Peize Liu St. Peter's College University of Oxford

Problem Sheet 1

ASO: Multivariable Calculus

Question 1

The function $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by

$$f(x,y) = \begin{cases} \frac{|xy|^{\alpha}}{x^2 + y^2} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0) \end{cases}$$

where $\alpha > 0$. Find the values of α for which f is

- (a) continuous at (0,0);
- (b) differentiable at (0,0).

Proof. (a) We change to polar coordinates:

$$f(r,\theta) = \begin{cases} r^{2\alpha - 2} |\cos^{\alpha}\theta \sin^{\alpha}\theta| & \text{for } r > 0\\ 0 & \text{for } r = 0 \end{cases}$$

If f is continuous at the origin, then $f \to 0$ as $r \to 0$ for any $\theta \in \mathbb{R}$. Hence we have $2\alpha - 2 > 0 \implies \alpha > 1$.

(b) First we compute the partial derivatives. For |xy| > 0, we have

$$\begin{aligned} \frac{\partial f}{\partial x} &= \frac{y^{\alpha}}{(x^2 + y^2)^2} (\alpha x^{\alpha - 1} (x^2 + y^2) - 2x \cdot x^{\alpha}) \\ &= \frac{x^{\alpha - 1} y^{\alpha}}{(x^2 + y^2)^2} ((\alpha - 2)x^2 + \alpha y^2) \\ &= r^{2\alpha - 3} \sin^{\alpha} \theta \cos^{\alpha - 1} \theta ((\alpha - 2)\cos^2 \theta + \alpha \sin^2 \theta) \end{aligned}$$

and
$$\frac{\partial f}{\partial u} = r^{2\alpha - 3} \cos^{\alpha} \theta \sin^{\alpha - 1} \theta ((\alpha - 2) \sin^{2} \theta + \alpha \cos^{2} \theta).$$

For |xy| < 0, we have

$$\frac{\partial f}{\partial x} = -r^{2\alpha - 3} \sin^{\alpha}\theta \cos^{\alpha - 1}\theta ((\alpha - 2)\cos^{2}\theta + \alpha \sin^{2}\theta), \quad \frac{\partial f}{\partial y} = -r^{2\alpha - 3} \cos^{\alpha}\theta \sin^{\alpha - 1}\theta ((\alpha - 2)\sin^{2}\theta + \alpha \cos^{2}\theta)$$

We observe that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are continuous at the origin if and only if $2\alpha - 3 > 0 \implies \alpha > \frac{3}{2}$. By Proposition 3.1 in the notes we conclude that f is differentiable at the origin if and only if $\alpha > \frac{3}{2}$.

Question 2

A function is called *homogeneous of degree* k if $f(\lambda x) = \lambda^k f(x)$ for all $\lambda > 0$ and all $x \in \mathbb{R}^n$.

(a) Show that if f is homogeneous of degree k, then

$$\langle \nabla f(\boldsymbol{x}), \boldsymbol{x} \rangle = k f(\boldsymbol{x}).$$

(b) Show conversely if f satisfies the equation, then f is homogeneous of degree k.

Proof. (a) We have to assume that f is differentiable. Starting from $f(\lambda x) = \lambda^k f(x)$, we first differentiate both sides with respect to x_i by chain rule:

$$\lambda \frac{\partial f}{\partial x_i}(\lambda \boldsymbol{x}) = \lambda^k \frac{\partial f}{\partial x_i}(\boldsymbol{x})$$

Therefore $\partial_i f(\lambda x) = \lambda^{k-1} f(x)$ and $\nabla f(\lambda x) = \lambda^{k-1} \nabla f(x)$.

Next we differentiable both sides of $f(\lambda x) = \lambda^k f(x)$ with respect to λ by chain rule:

$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\lambda \boldsymbol{x}) \cdot x_i = k\lambda^{k-1} f(\boldsymbol{x})$$

Note the LHS is $\langle \nabla f(\lambda x), x \rangle$. Substituting the previous equation we have

$$\langle \lambda^{k-1} \nabla f(\mathbf{x}), \mathbf{x} \rangle = k \lambda^{k-1} f(\mathbf{x}) \implies \langle \nabla f(\mathbf{x}), \mathbf{x} \rangle = k f(\mathbf{x})$$

(b) We define $g: \mathbb{R}^n \times \mathbb{R} \setminus \{0\} \to \mathbb{R}$ by

$$g(\boldsymbol{x}, \lambda) = \lambda^{-k} f(\lambda \boldsymbol{x}) - f(\boldsymbol{x})$$

Fix $x \in \mathbb{R}^n$. Consider the derivative with respect to λ :

$$\frac{\partial g}{\partial \lambda}(\boldsymbol{x}, \lambda) = \lambda \sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i}(\lambda \boldsymbol{x}) - k\lambda^{-k-1} f(\lambda \boldsymbol{x})$$
$$= \lambda^{-k} \left(\langle \boldsymbol{\nabla} f(\lambda \boldsymbol{x}), \boldsymbol{x} \rangle - k\lambda^{-1} f(\lambda \boldsymbol{x}) \right)$$
$$= \lambda^{-k-1} \left(\langle \boldsymbol{\nabla} f(\lambda \boldsymbol{x}), \lambda \boldsymbol{x} \rangle - k f(\lambda \boldsymbol{x}) \right)$$
$$= 0$$

by the equation. Moreover, we know that g(x, 1) = 0. By identity theorem, $g(x, \lambda) = 0$ for all $\lambda \in \mathbb{R} \setminus \{0\}$ and $x \in \mathbb{R}^n$. Hence we conclude that f is homogeneous of degree k.

Question 3

The function $f: \mathbb{R}^2 \to \mathbb{R}$ is given by

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0) \end{cases}$$

Show that all the directional derivatives of *f* exist at the origin, but *f* is not differentiable at the origin.

Proof. We express f in the polar coordinates:

$$f(r,\theta) = \begin{cases} \frac{r^3 \cos \theta \sin^2 \theta}{r^2 \cos^2 \theta + r^4 \sin^4 \theta} & \text{for } r > 0\\ 0 & \text{for } r = 0 \end{cases}$$

We consider the derivative of f at 0 in the direction of $(\cos \theta, \sin \theta)$. For $\cos \theta = 0$, f is identically zero. Hence $\partial_{\theta} f(0) = 0$. For $\cos \theta \neq 0$:

$$\partial_{\theta} f(0) = \lim_{r \to 0} \frac{f(r,\theta) - f(0)}{r} = \lim_{r \to 0} \frac{r^2 \cos \theta \sin^2 \theta}{r^2 \cos^2 \theta + r^4 \sin^4 \theta} = \frac{\sin^2 \theta}{\cos \theta}$$

In summary, all directional derivatives exist:

$$\partial_{\theta} f(0) = \begin{cases} \frac{\sin^2 \theta}{\cos \theta} & \text{for } \theta \neq \frac{\pi}{2}, \frac{3\pi}{2} \\ 0 & \text{for } \theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \end{cases}$$

In particular, $\frac{\partial f}{\partial x}(0) = \frac{\partial f}{\partial y}(0) = 0$. Therefore $\nabla f(0) = 0$. If f is differentiable at the origin, then we have $\partial_{\theta} f(0) = \langle \nabla f(0), (\cos \theta, \sin \theta) \rangle = 0$ for all $\theta \in \mathbb{R}$. But $\partial_{\pi/4} f = \frac{\sqrt{2}}{2} \neq 0$, which is a contradiction. Hence f is not differentiable at

the origin.

Question 4

In this question we use the Hilbert-Schmidt matrix norm

$$||A|| = \left(\sum_{i,j} A_{i,j}^2\right)^{\frac{1}{2}}$$

Show that if H has Hilbert-Schmidt norm less than 1, then I-H is invertible (you may assume that $||AB|| \le ||A|| \, ||B||$).

Proof. The inverse of I-H is $A:=\sum_{n=0}^{\infty}H^n$. We shall prove that the series on the RHS converges. Since $M_{n\times n}(\mathbb{R})$ is finite-dimensional over \mathbb{R} , it is trivially a Banach space (Bolzano-Weierstrass Theorem). Hence it suffices to prove that the series converges absolutely.

For $k \in \mathbb{N}$, $\sum_{n=0}^k \|H^n\| \leqslant \sum_{n=0}^k \|H\|^n$, which follows from the hint. Hence we have $\sum_{n=0}^\infty \|H^n\| \leqslant \sum_{n=0}^\infty \|H\|^n < \infty$ since $\|H\| < 1$. We infer that $\sum_{n=0}^\infty H^n$ converges.

Finally,
$$(I-H)\sum_{n=0}^{\infty}H^n=\sum_{n=0}^{\infty}H^n-\sum_{n=1}^{\infty}H^n=I.$$
 Hence $I-H$ is invertible with inverse $\sum_{n=0}^{\infty}H^n.$

Remark. As suggested in the proof, the result holds for any Banach space, with Hilbert-Schmidt norm replaced by the operator norm.

Question 5

Let $M_{n \times n}(\mathbb{R})$ denote the vector space of $n \times n$ real matrices. Show that the derivative at the identity of the determinant function

$$\det: M_{n \times n}(\mathbb{R}) \to \mathbb{R}$$

is

$$d(\det)_I: h \mapsto \operatorname{tr} h$$

Deduce that the derivative at an arbitrary invertible matrix *A* is

$$d(\det)_A: h \mapsto \det A \cdot tr(A^{-1}h)$$

Proof. For $\varepsilon > 0$ and $h \in M_{n \times n}(\mathbb{R})$, we shall find an expansion of $\det(I + \varepsilon h)$. We have:

$$\det(I + \varepsilon h) = \sum_{\sigma \in S_n} (-1)^{\sigma} \prod_{i=1}^n a_{i,\sigma(i)}$$

where $a_{i,j}=\varepsilon h_{i,j}$ if $i\neq j$ and $a_{i,j}=1+\varepsilon h_{i,j}$ if i=j. Then we have

$$\det(I + \varepsilon h) = \prod_{i=1}^{n} (1 + \varepsilon h_{i,i}) + o(\varepsilon) = 1 + \varepsilon \sum_{i=1}^{n} h_{i,i} + o(\varepsilon) = \det I + \operatorname{tr} h + o(\varepsilon)$$

From the expression we infer that det is differentiable at I with differential $d(\det)_I: h \mapsto \operatorname{tr} h$.

For $A \in \mathrm{GL}(n,\mathbb{R})$, we have:

$$\det(A + \varepsilon h) = \det A \cdot \det(I + \varepsilon A^{-1}h) = \det A + \det A \cdot \operatorname{tr}(A^{-1}h) + o(\varepsilon)$$

Therefore det is differentiable at A with differential $d(\det)_A: h \mapsto \det A \cdot \varepsilon \operatorname{tr}(A^{-1}h)$.

Question 6

- (a) Show that the set $GL(n, \mathbb{R})$ of invertible matrices is an open set in $M_{n \times n}(\mathbb{R})$.
- (b) Show that the derivative of the inversion map $\operatorname{Inv}:\operatorname{GL}(n,\mathbb{R})\to\operatorname{GL}(n,\mathbb{R})$ is

$$d(Inv)_A: h \mapsto -A^{-1}hA^{-1}$$

Hint: look at the case where A is the identity first.

- *Proof.* (a) For $A \in GL(n, \mathbb{R})$, let $\delta > 0$ such that $\delta < \|A^{-1}\|^{-1}$. Then for $B \in B(A, \delta)$, $\|A B\| < \delta$. We have $B = A (A B) = A(I A^{-1}(A B))$. Since $\|A^{-1}(A B)\| \le \|A^{-1}\| \|A B\| < \|A^{-1}\| \|\delta < 1$, by Question 4 we know that $I A^{-1}(A B)$ is invertible. Hence B is invertible. $B \in GL(n, \mathbb{R})$. We conclude that $GL(n, \mathbb{R})$ is open in $M_{n \times n}(\mathbb{R})$.
 - (b) For $A \in GL(n, \mathbb{R})$, there exists $\delta > 0$ such that $B(A, \delta) \subseteq GL(n, \mathbb{R})$. For $h \in GL(n, \mathbb{R})$ with $||h|| < \delta$:

$$\begin{split} (A+h)^{-1} &= (I+A^{-1}h)^{-1}A^{-1} \\ &= \left(\sum_{n=0}^{\infty} (-A^{-1}h)^n\right) \cdot A^{-1} & \text{by Question 4} \\ &= \left(I-A^{-1}h + o(\|h\|)\right) \cdot A^{-1} \\ &= A^{-1} - A^{-1}hA^{-1} + o(\|h\|) \end{split}$$

Hence $\operatorname{Inv}(A+h) - \operatorname{Inv} A = \operatorname{d}(\operatorname{Inv})_A(h) + o(\|h\|)$ where $\operatorname{d}(\operatorname{Inv}_A) : h \mapsto -A^{-1}hA^{-1}$.