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Question 1

Let f, g € C'(R) and define

| fx) ifx<o0
u(x)—{ gx) ifx=0

Explain why u € @'(R) and calculate the distributional derivative «’. What can you say about the function
flx) ifx<0
v(x)=< a ifx=0
glx) ifx>0
where a € R is a constant that is different from both f(0) and g(0)?
Proof. Since f,g € C1(R), u is continuous akmost everywhere. In particular it is locally Lebesgue integrable. Hence u defines a

regular distribution T, € &' (R).

For ¢ € 9 (R), the distributional derivative

0 +o00
(', ) :z(u,—(p’>:fR—u(x)(p’(x)dx:f —f(x)(p’(x)dx+f0 -g(x)¢' (x)dx

By integration by parts,

0 +00
(U, ) =-f0)p(0) + f_ f X)p(x)dx+ g0)p(0) + fo g @) dx=(g0) - f(0) @) + fR u' (x)p(x)dx

The v’ in the integrand is the almost everywhere derivative of function u.

It is clear that u and v define the same distribution in @’(Q) because u = v almost everywhere. O

Question 2

(a) Prove that if f : R — R is piecewise continuous and k € R, then the function u(x, ) = f(x—kt),(x, 1) € R?, is locally
integrable on R?. Conclude that it defines a distribution and show that it satisfies the one-dimensional wave equation:

’u 2 0’u
or? 0x2
in the sense of distributions on R2.

(b) Prove that u(x, y) = log(x? + y?) is locally integrable on R?, and that we have
Au= 47!50

in the sense of distributions on R?, where 3 is the Dirac delta function on R? concentrated at the origin.

Proof. (a) Iassume that piecefise continuous functions are locally bounded. Under this notion, f is locally bounded and hence
locally integrable” Then x — f(x—kt) and t — f(x — kt) are locally integrable. By Tonelli’s Theorem u(x, t) = f(x — ki)

is locally integrable on R?. TWS Aoesw \' »‘Y TWA
By Example 3.6 u defines a regular distribution 7}, given by oYMk ‘o xoud
Latead Wy ynow ww!
()= ] ucx Dee = J[L s koot ndxds "y gy cc
I <.x
q %-lth: ekl C K

(0% - K20%) u, ) = (u, (0% — K20%) ) = ff fla- kt)(atz el "’)dde

0D | L e 5 w) = o, )
ov,w)| 2k’ P T

Then the distributional partial derivatives

Change of variables (x, t) — (v, w), where v = x — kt and w = x + kt. The Jacobian



Then

i e B T k(aw 5, %)
ox2 ~ av2  ow? “ovow’ arz ~ \ov2 T auw?  “ovow

Hence

f Flx- kt)(zz;zp 202 )dxdt—ff 2kf(y) " dvdw = fzkf(v)(fa > )d/
But :/

since ¢ is compactly supported. Hence (0% — k?0%) u is the zero distribution. We deduce that

0’0 & |too
4 dw = 6_(p
R OVOW 0V |_oo

u _ ,0%u

/ ot? 0x2
in the sence of distributions.

(b) For any compact subset K < R2, we take a closed disk B(0, R) such that K < B(0, R). Then

R
ff u(x,y)dxdy < ff log(x* + y*)dxdy = 27![ rlogr?dr = 2nR*logR
K B(O,R) 0

is finite. We deduce that u is locally integrable on R.
For ¢ € 2 (R?),

(Vu, @) = (u,V?¢) = ffz uvipdxdy
R

To prove that V?u = 478, we need to prove that

ff uvZpdxdy = ¢(0) /
R2

Since ¢ is compactly supported, there exists R > 0 such that suppp < B(0,R). Let A= {x € R?: r < ||x|| < R}.

I(r) = ff uvz(pdxdy/ M wés

Using Gauss-Green Formula in R? and that Vg =0 on ||lz| = WOk -
I(r)=—f Vu-V(pdxdy+f uV<p-nds=—% (qu-nds+j£ uVe-nds
A 0B(0,r) 0B(0,r) 0B(0,r)

On |zl = r, u(x) = 2logr. Hence

_jg Vu nds—f (x) %ds—zf (re)ds — 4mp(
0B(0,r) ¢ 0B(0,1) ¢ r oSt ¢ y

as r — 0. For the other integral,

f uVeg-nds|<2ar-2rlogr sup |Ve|—0
B(0,r)

B 0B(0,r) /
as r — 0. Hence

1=lim 1(r) = 47(0)
.
We deduce that VZu = 476. / O

Question 3

Let a > 0. For each ¢ € D (R) we let

([ [T W gy [ 2R 0O
<T“"p>‘(f_oo+ﬁ ) Fal PRI



Show that T, hereby is well-defined and that it is a distribution on R. Now assume that ¢ € 9 (R) satisfies ¢(0) = 0. Show that
then

[P ew
<T“"”>‘f_oo &

What distribution is T, — T}, for 0 < b < a? /

Proof. ltis clear from the definition that T, is a linear functional. First we need to verify that (T, ¢) is finite for all ¢ € Z (R).

/

It is similar for x 0. Hence the second integrand in the definition of T, is continuous in (—a, a). So thesgecond integral is
finite. Since ¢ is compactly supported, the first integral is also finite. We deduce that T, is well—deﬁne}/g

Note that both ¢(x) — ¢(0) and x tends to 0 as x \, 0. By 'Hoptial’s rule,

lim @(x) —@(0)

=lim¢'(x) =¢'(0
m ] xl{r(l)w(x) @ (0)

Next we show that T, is a distribution. Consider {¢,} € D (R) and ¢ € D (R), such that ¢, — ¢ in &. Let R > a such that
supp@n,supp¢ < [-R, R]. Then

—-a R _ a — _ 0)— (0
(Ta,<pn>-<Ta,<p>=(f +f )—‘”"(X?M"’mdﬂ Pn) ‘p(X)lx(l‘p"() LAC) P N =
-R a —-a \
WA S o
Now N o

W DBIWIAEY Aak =0

(]
~a ooy (x) @ () f+°°<p(x) oo\ &
Ta ) = P4 V4= Y4 N
{Tarp) (Lﬁfa ) L T YT e T e W

The distribution T, — T} is given by ‘/ )N & ‘& N3
-b a _ -b a -b a ‘
o] [ [ [ e 44

-a b -a b -a b

| x| | x|
Question 4 \

N
(a) Leta € (—n,00) and uy(x) = |x|* for x € R”\{0}. Show that u, is a regular distribution on R”. _‘.M
(Hint: Use polar coordinates.) Lm q
” S ooy ok
(b) For each r > 0 we define the r-dilation of a test function ¢ € 2 (R") by the rule \W\ Q%l 1

as n — oo, by the uniform convergence ¢, — ¢ on [-R, R]. Hence T, is a distribution. =~

For ¢ € I (R) with ¢(0) =0,

(drp) X)) =(rx), xeR"

Extend the r-dilation to distributions u € @' (R").

(c) Show that for the distribution u, defined in (a) we have d, uy = r®u, for all r > 0. We express this by saying that u, is
homogeneous of degree a.

(d) Show that the Dirac delta function §y concentrated at the origin 0 € R” is homogeneous of degree —n.

(e) Let ue 2’ (R") be homogeneous of degree feR: d,u= rPufor all r > 0. Show that for each j €11,..., n} the distribution
xju is homogeneous of degree 5 + 1 and that the distribution D ;u is homogeneous of degree § — 1. Finally show that

n
Y xjDju=pu
=1

This PDE is known as Euler’s relation for f-homogeneous distributions.

(f) Show that a distribution u € @' (R") that satisfies (1) must be homogeneous of degree S.
Proof. (a) For any compact subset K < R”, we take a closed ball B(0, R) such that K < B(0, R). Then

R 1
fuscn“dx”sf ||sc||“dx"=f fr“r”_ldrsz da
K B(0,R) sn-1Jo gn-1 a+n

a+n
r

R 1
= f dQ —R*"""< o
0 sn-1 a+n




where we used a + n > 0. Hence u, is locally integrable. It defines a regular distribution in 2'(R) via

(Ua, ) wa lzll* @(x)dx"

(b) The r-dilation of a distribution u € @' (R") is d, u € @' (R") such that for ¢ € 2 (R),
(dru,@)=r""(u,dvjrp) =1r""(u,(x/1))

We should check that this definition is consistent on the regular distributions. For u € LIIOC(IR”), /

(dyu,p) :f u(re)p(x)dx" = r_"f u®p/r)de" =r~"(u,dy;rp)
R R

drug =ug(re) =|rzel|® =r%|z||* = r®u,. Then u, is homogeneous of degree . 1 - )

rlg a o a g g \s _\-‘ \ 0 /
(d) Forpe2(®), ,2
(drbo,) =1""(80,dr/rep) = r”(p(27<60,(p> @ CXS 7. .

Hence d, 69 = r~"*6(. We say that §, is homogeneous of degree —n.

(e) Forpe I (R),

(drxju,@)=r""(xju,dy/rg)

VN =r"(u,xjdi/rp)
Nt RO e ’

?fo =" u,dyyr (@)
NTY S LR  r(dx30)

W\S_ =P (u,xj0)
iy o)
v Hence d;xju= rﬁ“xj u and x;ju is homogeneous of degree  + 1.

(drDju, ) =r""(Dju,dy/re)
=r"(u,-Djp(x/r))
= r_"_1<u,—d1/rDj(p>
=r~(dru,~Djgp)
=rP"(u,~Djop)

:rﬁ_1<Dju,(p> \/

Hence d;Dju= rﬁ‘leu and Dju is homogeneous of degree - 1. /

The proof of the Euler’s relation for distributions is essentially the same as for functions. Starting from d, u = rPu, we
can differentiate both sides by r. Since the derivatives are transmitted to the test function ¢, we still have the chain rule
-1
xjdrDju= ﬁrﬁ u

for distributions:
W
1 \{\e\»a
D W

Since D;u is homogeneous of degree - 1, we have ) S Al
" " 3K Q\Q—N:
ijrﬁ_leuzﬁrﬂ_lu: > xjDju=pu \rskﬂ.

J=1 j=1

0 0
il — (4B
ardru 6r(r u) =

n

J

() Letv=r"Pd,u—ueP'®R"*"). Then

6 n
a_v =—prFlau+r Py x;jd,Dju=r"P"d, (
r a .

n
ijju—ﬁu) =0
j=1



Hence <v, —g—lf> =0 for any y(x,r) € D (R"1). But for every w(z,r) € 2'R"*)),

(:cr)—ifr (x,rHdr’
van=g| vy,

Hence (v,y) =0 forally(z,r) € 2'R"*1). v =0. We deduce that d, u = rPu. So u is homogeneous of degree f. O

Question 5

Show that § 4, the Dirac delta function concentrated at a € R, satisfies the equation
x-a)u=0
Find the general solution u € 2'(R) to (2).

(Hint: See Corollary 1.10 in the Lecture Notes.)

Proof. Let u=0,. Then for any ¢ € 2 (R),

/ (x=@)ba,9) = (64, (x—@)p(x)) = (a—a)p(a) = A
Hence (x— a)8,=0. O Q.an 50.?—'90"(‘\.‘ - wk MWAQ

Let u € @' (R) such that (x— a)u = 0. Note thg{for any ¢ € D (R), there exists v € D (R) such that ¢(x) = ¢(a) + (x— @)y (x) and
¢'(a) =y(a). Then
(u,0) =(u,p@)+{(x— @ u,v) =(u,p@) = @ (u,1) = c{54¢)

for some constant ¢ € R. Hence the general solution is given by u = ¢ ;. w ({ﬂ\/\x [ d"‘d’ :M ( o

Question 6. Distribution defined by principal value integral

(elsho) =t [+ [ ) 50

Define for each ¢ € Z(R)

(a) Show that hereby pv(%) € @'(R) and that it is homogeneous of order -1 (see Problem 4 ). Check that
d log|x| = v( 1 )
dx gIXI=p X /
‘ o",'
(b) Show that u = pv(1) solves the equation Dx()x
xu=1 \,f‘{lt(w
in the sense of &' (R). What is the general solution u € @'(R) to (3)? W

Proof. (a) pv(l/x) is given by

<pV( ) > = lim (f f ) (p( ) foo —(p(X) _(p(_X) dx = foo —(p(x) _(p(_x) dx
a—0* a—>0+ X 0 X

AN N
By I'Hopital’s rule,
lim Px) —p(=x)
x—0%

Hence tn};/i?egrand is bounded near x = 0. In particular pv(1l/x) is well-defined. It is clear that pv(1/x) is a linear

functiongl/Following the same argument in Question 3 we deduce that pv(1/x) € D' (R). . sk
Forr >0, W o -

(o[ 2o ) o [ S g [ 13 )
X X 0 X

T N0 Yon ned Yo Raep un e
Twm mﬁ\m«ewm—yww-

= lim (' () +¢'(—x)) =2¢/(0)
xX— +




Hence pv(1/x) is homogeneous of degree -1.

For p e Z(R),
d !/ !
<—log|x|,<p> = (loglxl,—¢') = —f log|x|¢'(x)dx
dx R
0 0o
= —f log(—x)¢'(x)dx —f log(x)¢' (x)dx
-0 0
(o0}
—f logx (¢’ (x) + ¢’ (—x)) dx
0 e
=—logx(p(x) —@(-x); +f0 < (p(x) —p(-x)) dx
For x — 00, logx (¢ (x) — ¢(—x)) = 0 because ¢ is compactly supported. For x — 0%, by 'Hoptial’s rule,

lirr(l)logx (p(x)—p(-x)) = lirr(l)—xlog2 x(p' () +¢'(-x)) =
X— x—

d 1 1
<alog|x|,qo>—f0 ;((p(x)—qo(—x)) dx—<pv(; ,<p>

d 1
We deduce that —1 = —|-
e deduce tha P oglx| pv(x)

(b) Forpe D), /
<xpv(x) > f((p(x) p(-x))dx = f p(x)dx=(1,¢)

Hence pv(1/x) is a solution to xu = 1.

Hence

chu'm Y X Lok S -

Let u € @'(R) such that xu = 1. Note that for any ¢ € 9 (R), there exists ¢ € D (R) such that ¢(x) = ¢(0) + xy(x) and

¢'(0) =(0). Then Y Nk we A M.zkuv\lu»\

<u’(p<xu’w>=w(0)<u,1)+<l,w>:(p(O)(uyl)_Fj';de

R e e R T I vy
0 X X

1
Hence the general solution is given by u = ¢dg + pv(;) for some constant c € R. O
Bolkes ?"w’s'-\ﬂ-k‘\/ W wy = \ .

= (v e =0
=) (= ‘)\kl{«) ’-ch-o \7>~§C>\V\S
=) @6@@@\ WA\ 8 \w\;& ¢« o




Hence pv(1/x) is homogeneous of degree -1.

For p e Z(R),

d
<—log|x|,(p> = (loglxl,—¢") = —f log | x|’ (x)dx
dx R

0 oo
= —f log(—x)¢' (x) dx—f log(x)¢' (x)dx
—00 0
= —fo logx (¢’ (x) + ¢’ (—x)) dx

o [*1
= —logx (p(x) — p(-x)); +f0 ;(w(x)—w(—x)) dx

For x — oo, log x (¢ (x) — ¢(—x)) = 0 because ¢ is compactly supported. For x — 0%, by 'Hoptial’s rule,

lin})logx (p0)—p(=x) = lirr(l)—xlog2 x(¢ 0 +¢'(-x))=0
X— X—

d o 1 1
<—log|x|,<p> :f = (p(x)—p(-x)) dx = <pv(—),<p>
0 X X

X
We ded thtdlll (1)
e deduce that — log|x| = pv|—|.

dxg p X

Hence

(b) ForgpeI(R),

1 (o0} [e.0]
<xpV(;),<p>:f0 ((p(x)—tp(—x))dx=f pdx=(1,¢)

Hence pv(1/x) is a solution to xu = 1.

Let u € 9'(R) such that xu = 1. Note that for any ¢ € D (R), there exists 7 € D (R) such that ¢(x) = ¢(0) + xy(x) and
¢'(0) = w(0). Then

1,0) = (1 o) + (xu v = ) w1y + (1, LD =LON oy 1y + [ L2020 4
() =(u,@0) +{xu,y)=¢ p @ T

]

o)

X

1
—) for some constant c € R. O
X

— g b+ [ LD dx - <<u,1>6o+pv
0

Hence the general solution is given by u = ¢d¢ + pv




