Peize Liu St. Peter's College University of Oxford

Problem Sheet 1 C2.2: Homological Algebra

Overall mark: α

Section A: Introductory

Question 1

Let $A, B, C \in R$ -Mod. Show that there exist canonical R-module isomorphisms

$$\operatorname{Hom}(A \oplus B, C) \cong \operatorname{Hom}(A, C) \oplus \operatorname{Hom}(B, C),$$
 and $\operatorname{Hom}(A, B \oplus C) \cong \operatorname{Hom}(A, B) \oplus \operatorname{Hom}(A, C)$

More generally, prove that

$$\operatorname{Hom}\left(\bigoplus_{i\in I} M_i, N\right) \cong \prod_{i\in I} \operatorname{Hom}(M_i, N) \quad \text{and} \quad \operatorname{Hom}\left(M, \prod_{i\in I} N_i\right) = \prod_{i\in I} \operatorname{Hom}(M, N_i)$$

Proof. • The functor $\operatorname{Hom}(-, N) : R\operatorname{-Mod}^{\operatorname{op}} \to R\operatorname{-Mod}$ is a right adjoint functor to itself. Therefore it commutes with limits. Note that the direct sum is a colimit in $R\operatorname{-Mod}^{\operatorname{op}}$. We have

$$\operatorname{Hom}\left(\bigoplus_{i\in I} M_i, N\right) \cong \prod_{i\in I} \operatorname{Hom}(M_i, N)$$

• The functor $\operatorname{Hom}(M,-)$: $R\operatorname{-Mod} \to R\operatorname{-Mod}$ is a right adjoint functor to $(-\otimes M)$. It commutes with limits and hence products. We have

$$\operatorname{Hom}\left(M, \prod_{i \in I} N_i\right) = \prod_{i \in I} \operatorname{Hom}(M, N_i) \qquad \Box$$

Question 2

a

A monomorphism is a morphism f satisfying $[f \circ g_1 = f \circ g_2] \Longrightarrow [g_1 = g_2]$. An epimorphism is a morphism satisfying $[g_1 \circ f = g_2 \circ f] \Longrightarrow [g_1 = g_2]$.

Given $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$, show (using the language of category theory) that f is a monomorphism and g is an epimorphism.

Proof. (We assume that this is a short exact sequence.)

By definition, the exactness at A, B, C implies respectively that,

- $\ker f = (0 \to A) = 0$;
- $\ker g = f$, $\operatorname{coker} f = g$, $g \circ f = 0$;
- $\operatorname{coker} g = (B \to 0) = 0$.

Suppose that $i_1, i_2 \in \text{Hom}(D, A)$ such that $f \circ i_1 = f \circ i_2$. Then $f \circ (i_1 - i_2) = 0$. By the universal property of ker f, there exists a unique morphism $0: D \to 0$ such that the diagram commutes:

$$D \xrightarrow{\exists ! 0} 0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$f \rightarrow B$$

Hence $i_1 - i_2 = 0$, $i_1 = i_2$, and f is a monomorphism.

Suppose that $j_1, j_2 \in \text{Hom}(B, E)$ such that $j_1 \circ g = j_2 \circ g$. Then $(j_1 - j_2) \circ g = 0$. By the universal property of coker g, there exists a unique morphism $0: 0 \to E$ such that the diagram commutes:

Hence $j_1 - j_2 = 0$, $j_1 = j_2$, and g is an epimorphism.

Section B: Core

Question 3

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\downarrow i \qquad \qquad \downarrow j \qquad \qquad \downarrow k$$

$$0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C' \longrightarrow 0$$

Suppose i, k are isomorphisms. Show that j must then be an isomorphism.

Proof. (We assume that the sequences are row-exact, and the whole diagram is commutative.)

The result is called the **short five lemma**. We shall prove this first in the setting of R-Mod and then in general Abelian categories.

First we suppose that everything is in R-Mod, where R is a CRI (commutative ring with identity). We shall prove this by element-theoretic diagram chasing.

• *j* is injective.

Let $x \in B$ such that i(x) = 0. The following shows that x = 0:

- We have $g' \circ j(x) = 0$.
- Since *k* is an isomorphism, $k^{-1} \circ g' \circ j(x) = 0$.
- By commutativity of the right square, $g(x) = k^{-1} \circ g' \circ j(x) = 0$. Hence $x \in \ker g$.
- Since the sequence is row-exact at B, we have $x \in \text{im } f$.
- As f is injective, there exists a unique $y \in A$ such that x = f(y).
- By commutativity of the left square, $0 = j(x) = j \circ f(y) = f' \circ i(y)$.
- Since f' is injective, i(y) = 0.
- Since *i* is an isomorphism, y = 0. Hence x = f(y) = 0.
- *j* is surjective.

Let $z \in B'$. The following shows that there exists $v \in B$ such that j(v) = z:

- We have $g'(z) \in C'$.
- Since k is an isomorphism, $k^{-1} \circ g'(z) \in C$.
- Since *g* is surjective, there exists w ∈ B such that $g(w) = k^{-1} ∘ g'(z)$.
- By commutativity of the right square, $g' \circ j(w) = k \circ g(w) = g'(z)$. Hence $j(w) z \in \ker g'$.
- Since the sequence is row-exact at B', we have $j(w) z \in \text{im } f'$.
- Since f' is injective, there exists a unique $u \in A'$ such that f'(u) = j(w) z.
- Since *i* is an isomorphism, $i^{-1} \circ f'(u) \in A$.
- By commutativity of the left square, $j \circ f \circ i^{-1}(u) = f'(u) = j(w) z$.
- Hence $z = j(w f \circ i^{-1}(u))$. We can take $v = w f \circ i^{-1}(u)$.

We conclude that j is an isomorphism.

Then we suppose that everything is in a general Abelian category¹ A. We shall prove this by arrow-theoretic diagram chasing.

We need the following lemma:

Lemma 1

Let A be an Abelian category. $f \in \text{Hom}_A(X, Y)$.

- 1. f is a monomorphism if and only if $f \circ g = 0 \implies g = 0$ for any g;
- 2. f is an epimorphism if and only if $g \circ f = 0 \implies g = 0$ for any g;
- 3. f is an isomorphism if and only if f is both a monomorphism and an epimorphism.

Proof. Trivial.

• *j* is a monomorphism.

Let *X* be a object of A and $x \in \text{Hom}_A(X, B)$ such that $j \circ x = 0$. We shall show that x = 0.

We have $k^{-1} \circ g' \circ j \circ x = 0$. By commutativity of the right square, $g \circ x = 0$. Since the sequence is row-exact at B, we have $f = \ker g$. By the universal property of kernel, there exists a unique $y : X \to A$ such that the following diagram commutes:

By the commutativity of the left square, we have $f' \circ i \circ y = j' \circ f \circ y = j \circ x = 0$. Since f' and i are monomorphisms, we must have y = 0. Hence $x = f \circ y = f \circ 0 = 0$.

• *j* is an epimorphism.

We consider the contravariant functor $F: A \to A^{op}$. In A^{op} we have the commutative diagram:

¹The above method still works if we invoke the Freyd-Mitchell Embedding Theorem.

$$0 \longrightarrow C' \xrightarrow{F(g')} B' \xrightarrow{F(f')} A' \longrightarrow 0$$

$$\downarrow^{F(k)} \qquad \downarrow^{F(j)} \qquad \downarrow^{F(k)}$$

$$0 \longrightarrow C \xrightarrow{F(g)} B \xrightarrow{F(f)} A \longrightarrow 0$$

The same diagram chasing proves that F(j) is a monomorphism. Hence j is an epimorphism.

We conclude that j is an isomorphism. by our lemma above.

Question 4

Let R := k[x, y] where k is a field. Let $M_1 := R^2/\langle (x, 0), (y^2, -x), (0, y) \rangle$ and $M_2 := R/\langle x^2, xy, y^3 \rangle$. Provide examples of non-split short exact sequences of R-modules

$$0 \longrightarrow M_1 \longrightarrow ??? \longrightarrow M_2 \longrightarrow 0$$

Proof. We wish to identify M_1 and M_2 with certain k-vector spaces with k[x, y]-module structure.

 $M_1 = \frac{R^2}{\langle (x,0),(0,y),(y^2,-x)\rangle}$ is a k-vector space spanned by $\{(1,0),(0,1),(y,0),(0,x)\}$. So $M_1 \cong k^4$ as k-vector spaces. $x,y \in k[x,y]$ act on the basis vectors via:

$$x(1,0) = 0,$$
 $x(0,1) = (0,x),$ $x(y,0) = y(x,0) = 0,$ $x(0,x) = (0,x^2) = y^2(x,0) - x(y^2,-x) = 0$
 $y(1,0) = (y,0),$ $y(0,1) = 0,$ $y(y,0) = -(0,x),$ $y(0,x) = x(0,y) = 0$

Then we have a R-module isomorphism $\varphi: M_1 \to k^4$, with x, y acting on k^4 as matrices

 $M_2 = \frac{R}{\langle x^2, xy, y^3 \rangle}$ is a k-vector space spanned by $\{1, x, y, y^2\}$. $x, y \in k[x, y]$ act on the basis vectors via:

$$x \cdot 1 = x,$$
 $x \cdot x = 0,$ $x \cdot y = 0,$ $x \cdot y^2 = y \cdot xy = 0$
 $y \cdot 1 = y,$ $y \cdot x = 0,$ $y \cdot y = y^2,$ $y \cdot y^2 = 0$

Then we have a R-module isomorphism $\psi: M_2 \to k^4$, with x, y acting on k^4 as matrices

By our construction we automatically have $[T_x, T_y] = 0$ and $[S_x, S_y] = 0$.

Now let $M = k^8$ be a R-module such that x, y acting on M as matrices

$$M_x = \begin{pmatrix} T_x & O \\ O & S_x \end{pmatrix}, \qquad M_y = \begin{pmatrix} T_y & A \\ O & S_y \end{pmatrix}$$

Since xy = yx, we must have $[M_x, M_y] = 0$. A must satisfies $T_xA - AS_x = 0$. By observation this is satisfied by

As k-vector spaces, we have $M = k^8 \cong k^4 \oplus k^4 \cong M_1 \oplus M_2$, with the inclusion map $f: M_1 \to M$ and the projection map $g: M \to M_2$. Now we have the short exact sequence of k-vector spaces:

$$0 \longrightarrow M_1 \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M_2 \longrightarrow 0$$

f is an R-module homomorphism, because $x \cdot f(\mathbf{v}) = M_x f(\mathbf{v}) = M_x (\mathbf{v}, 0)^\top = (T_x \mathbf{v}, 0) = f(T_x \mathbf{v}) = f(x \cdot \mathbf{v})$ and similarly for y. The same argument shows that g is an R-module homomorphism. So the short exact sequence is in fact of R-modules.

We claim that the short exact sequence does not split. If it splits, $M \cong M_1 \oplus M_2$ as R-modules. We have

$$y \cdot (v_1, v_2)^{\top} = M_y(v_1, v_2)^{\top} = (T_y v_1 + A v_2, S_y v_2) \neq (T_y v_1, S_y v_2) = (y \cdot v_1, y \cdot v_2)$$

which is a contradiction.

Question 5

Prove that every short exact sequence of \mathbb{Z} -modules of the form $0 \to A \to B \to \mathbb{Z} \to 0$ splits.

Prove that every short exact sequence of \mathbb{Z} -modules of the form $0 \to \mathbb{Q} \to B \to C \to 0$ splits.

Proof. 1. \mathbb{Z} is a **projective** \mathbb{Z} -module. We define $\iota : \mathbb{Z} \to B$ by $\iota(1) = 1$ For any surjective $g : B \to \mathbb{Z}$, we have $g \circ \iota = \mathrm{id}_{\mathbb{Z}}$.

Consider the short exact sequence

$$0 \longrightarrow A \xrightarrow{f} B \xleftarrow{g} \mathbb{Z} \longrightarrow 0$$

Let $(f + \iota) : A \oplus \mathbb{Z} \to B$ be the \mathbb{Z} -module homomorphism such that $(f + \iota)(a, n) = f(a) + \iota(n)$. Consider the following diagram:

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} \mathbb{Z} \longrightarrow 0$$

$$\parallel \qquad (f+\iota) \uparrow \qquad \parallel \qquad \parallel$$

$$0 \longrightarrow A \xrightarrow{i_A} A \oplus \mathbb{Z} \xrightarrow{\pi_{\mathbb{Z}}} \mathbb{Z} \longrightarrow 0$$

We check the commutativity: For $a \in A$, $(f + \iota) \circ i_A(a) = (f + \iota)(a, 0) = f(a)$. For $(a, n) \in A \oplus \mathbb{Z}$, $g \circ (f + \iota)(a, n) = g \circ f(a) + g \circ \iota(n) = n = \pi_{\mathbb{Z}}(a, n)$. Hence the diagram is commutative.

By short five lemma, (f + i) is an isomorphism. Hence the short exact sequence splits.

2. We claim that $\mathbb Q$ is an **injective** $\mathbb Z$ -module.

By Baer's criterion, it suffices to prove that for every ideal I of \mathbb{Z} , every \mathbb{Z} -module homomorphism $I \to \mathbb{Q}$ lifts to a \mathbb{Z} -module homomorphism $\mathbb{Z} \to \mathbb{Q}$. The ideals of \mathbb{Z} are $n\mathbb{Z}$ and 0. Trivially, $0:0\to \mathbb{Q}$ lifts to $0:\mathbb{Z} \to \mathbb{Q}$. For $\varphi: n\mathbb{Z} \to \mathbb{Q}$, φ is uniquely determined by $\varphi(n)$. It lifts to $\psi: \mathbb{Z} \to \mathbb{Q}$, where $\psi(x) = \frac{x}{n}\varphi(n)$. This proves the claim.

Consider the short exact sequence

$$0 \longrightarrow \mathbb{Q} \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

By universal property of injective module \mathbb{Q} , there exists $r: B \to \mathbb{Q}$ such that $r \circ f = \mathrm{id}_{\mathbb{Q}}$:

$$\mathbb{Q} \xrightarrow{f} \overset{\mathbb{Q}}{\underset{\stackrel{\mid}{\beta}}{B}} r$$

Let $(r,g): B \to \mathbb{Q} \oplus C$ be the \mathbb{Z} -module homomorphism with $b \mapsto (r(b),g(b))$. Consider the following diagram:

$$0 \longrightarrow \mathbb{Q} \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\parallel \qquad \downarrow^{(r,g)} \parallel$$

$$0 \longrightarrow \mathbb{Q} \xrightarrow{i_{\mathbb{Q}}} \mathbb{Q} \oplus C \xrightarrow{\pi_{C}} C \longrightarrow 0$$

The commutativity is obvious. By short five lemma, (r, g) is an isomorphism. Hence the sequence splits. \Box

Question 6

Prove that $\mathbb{Q}/\mathbb{Z} \cong \bigoplus_{p: \text{ prime}} \mathbb{Z}\left[\frac{1}{p}\right]/\mathbb{Z}$.

Proof. $\mathbb{Z}[\frac{1}{p}]/\mathbb{Z}$ is the colimit $\varinjlim_n \mathbb{Z}/p^n\mathbb{Z}$, and also is the ring generated by \mathbb{Z} and 1/p in \mathbb{Q} . For each p, the embedding $\mathbb{Z}[\frac{1}{p}] \hookrightarrow \mathbb{Q}$ descends to the embedding $\varphi_p : \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} \hookrightarrow \mathbb{Q}/\mathbb{Z}$. We define the \mathbb{Z} -module homomorphism:

$$\varphi = \sum_{p \in P} \varphi_p : \bigoplus_{p \in P} \mathbb{Z} \left[\frac{1}{p} \right] / \mathbb{Z} \to \mathbb{Q} / \mathbb{Z}$$

where *P* is the set of primes.

- φ is surjective: Let $\alpha = \frac{m}{n} \in \mathbb{Q}$. We use induction on n to show that $\alpha + \mathbb{Z} \in \bigoplus_{p \in P} \mathbb{Z}\left[\frac{1}{p}\right]/\mathbb{Z}$. If n is prime, then $\alpha \in \mathbb{Z}\left[\frac{1}{p}\right]$. If n is not prime, then n = pq for some p, q < n such that $\gcd(p, q) = 1$, and by Bezóut's Lemma $\alpha = \frac{a}{p} + \frac{b}{q}$ for some $a, b \in \mathbb{Z}$. By induction hypothesis, $\frac{a}{p} + \mathbb{Z}$, $\frac{b}{q} + \mathbb{Z} \in \bigoplus_{p \in P} \mathbb{Z}\left[\frac{1}{p}\right]/\mathbb{Z}$. Therefore $\alpha + \mathbb{Z} \in \bigoplus_{p \in P} \mathbb{Z}\left[\frac{1}{p}\right]/\mathbb{Z}$.
- φ is injective: Suppose that $\varphi(\alpha_1,...,\alpha_n,0,...)=\sum_{k=1}^n \varphi_{p_k}(\alpha_k)=0$. Each $\varphi_{p_k}(\alpha_k)$ is of the form $\frac{x_k}{p_k^{\ell_k}}$ where either $x_k=0$ or $\gcd(x_k,p_k)=1$. Then we have

$$\sum_{k=1}^{n} x_k p_1^{\ell_1} \cdots \widehat{p_k^{\ell_k}} \cdots p_n^{\ell_n} = 0$$

By modulo $p_k^{\ell_k}$ we have $p_k^{\ell_k} \mid x_k$. Hence $x_k = 0$. We conclude that $(\alpha_1, ..., \alpha_n, 0, ...) = 0$. Hence φ is injective. In conclusion, φ defines a \mathbb{Z} -module isomorphism from $\bigoplus_{p \in P} \mathbb{Z}\left[\frac{1}{p}\right]/\mathbb{Z}$ to \mathbb{Q}/\mathbb{Z} .

Question 7

Prove that in general,
$$\operatorname{Hom}\left(M,\bigoplus_{i\in I}N_i\right)\ncong\bigoplus_{i\in I}\operatorname{Hom}\left(M,N_i\right)$$
.

Proof. Consider the \mathbb{Z} -modules

$$N_i = \mathbb{Z}/p^i\mathbb{Z}, \qquad M = \bigoplus_{i>0} N_i = \bigoplus_{i>0} \mathbb{Z}/p^i\mathbb{Z}$$

a

For each $\varphi \in \bigoplus_{i \in I} \operatorname{Hom}(M, N_i)$, we have $\varphi = (\varphi_1, ..., \varphi_n, 0, ...)$ for some n, where $\varphi_i : M \to \mathbb{Z}/p^i\mathbb{Z}$ is a \mathbb{Z} -module homomorphism. Hence $p^n \varphi = (p^n \varphi_1, ..., p^n \varphi_n, 0, ...) = 0$. So every element in $\bigoplus_{i \in I} \operatorname{Hom}(M, N_i)$ has finite order.

On the other hand, the identity homomorphism

$$id_M \in Hom(M, M) = Hom\left(M, \bigoplus_{i \in I} N_i\right)$$

has infinite order, because for any $n \in \mathbb{Z}$, there exists $k \in \mathbb{N}$ such that $p^k > |n|$, and n id is nonzero on the k-th component of M.

In conclusion, $\operatorname{Hom}\left(M,\bigoplus_{i\in I}N_i\right)$ and $\bigoplus_{i\in I}\operatorname{Hom}\left(M,N_i\right)$ are not isomorphic as \mathbb{Z} -modules.

Section C: Optional

Question 8

Prove that the natural inclusion $\bigoplus_{i\in\mathbb{N}}\mathbb{Z}\to \mathrm{Hom}\left(\prod_{i\in\mathbb{N}}\mathbb{Z},\mathbb{Z}\right)$ is an isomorphism.

Proof. https://www-users.mat.umk.pl//~gregbob/seminars/2008.11.07b.pdf presents a good proof. □