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Question 1

The function f : R2 → R is defined by

f(x, y) =


|xy|α

x2 + y2
for (x, y) 6= (0, 0)

0 for (x, y) = (0, 0)

where α > 0. Find the values of α for which f is

(a) continuous at (0, 0);

(b) differentiable at (0, 0).

Proof. (a) We change to polar coordinates:

f(r, θ) =

r2α−2 | cosα θ sinα θ| for r > 0

0 for r = 0

If f is continuous at the origin, then f → 0 as r → 0 for any θ ∈ R. Hence we have 2α− 2 > 0 =⇒ α > 1.

(b) First we compute the partial derivatives. For |xy| > 0, we have

∂f

∂x
=

yα

(x2 + y2)2
(αxα−1(x2 + y2)− 2x · xα)

=
xα−1yα

(x2 + y2)2
((α− 2)x2 + αy2)

= r2α−3 sinα θ cosα−1 θ((α− 2) cos2 θ + α sin2 θ)

and
∂f

∂y
= r2α−3 cosα θ sinα−1 θ((α− 2) sin2 θ + α cos2 θ).

For |xy| < 0, we have

∂f

∂x
= −r2α−3 sinα θ cosα−1 θ((α− 2) cos2 θ + α sin2 θ),

∂f

∂y
= −r2α−3 cosα θ sinα−1 θ((α− 2) sin2 θ + α cos2 θ)

We observe that
∂f

∂x
and

∂f

∂y
are continuous at the origin if and only if 2α − 3 > 0 =⇒ α >

3

2
. By Proposition 3.1

in the notes we conclude that f is differentiable at the origin if and only if α >
3

2
.

Question 2

A function is called homogeneous of degree k if f(λx) = λkf(x) for all λ > 0 and all x ∈ Rn.

(a) Show that if f is homogeneous of degree k, then

〈∇f(x),x〉 = kf(x).

(b) Show conversely if f satisfies the equation, then f is homogeneous of degree k.

Proof. (a) We have to assume that f is differentiable. Starting from f(λx) = λkf(x), we first differentiate both sides with
respect to xi by chain rule:

λ
∂f

∂xi
(λx) = λk

∂f

∂xi
(x)
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Therefore ∂if(λx) = λk−1f(x) and∇f(λx) = λk−1∇f(x).

Next we differentiable both sides of f(λx) = λkf(x) with respect to λ by chain rule:

n∑
i=1

∂f

∂xi
(λx) · xi = kλk−1f(x)

Note the LHS is 〈∇f(λx),x〉. Substituting the previous equation we have〈
λk−1∇f(x),x

〉
= kλk−1f(x) =⇒ 〈∇f(x),x〉 = kf(x)

(b) We define g : Rn × R\{0} → R by

g(x, λ) = λ−kf(λx)− f(x)

Fix x ∈ Rn. Consider the derivative with respect to λ:

∂g

∂λ
(x, λ) = λ

n∑
i=1

xi
∂f

∂xi
(λx)− kλ−k−1f(λx)

= λ−k
(
〈∇f(λx),x〉 − kλ−1f(λx)

)
= λ−k−1 (〈∇f(λx), λx〉 − kf(λx))

= 0

by the equation. Moreover, we know that g(x, 1) = 0. By identity theorem, g(x, λ) = 0 for all λ ∈ R\{0} and x ∈ Rn.
Hence we conclude that f is homogeneous of degree k.

Question 3

The function f : R2 → R is given by

f(x, y) =


xy2

x2 + y4
for (x, y) 6= (0, 0)

0 for (x, y) = (0, 0)

Show that all the directional derivatives of f exist at the origin, but f is not differentiable at the origin.

Proof. We express f in the polar coordinates:

f(r, θ) =


r3 cos θ sin2 θ

r2 cos2 θ + r4 sin4 θ
for r > 0

0 for r = 0

We consider the derivative of f at 0 in the direction of (cos θ, sin θ). For cos θ = 0, f is identically zero. Hence ∂θf(0) = 0.
For cos θ 6= 0:

∂θf(0) = lim
r→0

f(r, θ)− f(0)
r

= lim
r→0

r2 cos θ sin2 θ

r2 cos2 θ + r4 sin4 θ
=

sin2 θ

cos θ

In summary, all directional derivatives exist:

∂θf(0) =


sin2 θ

cos θ
for θ 6= π

2
,
3π

2

0 for θ =
π

2
or

3π

2

In particular,
∂f

∂x
(0) =

∂f

∂y
(0) = 0. Therefore ∇f(0) = 0. If f is differentiable at the origin, then we have ∂θf(0) =

〈∇f(0), (cos θ, sin θ)〉 = 0 for all θ ∈ R. But ∂π/4f =

√
2

2
6= 0, which is a contradiction. Hence f is not differentiable at
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the origin.

Question 4

In this question we use the Hilbert-Schmidt matrix norm

‖A‖ =

∑
i,j

A2
i,j

 1
2

Show that ifH has Hilbert-Schmidt norm less than 1, then I −H is invertible (you may assume that ‖AB‖ 6 ‖A‖ ‖B‖).

Proof. The inverse of I − H is A :=

∞∑
n=0

Hn. We shall prove that the series on the RHS converges. Since Mn×n(R) is finite-

dimensional over R, it is trivially a Banach space (Bolzano-Weierstrass Theorem). Hence it suffices to prove that the
series converges absolutely.

For k ∈ N,
k∑

n=0

‖Hn‖ 6
k∑

n=0

‖H‖n, which follows from the hint. Hence we have
∞∑
n=0

‖Hn‖ 6
∞∑
n=0

‖H‖n < ∞ since

‖H‖ < 1. We infer that
∞∑
n=0

Hn converges.

Finally, (I −H)

∞∑
n=0

Hn =

∞∑
n=0

Hn −
∞∑
n=1

Hn = I. Hence I −H is invertible with inverse
∞∑
n=0

Hn.

Remark. As suggested in the proof, the result holds for any Banach space, with Hilbert-Schmidt norm replaced by the operator
norm.

Question 5

LetMn×n(R) denote the vector space of n × n real matrices. Show that the derivative at the identity of the determinant
function

det : Mn×n(R)→ R

is

d(det)I : h 7→ trh

Deduce that the derivative at an arbitrary invertible matrix A is

d(det)A : h 7→ detA · tr(A−1h)

Proof. For ε > 0 and h ∈Mn×n(R), we shall find an expansion of det(I + εh). We have:

det(I + εh) =
∑
σ∈Sn

(−1)σ
n∏
i=1

ai,σ(i)

where ai,j = εhi,j if i 6= j and ai,j = 1 + εhi,j if i = j. Then we have

det(I + εh) =

n∏
i=1

(1 + εhi,i) + o(ε) = 1 + ε

n∑
i=1

hi,i + o(ε) = det I + trh+ o(ε)

From the expression we infer that det is differentiable at I with differential d(det)I : h 7→ trh.

For A ∈ GL(n,R), we have:

det(A+ εh) = detA · det(I + εA−1h) = detA+ detA · tr(A−1h) + o(ε)
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Therefore det is differentiable at A with differential d(det)A : h 7→ detA · ε tr(A−1h).

Question 6

(a) Show that the set GL(n,R) of invertible matrices is an open set inMn×n(R).

(b) Show that the derivative of the inversion map Inv : GL(n,R)→ GL(n,R) is

d(Inv)A : h 7→ −A−1hA−1

Hint: look at the case where A is the identity first.

Proof. (a) For A ∈ GL(n,R), let δ > 0 such that δ <
∥∥A−1∥∥−1. Then for B ∈ B(A, δ), ‖A−B‖ < δ. We have B = A − (A −

B) = A(I − A−1(A − B)). Since
∥∥A−1(A−B)

∥∥ 6
∥∥A−1∥∥ ‖A−B‖ < ∥∥A−1∥∥ δ < 1, by Question 4 we know that

I −A−1(A−B) is invertible. Hence B is invertible. B ∈ GL(n,R). We conclude thatGL(n,R) is open inMn×n(R).

(b) For A ∈ GL(n,R), there exists δ > 0 such that B(A, δ) ⊆ GL(n,R). For h ∈ GL(n,R) with ‖h‖ < δ:

(A+ h)−1 = (I +A−1h)−1A−1

=

( ∞∑
n=0

(−A−1h)n
)
·A−1 by Question 4

=
(
I −A−1h+ o(‖h‖)

)
·A−1

= A−1 −A−1hA−1 + o(‖h‖)

Hence Inv(A+ h)− InvA = d(Inv)A(h) + o(‖h‖) where d(InvA) : h 7→ −A−1hA−1.


