\varphi(x) - \varphi(-x) \right)_{0}^{\infty} + \int_{0}^{\infty} \frac{1}{x} \left(\varphi(x) - \varphi(-x) \right) \, \mathrm{d}x$$

For $x \to \infty$, $\log x (\varphi(x) - \varphi(-x)) = 0$ because φ is compactly supported. For $x \to 0^+$, by l'Hôptial's rule,

$$\lim_{x \to 0} \log x \left(\varphi(x) - \varphi(-x) \right) = \lim_{x \to 0} -x \log^2 x \left(\varphi'(x) + \varphi'(-x) \right) = 0$$

Hence

$$\left\langle \frac{\mathrm{d}}{\mathrm{d}x} \log |x|, \varphi \right\rangle = \int_0^\infty \frac{1}{x} \left(\varphi(x) - \varphi(-x) \right) \mathrm{d}x = \left\langle \operatorname{pv} \left(\frac{1}{x} \right), \varphi \right\rangle$$

We deduce that $\frac{d}{dx} \log |x| = pv \left(\frac{1}{x}\right)$.

(b) For $\varphi \in \mathcal{D}(\mathbb{R})$,

$$\left\langle x \operatorname{pv}\left(\frac{1}{x}\right), \varphi \right\rangle = \int_0^\infty (\varphi(x) - \varphi(-x)) \, \mathrm{d}x = \int_{-\infty}^\infty \varphi(x) \, \mathrm{d}x = \left\langle 1, \varphi \right\rangle$$

Hence pv(1/x) is a solution to xu = 1.

Let $u \in \mathcal{D}'(\mathbb{R})$ such that xu = 1. Note that for any $\varphi \in \mathcal{D}(\mathbb{R})$, there exists $\psi \in \mathcal{D}(\mathbb{R})$ such that $\varphi(x) = \varphi(0) + x\psi(x)$ and $\varphi'(0) = \psi(0)$. Then

$$\langle u, \varphi \rangle = \langle u, \varphi(0) \rangle + \langle xu, \psi \rangle = \varphi(0) \langle u, 1 \rangle + \left\langle 1, \frac{\varphi(x) - \varphi(0)}{x} \right\rangle = \varphi(0) \langle u, 1 \rangle + \int_{\mathbb{R}} \frac{\varphi(x) - \varphi(0)}{x} dx$$

$$= \varphi(0) \langle u, 1 \rangle + \int_{0}^{\infty} \frac{\varphi(x) - \varphi(-x)}{x} dx = \left\langle \langle u, 1 \rangle \delta_{0} + \operatorname{pv}\left(\frac{1}{x}\right), \varphi \right\rangle$$

Hence the general solution is given by $u = c\delta_0 + \text{pv}\left(\frac{1}{x}\right)$ for some constant $c \in \mathbb{R}$.