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Question 1

(a) Use Theorem 4.6.1 to prove the localisation property of Fourier series: if two (continuous) 2π-periodic functions f and
g are equal in an open interval containing 0, then their Fourier series either both converge at 0 or both diverge at 0.

(b) In the lecture, we prove that there is a continuous function whose Fourier series diverges at 0. Use (a) to construct a
continuous function whose Fourier series diverges at 0 and π/2.

Proof. Let SN ( f ) be the partial sum of the first N terms of the Fourier series of f . That is,

SN f (x) =
N∑

n=−N
einx 1

2π

∫ π

−π
f (t )e−int dt =

∫ π

−π
f (t )DN (x − t )dt =: ( f ∗DN )(x)

where

DN (x) := 1

2π

sin
(
N + 1

2

)
x

sin x
2

is the Dirichlet kernel.

(a) Since f and g are continuous and 2π-periodic, they are bounded and hence are in L1(−π,π). By assumption, f − g = 0
in the interval (a,b) where a < 0 < b. In particular f − g is α-Hölder continuous for any α ∈ R. By Theorem 4.6.1, we
have

lim
N→∞

SN ( f − g )(0) = lim
N→∞

SN f (0)− lim
N→∞

SN g (0) = 0

Hence lim
N→∞

SN f (0) and lim
N→∞

SN g (0) either both converge or both diverge.

(b) First we need to construct a function whose Fourier series diverges at 0. The proof given in the lecture is not very
constructive. We use the classical example due to Fejér.1 For x ∈ [0,π],

f (x) =
∞∑

p=1

1

p2 sin
((

2p3 +1
) x

2

)
Then we extend the domain to R such that f is a 2π-periodic even function.

We claim that f is continuous with Fourier series divergent at 0. Then we consider

g (x) :=


f (x), x ∈

[
−π

8
,
π

8

]
linear, x ∈

[
−π

4
,−π

8

]
∪

[π
8

,
π

4

]
0 otherwise

and
h(x) := g (x)+ g

(
x − π

2

)
For |x| < π

8
, h(x) = f (x). By the localisation property, the Fourier series of h diverges at 0. For

∣∣∣x − π

2

∣∣∣ < π

8
, h(x) =

f
(
x − π

2

)
. Similarly, the the Fourier series of h diverges at π/2.

Next we need to verify the properties of f . By Weierstrass M-test, the series that defines f is uniformly convergent on
R. Hence f is continuous on R. The Fourier series of f is given by

f (x) ∼ 1

2
a0 +

∞∑
n=1

an cosnx

The coefficients are given by

an = 1

π

∫ π

−π
f (x)cosnx dx

= 2

π

∫ π

0

∞∑
p=1

1

p2 sin
((

2p3 +1
) x

2

)
cosnx dx

1https://www.mathcounterexamples.net/continuous-function-with-divergent-fourier-series/

https://www.mathcounterexamples.net/continuous-function-with-divergent-fourier-series/


2

= 2

π

∞∑
p=1

1

p2

∫ π

0
sin

((
2p3 +1

) x

2

)
cosnx dx (by uniform convergence)

= 2

π

∞∑
p=1

1

p2α
(
2p3−1,n

)

where α(m,n) :=
∫ π

0
sin

(
2m +1

2
x

)
cosnx dx = 1

2

(
1

m +n + 1
2

+ 1

m −n + 1
2

)
.

To show that the Fourier series of f diverges at 0, it suffices to show that

∞∑
n=0

an =
∞∑

n=0

∞∑
p=1

1

p2α
(
2p3−1,n

)
=

∞∑
p=1

1

p2

∞∑
n=0

α
(
2p3−1,n

)
=∞

For m, N Ê 1,

N∑
n=0

α(m,n) = 1

2

N∑
n=0

(
1

m +n + 1
2

+ 1

m −n + 1
2

)
= 1

2

(
1

m + 1
2

+
m+N∑

i=m−N

1

i + 1
2

)
Ê 0

When m = N ,
m∑

n=0
α(m,n) = 1

2

(
1

m + 1
2

+
2m∑
i=0

1

i + 1
2

)
∼ 1

2
lnm

for large m. Therefore

∞∑
p=1

1

p2

∞∑
n=0

α
(
2p3−1,n

)
Ê 1

p2

2p3−1∑
n=0

α
(
2p3−1,n

)
∼ 1

2p2 ln
(
2p3−1

)
= p3 −1

2p2 ln2 →∞

as p →∞. This completes the argument.

Question 2

Consider the system
{

en = 1p
2π

e i nx
}

n∈Z as a subset of X = L1(−π,π).

(a) Show that ‖en‖ =
p

2π for all n and ‖en −em‖ = 8p
2π

for all n 6= m.

(b) Show that
{

en = 1p
2π

e i nx
}

n∈Z is a basis of L1(−π,π), i.e. the closed linear span of
{

en = 1p
2π

e i nx
}

n∈Z is L1(−π,π).

Proof. (a) For n ∈Z,

‖en‖ =
∫ π

−π
|en(x)|dx =

∫ π

−π
1p
2π

dx =p
2π

For n 6= m,

‖en −em‖ =
∫ π

−π
|en(x)−em(x)|dx

= 1p
2π

∫ π

−π

√(
einx −eimx

)(
e−inx −e−imx

)
dx

= 1p
π

∫ π

−π

√
1−cos(m −n)x dx

=
√

2

π

∫ π

−π

∣∣∣sin
m −n

2
x
∣∣∣dx

= 2
p

2p
π|m −n| |m −n|

∫ π

0
sinu du

= 8p
2π

(b) We follow the outline in the lectures:

span{en}n∈Z Cper(R) L1(−π,π)dense in dense in
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The linear span of {en}n∈Z clearly contains constant functions and is closed under pointwise multiplication (which is
because {en}n∈Z is closed under pointwise multiplication: en(x)em(x) = en+m(x)). Hence span{en}n∈Z is a subalgebra of

Cper(R). In addition, e1(x) = 1p
2π

eix is injective onR/2πZ, and hence separates points. FurthermoreR/2πZ is compact.

By the subalgebra form of the Stone-Weierstrass Theorem, span{en}n∈Z is dense in Cper(R).

From Functional Analysis I we know that Cper(R) is dense in L1(−π,π). Therefore span{en}n∈Z is dense in L1(−π,π).

Question 3

Let X be the closed subspace of C [−π,π] consisting of all continuous (on [−π,π]) functions f such that f (−π) = f (π). For
n ∈Z, define en ∈ X by en(t ) = 1p

2π
e i nt and let

f̂ (n) = 1p
2π

∫ π

−π
f (t )e−i nt d t

for f ∈ X . Let {αn}n∈Z be a sequence in C, and assume that for each f ∈ X there exists a unique element g ∈ X such that
ĝ (n) =αn f̂ (n) for all n ∈Z. Let T f = g .

(a) Show that T is linear and has closed graph. Deduce that T ∈ℬ(X ).

(b) Show that Ten =αnen for all n ∈Z and that the sequence {αn}n∈Z is bounded.

(c) Show that there exists a bounded linear functional ϕ on X such that ϕ (en) =αn for all n ∈Z.

Proof. (a) For f1, f2 ∈ X , let g1 = T ( f1), g2 = T ( f2). It is clear from definition that

áa f1 +b f2(n) = a f̂1(n)+b f̂2(n), áag1 +bg2(n) = aĝ1(n)+bĝ2(n)

where a,b ∈C. Hence áag1 +bg2(n) =αn áa f1 +b f2(n)

and T (a f1 +b f2) = ag1 +bg2 = aT ( f1)+bT ( f2). We deduce that T is linear.

Suppose that { fk }k∈N ⊆ X such that fk → f and T ( fk ) → g uniformly as k →∞. Then

lim
k→∞

f̂k (n) = lim
k→∞

1p
2π

∫ π

−π
fk (t )e−int dt = 1p

2π

∫ π

−π
f (t )e−int dt = f̂ (n)

Hence g = T ( f ). We deduce that Γ(T ) ⊆ X ×X is closed. By the closed graph theorem, T ∈ℬ(X ).

(b) By L2 orthonormality,

ên(m) = 1

2π

∫ π

−π
ei(n−m)t dt = δmn

Hence αm ên(m) =αn ên(m) for all m ∈Z. We deduce that T (en) =αnen .

|αn |‖en‖ = ‖αnen‖ = ‖T (en)‖ É ‖T ‖‖en‖

Hence the sequence {αn}n∈Z is bounded by ‖T ‖.

(c) We define a linear map ψ : span{en : n ∈Z} →C by ψ(en) =αn . We claim that ψ is bounded.

(It is hard to bound |ψ( f )| by
∥∥ f

∥∥∞......)

From Question 2 we know that span{en : n ∈ Z} is dense in X . Therefore ψ has a unique extension ϕ ∈ X ∗, which
satisfies ϕ(en) =αn for all n ∈Z.
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Question 4

Consider the right shift operator on sequences R (x1, x2, . . .) = (0, x1, x2, . . .) Show that as an operator on `2,R satisfies σp (R) =
;,σr (R) = {λ : |λ| < 1} and σc (R) = {λ : |λ| = 1}.

[To put thing in perspective, compare Question 7 of Sheet 4 of B4.1 from MT: If we consider T as an operator on `∞, then
σp (R) =;, σr (R) = {λ : |λ| É 1} and σc (R) =;.]

Proof. Let L : `2 → `2 be the left shift operator: (x1, x2, ...) 7→ (x2, x3, ...). We claim that L = R∗. Indeed, for x, y ∈ `2,

〈
Rx, y

〉= ∞∑
n=1

(Rx)n yn =
∞∑

n=2
xn−1 yn =

∞∑
n=1

xn yn+1 =
∞∑

n=1
xn(Ly)n = 〈

x,Ly
〉

We claim that σp (R) =∅ and σp (L) = BC(0,1).

Suppose that x ∈ ker(L−λ id). Then 0 = xn+1 −λxn and hence xn =λn−1x1 for all n ∈Z+. If x 6= 0, we have

‖x‖2
2 =

∞∑
n=1

|xn |2 = |x1|2
∞∑

n=1
|λ|2n−2

So x ∈ `2 if and only if |λ| < 1. We deduce that σp (L) = BC(0,1).

Suppose that x ∈ ker(R −λ id). Then x1 = 0 and xn −λxn+1 = 0 for all n ∈Z+. Hence x = 0. We deduce that ker(R −λ id) = {0}
for all λ ∈C and thus σp (R) =∅.

We have (R −λ id)∗ = (L−λ id). From Question 1.(a) of Sheet 2 we know that

ker(L−λ id) = im(R −λ id)⊥

Hence
λ ∈σr (R) ⇐⇒ im(R −λ id) 6= `2 ⇐⇒ ker(L−λ id) 6= {0} ⇐⇒ λ ∈σp (L)

We deduce that σr (R) =σp (L) = BC(0,1).

Next, we note that R is isometric, as for x ∈ `2,

‖Rx‖2
2 =

∞∑
n=2

|xn−1|2 =
∞∑

n=1
|xn |2 = ‖x‖2

2

So we have σ(R) ⊆ BC(0,1). Since σ(R) is compact and BC(0,1) ⊆σ(R), we have σ(R) = BC(0,1). Therefore

σc (R) =σ(R) \ (σp (R)∪σr (R)) = S1

In conclusion, we have σp (R) =∅, σc (R) = S1, and σr (R) = BC(0,1).

Question 5

Let X be a complex Hilbert space and A ∈ℬ(X ) be normal (i.e. A∗A = A A∗)

(a) Show that

rad(σ(A)) = ‖A‖

Deduce that if P is a polynomial, then

‖P (A)‖ = sup
λ∈σ(A)

|P (λ)|

(b) Let P be a Laurent polynomial, i.e. P (z) = ∑
k ak zk where the summation range is finite but may contains positive as
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well as negative powers. Show that if A is unitary, then

‖P (A)‖ = sup
λ∈σ(A)

|P (λ)|

Proof. Let SX denotes the unit sphere of X .

(a) We first note that ‖A∗n An‖ = ‖An‖2, because∥∥A∗n An∥∥= sup
x∈SX

〈
A∗n An x, x

〉= sup
x∈SX

〈
An x, An x

〉= sup
x∈SX

∥∥An x
∥∥2 = ∥∥An∥∥2

Since A is normal, A∗A = A A∗. Furthermore A∗A is self-adjoint. Therefore∥∥An∥∥2 = ∥∥A∗n An∥∥= ∥∥(A∗A)n∥∥= ∥∥A∗A
∥∥n

By the Gelfand’s formula,
radσ(A) = lim

n→∞
∥∥An∥∥1/n = lim

n→∞
∥∥A∗A

∥∥1/2 = ∥∥A∗A
∥∥1/2 = ‖A‖

(b) Since P is a Laurent polynomial, there exists n ∈N such that P (z) = z−nQ(z) where Q ∈ C[x]. Hence P (A) = A−nQ(A).
Since A is unitary, ‖A‖ = ∥∥A−1

∥∥= 1. And we have

‖Q(A)‖ É ∥∥An∥∥‖P (A)‖ = ‖P (A)‖ É ∥∥A−n∥∥‖Q(A)‖ = ‖Q(A)‖

So ‖P (A)‖ = ‖Q(A)‖. By Theorem 8.6 of B4.1 Functional Analysis I, we have

σ(Q(A)) =Q(σ(A))

Therefore
‖P (A)‖ = ‖Q(A)‖ = radσ(Q(A)) = radQ(σ(A)) = sup

λ∈Q(σ(A))
|λ| = sup

λ∈σ(A)
|Q(λ)|

Since σ(A) ⊆ S1, we have
‖P (A)‖ = sup

λ∈σ(A)
|Q(λ)| = sup

λ∈σ(A)
|λ|−n |Q(λ)| = sup

λ∈σ(A)
|P (λ)|

Question 6

Let X be a complex Hilbert space and S and T be two self-adjoint bounded linear operators on X .

(a) Let λ ∉σ(T ). Use the fact that σ
(
(T −λI )−1

)= (σ(T )−λ)−1 (a form of spectral mapping theorem) and Gelfand’s formula
to show that ∥∥(T −λI )−1∥∥= 1

dist(λ,σ(T ))

Deduce that I + (T −λI )−1(S −T ) is invertible if

‖S −T ‖ < dist(λ,σ(T ))

Hence, show under this latter assumption that λ ∉σ(S).

(b) Use (a) to show that

‖S −T ‖ Ê distH (σ(S),σ(T ))

where the Hausdorff distance distH (A,B) between two closed subsets A and B of C is defined by

distH (A,B) = max

(
sup
a∈A

min
b∈B

|a −b|, sup
b∈B

min
a∈A

|a −b|
)
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Proof. (a) Since T is self-adjoint and T −λ id is invertible, then (T −λ id)−1 is also self-adjoint. In particular,

radσ
(
(T −λ id)−1)= ∥∥(T −λ id)−1∥∥

On the other hand, we have

radσ
(
(T −λ id)−1)= sup

η∈σ((T−λ id)−1)
|η| = sup

η∈(σ(T )−λ)−1
|η| = sup

η∈σ(T )

1

|η−λ| =
1

inf
η∈σ(T )

|η−λ| =
1

dist(λ,σ(T ))

Hence ∥∥(T −λ id)−1∥∥= 1

dist(λ,σ(T ))

By convergence of Neumann series, I +(T −λ id)−1(S−T ) is invertible if
∥∥(T −λ id)−1(S −T )

∥∥É 1. From the result above,
it suffices to have ‖S −T ‖ É dist(λ,σ(T )).

Finally,
S −λ id = (T −λ id)+ (S −T ) = (T −λ id)

(
id+(T −λ id)−1(S −T )

)
By the assumption, S −λ id is invertible. Hence λ ∉σ(S).

(b) The contrapositive of the result of (a) is that λ ∈σ(S) implies that ‖S −T ‖ Ê dist(λ,σ(T )). Hence

‖S −T ‖ Ê sup
λ∈σ(S)

dist(λ,σ(T )) = sup
λ∈σ(S)

inf
η∈σ(T )

|λ−η| = sup
λ∈σ(S)

min
η∈σ(T )

|λ−η|

The last equality follows from that σ(T ) is compact. Note that S and T are symmetric in the above inequality. Therefore
we have

‖S −T ‖ Ê sup
λ∈σ(T )

min
η∈σ(S)

|λ−η|

and hence ‖S −T ‖ Ê distH (σ(S),σ(T )).


