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Question 1

(a) Use Theorem 4.6.1 to prove the localisation property of Fourier series: if two (continuous) 27-periodic functions f and
g are equal in an open interval containing 0, then their Fourier series either both converge at 0 or both diverge at 0.

(b) In the lecture, we prove that there is a continuous function whose Fourier series diverges at 0. Use (a) to construct a
continuous function whose Fourier series diverges at 0 and /2.

Proof. Let Sy(f) be the partial sum of the first N terms of the Fourier series of f. That is,

Snf(x) = Z e” —f f(t)e*"”dt—f f(ODNn(x—t)dt =: (f * Dy)(x)

n=—N

where

b 1 sin(N+3)x
N():= 271 smz

is the Dirichlet kernel.

(a) Since f and g are continuous and 27-periodic, they are bounded and hence are in L! (-7, 7). By assumption, f —g =0
in the interval (a, b) where a < 0 < b. In particular f — g is a-Holder continuous for any & € R. By Theorem 4.6.1, we
have

lim Sy(f—-g)(0)= lim Syf(0)— lim Syg(0)=0
N—oo N—oo N—oo

Hence Al’im Snf(0) and Al]im Sng(0) either both converge or both diverge.
—00 —00

(b) First we need to construct a function whose Fourier series diverges at 0. The proof given in the lecture is not very
constructive. We use the classical example due to Fejér.! For x € [0, 7],

X1 3 X
flx) = —sin (|27 +1]=
§ Lan(er 1))
Then we extend the domain to R such that f is a 2n-periodic even function.

We claim that f is continuous with Fourier series divergent at 0. Then we consider

b
fx), xe [—g 3
g(x) :=A linear, [—— ——] [
0 otherwise
and .
h(x):=gx)+g (x— E)
For |x| < § h(x) = f(x). By the localisation property, the Fourier series of i diverges at 0. For ’x— —‘ —, h(x) =

7
f (x - E) Similarly, the the Fourier series of & diverges at 7/2.
Next we need to verify the properties of f. By Weierstrass M-test, the series that defines f is uniformly convergent on
R. Hence f is continuous on R. The Fourier series of f is given by

1 (e8]

fxX)~=ag+ ) apcosnx

2 n=1

The coefficients are given by

1 /1
a, = f(x) cosnxdx

fﬂiism 2P’ +1) )cosnxdx
0 1P 2

1https://www.mathcounterexamples.net/continuous-function-with-divergent-fourier-series/


https://www.mathcounterexamples.net/continuous-function-with-divergent-fourier-series/

/1
/ sin ((2’” + 1) 5 ) cosnxdx (by uniform convergence)
0

a (2”3_1, n)

T (2m+1 1 1 1
where a(m,n):= | sin x|cosnxdx=— -+ -
0 2 2\m+n+3 m-n+3

To show that the Fourier series of f diverges at 0, it suffices to show that

n=0 n=0p=1 p? p=1P" n=0
Form,N=1,
Y amn)==) -+ =- -+ —|=0
n=0 2 m+n+s; m-n+3) 2\m+; Jyinits
When m = N,
m 1 2m 1 1
Y a(m,n) - ——|~-Inm
n=0 +3 i=0lt3
for large m. Therefore
31

i::izi:: (zp_l )>p2 Oa(Zps_l,n)~$ln2

as p — oo. This completes the argument.

Question 2

L as a subset of X = L (-7, 7).

Consider the system {en =7 e”“‘} .
ne

(a) Show that |le;|l = v27x forall nand |le;, — el = \/% for all n # m.
= Le"”x} is LY (-7, 7).
nezZ

(b) Show that {en = \/szne”‘x} , is a basis of L! (-7, ), i.e. the closed linear span of {en ==
ne

Proof. (a) Fornez,

n T 1
||en||=f ealdr= [ ——dv=var
N

- - V21

Forn# m,

VA
len—emll =f ley (x) — em(x)|dx

=7

= Lfﬂ \/(einx_eimx) (efinx_efimx) dx
V2 J-
nﬂ
—f v 1—-cos(m—n)xdx

H

—\|m- nl[ sinu du
\/ﬁlm—nl

van

s1n

(b) We follow the outline in the lectures:
dense in, dense in, e

spanieptnez ———» Cper(R) —_—



The linear span of {e,} ez clearly contains constant functions and is closed under pointwise multiplication (which is
because {e;} ez is closed under pointwise multiplication: e, (x)e;; (x) = e+ m(x)). Hence span{e;,} ¢z is a subalgebra of

1 .
Cper(R). In addition, e; (x) = \/? e isinjective on R/27Z, and hence separates points. Furthermore R/27Z is compact.
7

By the subalgebra form of the Stone-Weierstrass Theorem, span{e;,},cz is dense in Cpe(R).

From Functional Analysis I we know that Cpe,(R) is dense in LY (-7, 7). Therefore span{e,} ez is dense in Li(-m,m). O

Question 3

Let X be the closed subspace of C[—m, 7] consisting of all continuous (on [-7,7]) functions f such that f(-x) = f(r). For

nez,define e, € X by e, () = \/%fne”” and let

~ 1 [ int
=— ne "dr
o V2n f—nf( e

for f € X. Let {a,},cz be a sequence in C, and assume that for each f € X there exists a unique element g € X such that
gn) = anf(n) forallneZ. LetTf=g.

(a) Show that T is linear and has closed graph. Deduce that T € % (X).
(b) Show that Te;, = ey, for all n € Z and that the sequence {«,},c7 is bounded.

(c) Show that there exists a bounded linear functional ¢ on X such that ¢ (e;,) = @, forall n e Z.

Proof. (a) For f1, o€ X,let g1 = T(f1), g = T(f2). Itis clear from definition that
afi+bfo(m) = afi(m) +bfa(n),  agi+bg(n) = ag (n) +bgs(n)

where a, b € C. Hence - -
ag1+bg(n)=ayafi+bfe(n)
and T(afi+bfo) =ag1 +bgr = aT(f1)+ bT(f2). We deduce that T is linear.
Suppose that {fi}xeny € X such that fi — f and T(f;) — g uniformly as k — co. Then
~ 1 [r . 1 [ . ~
Igin;ofk(n) = ]}5130\/7_” B fi(ve ™M dt= \/T_”erm e " dt=f(n)
Hence g = T(f). We deduce that I'(T) < X x X is closed. By the closed graph theorem, T € % (X).

(b) By L? orthonormality,

1 T
B(m) = — f elti=mt gy 5
27 J-xn

Hence a;,é,(m) = a,é,(m) for all m € Z. We deduce that T(e;)) = a,e;,.
laplllenll = lanenll =Tl <Tlllexl

Hence the sequence {a,},cz is bounded by || T'||.
(c) We define a linear map v : span{e, : n€ Z} — C by w(e,) = a,. We claim that y is bounded.
(It is hard to bound |y (f)| by ||f||OO ...... )

From Question 2 we know that spanfe, : n € Z} is dense in X. Therefore y has a unique extension ¢ € X*, which
satisfies ¢(e,) = a, forall ne Z. O



Question 4

Consider the right shift operator on sequences R (x1, X2, ...) = (0, x1, X2, ...) Show that as an operator on 02, R satisfies op(R) =
@,0,(R)={A:|A|<1}and o (R) ={A:|A| =1}

[To put thing in perspective, compare Question 7 of Sheet 4 of B4.1 from MT: If we consider T as an operator on £, then

0p(R)=@,0:(R)={A:|A|<1}and o.(R) = @.]

Proof. Let L: 02 — 02 be the left shift operator: (xy, X, ...) — (X2, X3,...). We claim that L = R*. Indeed, for x, y € 02,

(o)

o0 o0 o0
(Rx,y)=Y (RX)n¥n= 3 Xn-1¥n= Y Xn¥n+1= ) Xn(Ly)n=(x,Ly)
n=1 n=2 n=1

n=1

We claim that 0, (R) = @ and 0, (L) = Bc(0,1).

Suppose that x € ker(L — Aid). Then 0 = x,,4; — Ax, and hence x, = A" !x; forall ne Z,. If x # 0, we have
2w 2 2% |y 2n-2
lxlz =) xal® =1x11* D 147"~
n=1 n=1

So x € ¢% if and only if || < 1. We deduce that o ,,(L) = Bc(0, 1).

Suppose that x € ker(R — Aid). Then x; =0 and x,, — Ax,+; =0 forall n € Z,. Hence x = 0. We deduce that ker(R — Aid) = {0}
forall A€ C and thus 0,(R) = @.

We have (R—Aid)* = (L— Zid). From Question 1.(a) of Sheet 2 we know that
ker(L—Aid) =im(R - Aid)*

Hence _ _
Aea (R) < im(R-1id) # £* <> ker(L-Aid) # {0} < A€o ,(L)

We deduce that o, (R) = 0, (L) = Bc(0,1).

Next, we note that R is isometric, as for x € ¢2,

2 o 2 o 2 2
IRxl5 = Z [Xp-11" = Z [xpl” = lxl3
n=2 n=1

So we have o(R) < B¢ (0,1). Since o (R) is compact and B¢ (0,1) € o (R), we have 0 (R) = B¢(0,1). Therefore
0c(R)=0(R®\(op(R)UT(R) = s

In conclusion, we have o, (R) = J, 0(R) = S, and o, (R) = Bc(0,1). O

Question 5
Let X be a complex Hilbert space and A € % (X) be normal (i.e. A*A= AA")

(a) Show that
rad(o (A)) = | All
Deduce that if P is a polynomial, then

IP(A)|l = sup [P(A)]
Aea(A)

(b) Let P be a Laurent polynomial, i.e. P(z) = Y arz* where the summation range is finite but may contains positive as



well as negative powers. Show that if A is unitary, then

IP(A)ll = sup [P(A)]
Aea (A)

Proof. Let Sx denotes the unit sphere of X.

(@) We first note that | A*" A"|| = || A"||*, because
477 A7) = sup (A" A7, x) = sup (A", 4"x) = sup | A" = | 4"
xeSx x€Sx x€Sx
Since Aisnormal, A* A= AA*. Furthermore A* A is self-adjoint. Therefore
Jan|* = amar] = a2 = A" A]"

By the Gelfand’s formula,
rado(4) = lim | A"|["" = lim | A* A] 12

n—oo

= lamal= = 1Al

(b) Since P is a Laurent polynomial, there exists n € N such that P(z) = z7"Q(z) where Q € C[x]. Hence P(A) = A""Q(A).

Since A is unitary, | All = ||A71 || =1. And we have
QA < [|[A*[IPAI = IPAI < AT 1A = 1QA)|
So [P(A)ll =11Q(A)|l. By Theorem 8.6 of B4.1 Functional Analysis I, we have
0(Q(A) =Q(a(A4)

Therefore

IP(A) =11Q(A)ll =rado(Q(A)) =radQ(g(A) = sup |Al= sup [Q)]
A€Q(o(A) Aea(A)

Since o (A) < S!, we have

IP(A)I = sup QI = sup IAI""IQ)I= sup [P
Aea(A) Aea(A) Aea(A)

Question 6

Let X be a complex Hilbert space and S and T be two self-adjoint bounded linear operators on X.

(@) LetA¢o(T). Usethe fact thato ((T—AD™Y) = (o(T) - A)~! (a form of spectral mapping theorem) and Gelfand’s formula

to show that

1
T-AD"Y=2 ——
”( ) ” dist(A,0(T))
Deduce that I + (T — AD)~1(S - T) is invertible if
IS = Tl < dist(A,o(T))

Hence, show under this latter assumption that A ¢ o (S).

(b) Use (a) to show that
IS—TI =distg(o(S),o(T))

where the Hausdorff distance dist (A, B) between two closed subsets A and B of C is defined by

disty (A, B) = max |supmin|a — b|,supmin|a — b|
acA beB peB A€A



Proof.

(@)

(b)

Since T is self-adjoint and T — Aid is invertible, then (T — Aid)~! is also self-adjoint. In particular,
rado((T - Aid)™!) = [ (T - 2id) 7|

On the other hand, we have

1 1
rada((T—/lid)_l) = sup Inl= sup Inl= sup = — = —
neo ((T-Aid)-) e (T)-A)"! nea () 1N — Al né?(fT)ln_M dist(A,0 (1))
Hence 1
|- 2id~ =

dist(A,0 (7))
By convergence of Neumann series, I+ (T —Aid) ~1(§=T) is invertible if || (T-7Aid)"HS-T) || < 1. From the result above,
it suffices to have ||S — T'|| < dist(A, o (T)).
Finally,
S—Aid = (T = Aid) + (S - T) = (T = Aid) (id +(T - Aid) ' (S - 7))
By the assumption, S — Aid is invertible. Hence A ¢ o (S).

The contrapositive of the result of (a) is that A € o(S) implies that |S— T'|| = dist(A,o(T)). Hence

IS=TIl= sup dist(A,0(T))= sup inf |[A—n|= sup min |[A—-7|
Aea(S) rea(s)neo(D) rea(s)neo(D)
The last equality follows from that o (T) is compact. Note that S and T are symmetric in the above inequality. Therefore
we have
IS=T|l= sup min [A-n]
Aeo(T)NET(S)

and hence |S— T|| = distg (g (S),0(T)). O



