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Question 1

Let f , g 2 C1(R) and define

u(x) =
Ω

f (x) if x < 0
g (x) if x   0

Explain why u 2D0(R) and calculate the distributional derivative u0. What can you say about the function

v(x) =

8
<
:

f (x) if x < 0
a if x = 0
g (x) if x > 0

where a 2R is a constant that is different from both f (0) and g (0)?

Proof. Since f , g 2 C1(R), u is continuous almost everywhere. In particular it is locally Lebesgue integrable. Hence u defines a
regular distribution Tu 2D0(R).

For ' 2D(R), the distributional derivative

≠
u0,'

Æ
:=

≠
u,°'0Æ=

Z

R
°u(x)'0(x)dx =

Z0

°1
° f (x)'0(x)dx +

Z+1

0
°g (x)'0(x)dx

By integration by parts,

≠
u0,'

Æ
=° f (0)'(0)+

Z0

°1
f 0(x)'(x)dx + g (0)'(0)+

Z+1

0
g 0(x)'(x)dx =

°
g (0)° f (0)

¢
'(0)+

Z

R
u0(x)'(x)dx

The u0 in the integrand is the almost everywhere derivative of function u.

It is clear that u and v define the same distribution in D0(≠) because u = v almost everywhere.

Question 2

(a) Prove that if f : R ! R is piecewise continuous and k 2 R, then the function u(x, t ) = f (x ° kt ), (x, t ) 2 R2, is locally
integrable on R2. Conclude that it defines a distribution and show that it satisfies the one-dimensional wave equation:

@2u
@t 2 = k2 @

2u
@x2

in the sense of distributions on R2.

(b) Prove that u(x, y) = log
°
x2 + y2¢ is locally integrable on R2, and that we have

¢u = 4º±0

in the sense of distributions on R2, where ±0 is the Dirac delta function on R2 concentrated at the origin.

Proof. (a) I assume that piecewise continuous functions are locally bounded. Under this notion, f is locally bounded and hence
locally integrable. Then x 7! f (x °kt ) and t 7! f (x °kt ) are locally integrable. By Tonelli’s Theorem u(x, t ) = f (x °kt )
is locally integrable on R2.

By Example 3.6 u defines a regular distribution Tu given by

≠
u,'

Æ
:=

œ

R2
u(x, t )'(x, t )dxdt =

œ

R2
f (x °kt )'(x, t )dxdt

Then the distributional partial derivatives

≠°
@2

t °k2@2
x
¢

u,'
Æ
=

≠
u,

°
@2

t °k2@2
x
¢
'

Æ
=

œ

R2
f (x °kt )

µ
@2'

@t 2 °k2 @
2'

@x2

∂
dxdt

Change of variables (x, t ) 7! (v, w), where v = x °kt and w = x +kt . The Jacobian
ØØØØ
@(x, t )
@(v, w)

ØØØØ=
1

2k
. Let e'(v, w) ='(x, t ).
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Then
@2'

@x2 = @2 e'
@v2 + @2 e'

@w2 +2
@2 e'
@v@w

,
@2'

@t 2 = k2
µ
@2 e'
@v2 + @2 e'

@w2 °2
@2 e'
@v@w

∂

Hence œ

R2
f (x °kt )

µ
@2'

@t 2 °k2 @
2'

@x2

∂
dxdt =

œ

R2
2k f (v)

@2 e'
@v@w

dvdw =
Z

R
2k f (v)

µZ

R

@2 e'
@v@w

dw
∂

dv

But Z

R

@2 e'
@v@w

dw = @e'
@v

ØØØØ
+1

°1
= 0

since ' is compactly supported. Hence
°
@2

t °k2@2
x
¢

u is the zero distribution. We deduce that

@2u
@t 2 = k2 @

2u
@x2

in the sence of distributions.

(b) For any compact subset K µR2, we take a closed disk B(0,R) such that K µ B(0,R). Then

œ

K
u(x, y)dxdy …

œ

B(0,R)
log(x2 + y2)dxdy = 2º

ZR

0
r logr 2 dr = 2ºR2 logR

is finite. We deduce that u is locally integrable on R2.

For ' 2D(R2),
≠
r2u,'

Æ
:=

≠
u,r2'

Æ
=

œ

R2
ur2'dxdy

To prove that r2u = 4º±0, we need to prove that
œ

R2
ur2'dxdy ='(0)

Since ' is compactly supported, there exists R > 0 such that supp'µ B(0,R). Let A = {x 2R2 : r < kxk< R}.

I (r ) =
œ

A
ur2'dxdy

Using Gauss-Green Formula in R2 and that r'= 0 on kxk= R,

I (r ) =°
œ

A
ru ·r'dxdy +

I

@B(0,r )
ur' ·nds =°

I

@B(0,r )
'ru ·nds +

I

@B(0,r )
ur' ·nds

On kxk= r , u(x) = 2logr . Hence

°
I

@B(0,r )
'ru ·nds =

I

@B(0,r )
'(x) · 2

r
ds = 2

I

@S1
'(rx)ds ! 4º'(0)

as r ! 0. For the other integral,
ØØØØ
I

@B(0,r )
ur' ·nds

ØØØØ… 2ºr ·2r logr sup
@B(0,r )

∞∞r'
∞∞! 0

as r ! 0. Hence
I = lim

r!0
I (r ) = 4º'(0)

We deduce that r2u = 4º±0.

Question 3

Let a > 0. For each ' 2D(R) we let

≠
Ta ,'

Æ
=

µZ°a

°1
+

Z1

a

∂
'(x)
|x| dx +

Za

°a

'(x)°'(0)
|x| dx
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Show that Ta hereby is well-defined and that it is a distribution on R. Now assume that ' 2D(R) satisfies '(0) = 0. Show that
then

≠
Ta ,'

Æ
=

Z1

°1

'(x)
|x| dx

What distribution is Ta °Tb for 0 < b < a?

Proof. It is clear from the definition that Ta is a linear functional. First we need to verify that
≠

Ta ,'
Æ

is finite for all ' 2D(R).

Note that both '(x)°'(0) and x tends to 0 as x & 0. By l’Hôptial’s rule,

lim
x&0

'(x)°'(0)
|x| = lim

x&0
'0(x) ='0(0)

It is similar for x % 0. Hence the second integrand in the definition of Ta is continuous in (°a, a). So the second integral is
finite. Since ' is compactly supported, the first integral is also finite. We deduce that Ta is well-defined.

Next we show that Ta is a distribution. Consider {'n} µD(R) and ' 2D(R), such that 'n ! ' in D. Let R > a such that
supp'n , supp'µ [°R,R]. Then

≠
Ta ,'n

Æ
°

≠
Ta ,'

Æ
=

µZ°a

°R
+

ZR

a

∂
'n(x)°'(x)

|x| dx +
Za

°a

'n(x)°'(x)°
°
'n(0)°'(0)

¢

|x| dx ! 0

as n !1, by the uniform convergence 'n !' on [°R,R]. Hence Ta is a distribution.

For ' 2D(R) with '(0) = 0,
≠

Ta ,'
Æ
=

µZ°a

°1
+

Z1

a

∂
'(x)
|x| dx +

Za

°a

'(x)
|x| dx =

Z+1

°1

'(x)
|x| dx

The distribution Ta °Tb is given by

≠
Ta °Tb ,'

Æ
=

µZ°b

°a
+

Za

b

∂
'(x)°'(0)

|x| dx °
µZ°b

°a
+

Za

b

∂
'(x)
|x| dx =°

µZ°b

°a
+

Za

b

∂
'(0)
|x| dx

Question 4

(a) Let Æ 2 (°n,1) and uÆ(x) = |x|Æ for x 2Rn\{0}. Show that uÆ is a regular distribution on Rn .

(Hint: Use polar coordinates.)

(b) For each r > 0 we define the r -dilation of a test function ' 2D (Rn) by the rule

°
dr'

¢
(x) ='(r x), x 2Rn

Extend the r -dilation to distributions u 2D0 (Rn).

(c) Show that for the distribution uÆ defined in (a) we have dr uÆ = rÆuÆ for all r > 0. We express this by saying that uÆ is
homogeneous of degree Æ.

(d) Show that the Dirac delta function ±0 concentrated at the origin 0 2Rn is homogeneous of degree °n.

(e) Let u 2D0 (Rn) be homogeneous of degree Ø 2R : dr u = rØu for all r > 0. Show that for each j 2 {1, . . . ,n} the distribution
x j u is homogeneous of degree Ø+1 and that the distribution D j u is homogeneous of degree Ø°1. Finally show that

nX

j=1
x j D j u =Øu

This PDE is known as Euler’s relation for Ø-homogeneous distributions.

(f) Show that a distribution u 2D0 (Rn) that satisfies (1) must be homogeneous of degree Ø.

Proof. (a) For any compact subset K µRn , we take a closed ball B(0,R) such that K µ B(0,R). Then

Z

K
kxkÆ dxn …

Z

B(0,R)
kxkÆ dxn =

Z

Sn°1

ZR

0
rÆ r n°1 dr d≠=

Z

Sn°1
d≠

1
Æ+n

rÆ+n
ØØØØ
R

0
=

Z

Sn°1
d≠

1
Æ+n

RÆ+n <1
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where we used Æ+n > 0. Hence uÆ is locally integrable. It defines a regular distribution in D0(R) via

≠
uÆ,'

Æ
=

Z

Rn
kxkÆ'(x)dxn

(b) The r -dilation of a distribution u 2D0(Rn) is dr u 2D0(Rn) such that for ' 2D(R),

≠
dr u,'

Æ
= r°n ≠

u,d1/r'
Æ
= r°n ≠

u,'(x/r )
Æ

We should check that this definition is consistent on the regular distributions. For u 2 L1
loc(Rn),

≠
dr u,'

Æ
=

Z

Rn
u(rx)'(x)dxn = r°n

Z

Rn
u(t)'(t/r )dt n = r°n ≠

u,d1/r'
Æ

(c) dr uÆ = uÆ(rx) = krxkÆ = rÆ kxkÆ = rÆuÆ. Then uÆ is homogeneous of degree Æ.

(d) For ' 2D(R), ≠
dr±0,'

Æ
= r°n ≠

±0,d1/r'
Æ
= r°n'(0) = r°n ≠

±0,'
Æ

Hence dr±0 = r°n±0. We say that ±0 is homogeneous of degree °n.

(e) For ' 2D(R),

≠
dr x j u,'

Æ
= r°n ≠

x j u,d1/r'
Æ

= r°n ≠
u, x j d1/r'

Æ

= r°n+1 ≠
u,d1/r (x j'(x))

Æ

= r
≠

dr u, x j'
Æ

= rØ+1 ≠
u, x j'

Æ

= rØ+1 ≠
x j u,'

Æ

Hence dr x j u = rØ+1x j u and x j u is homogeneous of degree Ø+1.

≠
dr D j u,'

Æ
= r°n ≠

D j u,d1/r'
Æ

= r°n ≠
u,°D j'(x/r )

Æ

= r°n°1 ≠
u,°d1/r D j'

Æ

= r°1 ≠
dr u,°D j'

Æ

= rØ°1 ≠
u,°D j'

Æ

= rØ°1 ≠
D j u,'

Æ

Hence dr D j u = rØ°1D j u and D j u is homogeneous of degree Ø°1.

The proof of the Euler’s relation for distributions is essentially the same as for functions. Starting from dr u = rØu, we
can differentiate both sides by r . Since the derivatives are transmitted to the test function', we still have the chain rule
for distributions:

@

@r
dr u = @

@r
(rØu) =)

nX

j=1
x j dr D j u =ØrØ°1u

Since D j u is homogeneous of degree Ø°1, we have

nX

j=1
x j rØ°1D j u =ØrØ°1u =)

nX

j=1
x j D j u =Øu

(f) Let v = r°Ødr u °u 2D0(Rn+1). Then

@v
@r

=°Ør°Ø°1dr u + r°Ø
nX

j=1
x j dr D j u = r°Ø°1dr

√
nX

j=1
x j D j u °Øu

!
= 0
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Hence
ø

v,°@√
@r

¿
= 0 for any √(x,r ) 2D(Rn+1). But for every √(x,r ) 2D0(Rn+1),

√(x,r ) = @

@r

Zr

°1
√(x,r 0)dr 0

Hence
≠

v,√
Æ
= 0 for all √(x,r ) 2D0(Rn+1). v = 0. We deduce that dr u = rØu. So u is homogeneous of degree Ø.

Question 5

Show that ±a , the Dirac delta function concentrated at a 2R, satisfies the equation

(x °a)u = 0

Find the general solution u 2D0(R) to (2).

(Hint: See Corollary 1.10 in the Lecture Notes.)

Proof. Let u = ±a . Then for any ' 2D(R),

≠
(x °a)±a ,'

Æ
=

≠
±a , (x °a)'(x)

Æ
= (a °a)'(a) = 0

Hence (x °a)±a = 0.

Let u 2D0(R) such that (x°a)u = 0. Note that for any' 2D(R), there exists√ 2D(R) such that'(x) ='(a)+(x°a)√(x) and
'0(a) =√(a). Then ≠

u,'
Æ
=

≠
u,'(a)

Æ
+

≠
(x °a)u,√

Æ
=

≠
u,'(a)

Æ
='(a)hu,1i= c

≠
±a ,'

Æ

for some constant c 2R. Hence the general solution is given by u = c±a .

Question 6. Distribution defined by principal value integral

Define for each ' 2D(R)

ø
pv

µ
1
x

∂
,'

¿
= lim

a!0+

µZ°a

°1
+

Z1

a

∂
'(x)

x
dx

(a) Show that hereby pv
° 1

x

¢
2D0(R) and that it is homogeneous of order -1 (see Problem 4 ). Check that

d
dx

log |x| = pv
µ

1
x

∂

(b) Show that u = pv
° 1

x

¢
solves the equation

xu = 1

in the sense of D0(R). What is the general solution u 2D0(R) to (3)?

Proof. (a) pv(1/x) is given by

ø
pv

µ
1
x

∂
,'

¿
= lim

a!0+

µZ°a

°1
+

Z1

a

∂
'(x)

x
dx = lim

a!0+

Z1

a

'(x)°'(°x)
x

dx =
Z1

0

'(x)°'(°x)
x

dx

By l’Hôpital’s rule,

lim
x!0+

'(x)°'(°x)
x

= lim
x!0+

°
'0(x)+'0(°x)

¢
= 2'0(0)

Hence the integrand is bounded near x = 0. In particular pv(1/x) is well-defined. It is clear that pv(1/x) is a linear
functional. Following the same argument in Question 3 we deduce that pv(1/x) 2D0(R).

For r > 0,
ø

dr pv
µ

1
x

∂
,'

¿
= r°1

ø
pv

µ
1
x

∂
,d1/r'

¿
= r°1

Z1

0

'(r x)°'(°r x)
x

dx = r°1
Z1

0

'(t )°'(°t )
t

dt =
ø

r°1 pv
µ

1
x

∂
,'

¿
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Hence pv(1/x) is homogeneous of degree -1.

For ' 2D(R),

ø
d

dx
log |x|,'

¿
=

≠
log |x|,°'0Æ=°

Z

R
log |x|'0(x)dx

=°
Z0

°1
log(°x)'0(x)dx °

Z1

0
log(x)'0(x)dx

=°
Z1

0
log x

°
'0(x)+'0(°x)

¢
dx

=° log x
°
'(x)°'(°x)

¢1
0 +

Z1

0

1
x

°
'(x)°'(°x)

¢
dx

For x !1, log x
°
'(x)°'(°x)

¢
= 0 because ' is compactly supported. For x ! 0+, by l’Hôptial’s rule,

lim
x!0

log x
°
'(x)°'(°x)

¢
= lim

x!0
°x log2 x

°
'0(x)+'0(°x)

¢
= 0

Hence ø
d

dx
log |x|,'

¿
=

Z1

0

1
x

°
'(x)°'(°x)

¢
dx =

ø
pv

µ
1
x

∂
,'

¿

We deduce that
d

dx
log |x| = pv

µ
1
x

∂
.

(b) For ' 2D(R),

ø
x pv

µ
1
x

∂
,'

¿
=

Z1

0
('(x)°'(°x))dx =

Z1

°1
'(x)dx =

≠
1,'

Æ

Hence pv(1/x) is a solution to xu = 1.

Let u 2D0(R) such that xu = 1. Note that for any ' 2D(R), there exists √ 2D(R) such that '(x) = '(0)+ x√(x) and
'0(0) =√(0). Then

≠
u,'

Æ
=

≠
u,'(0)

Æ
+

≠
xu,√

Æ
='(0)hu,1i+

ø
1,
'(x)°'(0)

x

¿
='(0)hu,1i+

Z

R

'(x)°'(0)
x

dx

='(0)hu,1i+
Z1

0

'(x)°'(°x)
x

dx =
ø
hu,1i±0 +pv

µ
1
x

∂
,'

¿

Hence the general solution is given by u = c±0 +pv
µ

1
x

∂
for some constant c 2R.
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Hence pv(1/x) is homogeneous of degree -1.

For ' 2D(R),

ø
d

dx
log |x|,'

¿
=

≠
log |x|,°'0Æ=°

Z

R
log |x|'0(x)dx

=°
Z0

°1
log(°x)'0(x)dx °

Z1

0
log(x)'0(x)dx

=°
Z1

0
log x

°
'0(x)+'0(°x)

¢
dx

=° log x
°
'(x)°'(°x)

¢1
0 +

Z1

0

1
x

°
'(x)°'(°x)

¢
dx

For x !1, log x
°
'(x)°'(°x)

¢
= 0 because ' is compactly supported. For x ! 0+, by l’Hôptial’s rule,

lim
x!0

log x
°
'(x)°'(°x)

¢
= lim

x!0
°x log2 x

°
'0(x)+'0(°x)

¢
= 0

Hence ø
d

dx
log |x|,'

¿
=

Z1

0

1
x

°
'(x)°'(°x)

¢
dx =

ø
pv

µ
1
x

∂
,'

¿

We deduce that
d

dx
log |x| = pv

µ
1
x

∂
.

(b) For ' 2D(R),

ø
x pv

µ
1
x

∂
,'

¿
=

Z1

0
('(x)°'(°x))dx =

Z1

°1
'(x)dx =

≠
1,'

Æ

Hence pv(1/x) is a solution to xu = 1.

Let u 2D0(R) such that xu = 1. Note that for any ' 2D(R), there exists √ 2D(R) such that '(x) = '(0)+ x√(x) and
'0(0) =√(0). Then

≠
u,'

Æ
=

≠
u,'(0)

Æ
+

≠
xu,√

Æ
='(0)hu,1i+

ø
1,
'(x)°'(0)

x

¿
='(0)hu,1i+

Z

R

'(x)°'(0)
x

dx

='(0)hu,1i+
Z1

0

'(x)°'(°x)
x

dx =
ø
hu,1i±0 +pv

µ
1
x

∂
,'

¿

Hence the general solution is given by u = c±0 +pv
µ

1
x

∂
for some constant c 2R.


