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Section A: Introductory

Question 1

Let A,B ,C ∈ R-Mod. Show that there exist canonical R-module isomorphisms

Hom(A⊕B ,C ) ∼= Hom(A,C )⊕Hom(B ,C ), and Hom(A,B ⊕C ) ∼= Hom(A,B)⊕Hom(A,C )

More generally, prove that

Hom

(⊕
i∈I

Mi , N

)
∼=

∏
i∈I

Hom(Mi , N ) and Hom

(
M ,

∏
i∈I

Ni

)
=∏

i∈I
Hom(M , Ni )

Proof. • The functor Hom(−, N ) : R-Modop → R-Mod is a right adjoint functor to itself. Therefore it commutes with

limits. Note that the direct sum is a colimit in R-Mod and hence a limit in R-Modop. We have

Hom

(⊕
i∈I

Mi , N

)
∼=

∏
i∈I

Hom(Mi , N )

• The functor Hom(M ,−) : R-Mod→ R-Mod is a right adjoint functor to (−⊗M). It commutes with limits and

hence products. We have

Hom

(
M ,

∏
i∈I

Ni

)
=∏

i∈I
Hom(M , Ni )

Question 2

A monomorphism is a morphism f satisfying
[

f ◦ g1 = f ◦ g2
]=⇒ [

g1 = g2
]
. An epimorphism is a morphism satis-

fying
[
g1 ◦ f = g2 ◦ f

]=⇒ [
g1 = g2

]
.

Given 0 → A
f→ B

g→ C → 0, show (using the language of category theory) that f is a monomorphism and g is an

epimorphism.

Proof. (We assume that this is a short exact sequence.)

By definition, the exactness at A,B ,C implies respectively that,

• ker f = (0 → A) = 0;

• ker g = f , coker f = g , g ◦ f = 0;

• coker g = (B → 0) = 0.

Suppose that i1, i2 ∈ Hom(D, A) such that f ◦ i1 = f ◦ i2. Then f ◦ (i1 − i2) = 0. By the universal property of ker f ,

there exists a unique morphism 0 : D → 0 such that the diagram commutes:

0

D A B

0
i1 − i2

∃!0

f

Hence i1 − i2 = 0, i1 = i2, and f is a monomorphism.

Suppose that j1, j2 ∈ Hom(B ,E) such that j1◦g = j2◦g . Then ( j1− j2)◦g = 0. By the universal property of coker g ,

there exists a unique morphism 0 : 0 → E such that the diagram commutes:

α

α



2

0

A B E

∃!0

g j1 − j2

0

Hence j1 − j2 = 0, j1 = j2, and g is an epimorphism.

Section B: Core

Question 3

0 A B C 0

0 A′ B ′ C ′ 0

f

i j

g

k
f ′ g ′

Suppose i ,k are isomorphisms. Show that j must then be an isomorphism.

Proof. (We assume that the sequences are row-exact, and the whole diagram is commutative.)

The result is called the short five lemma. We shall prove this first in the setting of R-Mod and then in general

Abelian categories.

First we suppose that everything is in R-Mod, where R is a CRI (commutative ring with identity). We shall prove

this by element-theoretic diagram chasing.

• j is injective.

Let x ∈ B such that j (x) = 0. The following shows that x = 0:

– We have g ′ ◦ j (x) = 0.

– Since k is an isomorphism, k−1 ◦ g ′ ◦ j (x) = 0.

– By commutativity of the right square, g (x) = k−1 ◦ g ′ ◦ j (x) = 0. Hence x ∈ ker g .

– Since the sequence is row-exact at B , we have x ∈ im f .

– As f is injective, there exists a unique y ∈ A such that x = f (y).

– By commutativity of the left sqaure, 0 = j (x) = j ◦ f (y) = f ′ ◦ i (y).

– Since f ′ is injective, i (y) = 0.

– Since i is an isomorphism, y = 0. Hence x = f (y) = 0.

• j is surjective.

Let z ∈ B ′. The following shows that there exists v ∈ B such that j (v) = z:

– We have g ′(z) ∈C ′.
– Since k is an isomorphism, k−1 ◦ g ′(z) ∈C .

– Since g is surjective, there exists w ∈ B such that g (w) = k−1 ◦ g ′(z).

– By commutativity of the right square, g ′ ◦ j (w) = k ◦ g (w) = g ′(z). Hence j (w)− z ∈ ker g ′.
– Since the sequence is row-exact at B ′, we have j (w)− z ∈ im f ′.
– Since f ′ is injective, there exists a unique u ∈ A′ such that f ′(u) = j (w)− z.

– Since i is an isomorphism, i−1 ◦ f ′(u) ∈ A.

– By commutativity of the left sqaure, j ◦ f ◦ i−1(u) = f ′(u) = j (w)− z.

– Hence z = j (w − f ◦ i−1(u)). We can take v = w − f ◦ i−1(u).

We conclude that j is an isomorphism.

α

soren
Notat
You could also use the Snake Lemma if you want.
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Then we suppose that everything is in a general Abelian category1 A. We shall prove this by arrow-theoretic

diagram chasing.

We need the following lemma:

Lemma 1

Let A be an Abelian category. f ∈ HomA(X ,Y ).

1. f is a monomorphism if and only if f ◦ g = 0 =⇒ g = 0 for any g ;

2. f is an epimorphism if and only if g ◦ f = 0 =⇒ g = 0 for any g ;

3. f is an isomorphism if and only if f is both a monomorphism and an epimorphism.

Proof. Trivial.

• j is a monomorphism.

Let X be a object of A and x ∈ HomA(X ,B) such that j ◦x = 0. We shall show that x = 0.

0 X 0

0 A B C 0

0 A′ B ′ C ′ 0

0 0

x
f

i j

g

k
f ′ g ′

We have k−1 ◦ g ′ ◦ j ◦ x = 0. By commutativity of the right square, g ◦ x = 0. Since the sequence is row-exact

at B , we have f = ker g . By the universal property of kernel, there exists a unique y : X → A such that the

following diagram commutes:

0 X 0

0 A B C 0

0 A′ B ′ C ′ 0

0 0

∃! y
x

f

i j

g

k
f ′ g ′

By the commutativity of the left square, we have f ′ ◦ i ◦ y = j ′ ◦ f ◦ y = j ◦x = 0. Since f ′ and i are monomor-

phisms, we must have y = 0. Hence x = f ◦ y = f ◦0 = 0.

• j is an epimorphism.

We consider the contravariant functor F :A→Aop. In Aop we have the commutative diagram:

1The above method still works if we invoke the Freyd-Mitchell Embedding Theorem.

soren
Notat
Very nice!
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0 C ′ B ′ A′ 0

0 C B A 0

F (g ′)

F (k) F ( j )

F ( f ′)

F (k)
F (g ) F ( f )

The same diagram chasing proves that F ( j ) is a monomorphism. Hence j is an epimorphism.

We conclude that j is an isomorphism. by our lemma above.

Question 4

Let R := k[x, y] where k is a field. Let M1 := R2/
〈

(x,0), (y2,−x), (0, y)
〉

and M2 := R/
〈

x2, x y, y3
〉

. Provide examples

of non-split short exact sequences of R-modules

0 M1 ??? M2 0

Proof. We wish to identify M1 and M2 with certain k-vector spaces with k[x, y]-module structure.

M1 = R2〈
(x,0), (0, y), (y2,−x)

〉 is a k-vector space spanned by {(1,0), (0,1), (y,0), (0, x)}. So M1
∼= k4 as k-vector

spaces. x, y ∈ k[x, y] act on the basis vectors via:

x(1,0) = 0, x(0,1) = (0, x), x(y,0) = y(x,0) = 0, x(0, x) = (0, x2) = y2(x,0)−x(y2,−x) = 0

y(1,0) = (y,0), y(0,1) = 0, y(y,0) =−(0, x), y(0, x) = x(0, y) = 0

Then we have a R-module isomorphism ϕ : M1 → k4, with x, y acting on k4 as matrices

Tx =


0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

 , Ty =


0 0 0 0

0 0 0 0

1 0 0 0

0 0 −1 0


M2 = R〈

x2, x y, y3
〉 is a k-vector space spanned by {1, x, y, y2}. x, y ∈ k[x, y] act on the basis vectors via:

x ·1 = x, x · x = 0, x · y = 0, x · y2 = y · x y = 0

y ·1 = y, y · x = 0, y · y = y2, y · y2 = 0

Then we have a R-module isomorphism ψ : M2 → k4, with x, y acting on k4 as matrices

Sx =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , Sy =


0 0 0 0

0 0 0 0

1 0 0 0

0 0 1 0


By our construction we automatically have [Tx ,Ty ] = 0 and [Sx ,Sy ] = 0.

Now let M = k8 be a R-module such that x, y acting on M as matrices

Mx =
(

Tx O

O Sx

)
, My =

(
Ty A

O Sy

)

α

soren
Notat
A better phrasing would be: Let M be an eight-dimensional k-vector space, equipped with a k[x,y]-module structure defined by...



5

Since x y = y x, we must have [Mx , My ] = 0. A must satisfies Tx A− ASx = 0. By observation this is satisfied by

A =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


As k-vector spaces, we have M = k8 ∼= k4 ⊕k4 ∼= M1 ⊕M2, with the inclusion map f : M1 → M and the projection

map g : M → M2. Now we have the short exact sequence of k-vector spaces:

0 M1 M M2 0
f g

f is an R-module homomorphism, because x · f (v ) = Mx f (v ) = Mx (v ,0)> = (Tx v ,0) = f (Tx v ) = f (x · v ) and

similiarly for y . The same argument shows that g is an R-module homomorphism. So the short exact sequence

is in fact of R-modules.

We claim that the short exact sequence does not split. If it splits, M ∼= M1 ⊕M2 as R-modules. We have

y · (v 1, v 2)> = My (v 1, v 2)> = (Ty v 1 + Av 2,Sy v 2) 6= (Ty v 1,Sy v 2) = (y ·v 1, y ·v 2)

which is a contradiction.

Question 5

Prove that every short exact sequence of Z-modules of the form 0 → A → B →Z→ 0 splits.

Prove that every short exact sequence of Z-modules of the form 0 →Q→ B →C → 0 splits.

Proof. 1. Z is a projective Z-module. We define ι :Z→ B by ι(1) = 1B . For any surjective g : B →Z, we have g ◦ ι= idZ.

Consider the short exact sequence

0 A B Z 0
f g

ι

Let ( f + ι) : A ⊕Z→ B be the Z-module homomorphism such that ( f + ι)(a,n) = f (a)+ ι(n). Consider the

following diagram:

0 A B Z 0

0 A A⊕Z Z 0

f g

i A πZ

( f + ι)

We check the commutativity: For a ∈ A, ( f + ι)◦i A(a) = ( f + ι)(a,0) = f (a). For (a,n) ∈ A⊕Z, g ◦( f + ι)(a,n) =
g ◦ f (a)+ g ◦ ι(n) = n =πZ(a,n). Hence the diagram is commutative.

By short five lemma, ( f + ι) is an isomorphism. Hence the short exact sequence splits.

2. We claim thatQ is an injective Z-module.

By Baer’s criterion, it suffices to prove that for every ideal I ofZ, everyZ-module homomorphism I →Q lifts

to a Z-module homomorphism Z→ Q. The ideals of Z are nZ and 0. Trivially, 0 : 0 → Q lifts to 0 : Z→ Q.

For ϕ : nZ→Q, ϕ is uniquely determined by ϕ(n). It lifts to ψ :Z→Q, where ψ(x) = x

n
ϕ(n). This proves the

claim.

Consider the short exact sequence

β

soren
Notat
What is 1_B? B is not necessarily a ring, and so may not have a multiplicative identity.
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0 Q B C 0
f g

By universal property of injective moduleQ, there exists r : B →Q such that r ◦ f = idQ:

Q

Q B
f

∃r

Let (r, g ) : B →Q⊕C be theZ-module homomorphism with b 7→ (r (b), g (b)). Consider the following diagram:

0 Q B C 0

0 Q Q⊕C C 0

f g

(r, g )
iQ πC

The commutativity is obvious. By short five lemma, (r, g ) is an isomorphism. Hence the sequence splits.

Question 6

Prove thatQ/Z∼=
⊕

p: prime
Z

[
1

p

]
/Z.

Proof. Z[ 1
p ]/Z is the colimit lim−−→n

Z/pnZ, and also is the ring generated by Z and 1/p in Q. For each p, the embedding

Z[ 1
p ] ,→Q descends to the embedding ϕp :Z[ 1

p ]/Z ,→Q/Z. We define the Z-module homomorphism:

ϕ= ∑
p∈P

ϕp :
⊕
p∈P

Z

[
1

p

]
/Z→Q/Z

where P is the set of primes.

• ϕ is surjective:

Let α= m

n
∈Q. We use induction on n to show that α+Z ∈⊕

p∈P Z
[

1
p

]
/Z. If n is prime, then α ∈Z[ 1

p ]. If n

is not prime, then n = pq for some p, q < n such that gcd(p, q) = 1, and by Bezóut’s Lemma α = a

p
+ b

q
for

some a,b ∈Z. By induction hypothesis,
a

p
+Z,

b

q
+Z ∈⊕

p∈P Z
[

1
p

]
/Z. Therefore α+Z ∈⊕

p∈P Z
[

1
p

]
/Z.

• ϕ is injective:

Suppose that ϕ(α1, ...,αn ,0, ...) =
n∑

k=1
ϕpk (αk ) = 0. Each ϕpk (αk ) is of the form

xk

p`k

k

where either xk = 0 or

gcd(xk , pk ) = 1. Then we have
n∑

k=1
xk p`1

1 · · · p̂`k

k · · ·p`n
n = 0

By modulo p`k

k we have p`k

k | xk . Hence xk = 0. We conclude that (α1, ...,αn ,0, ...) = 0. Henec ϕ is injective.

In conclusion, ϕ defines a Z-module isomorphism from
⊕

p∈P Z
[

1
p

]
/Z toQ/Z.

Question 7

Prove that in general, Hom

(
M ,

⊕
i∈I

Ni

)
6∼=

⊕
i∈I

Hom(M , Ni ).

α
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Proof. Consider the Z-modules

Ni =Z/p iZ, M =⊕
i>0

Ni =
⊕
i>0
Z/p iZ

For each ϕ ∈ ⊕
i∈I

Hom(M , Ni ), we have ϕ = (ϕ1, ...,ϕn ,0, ...) for some n, where ϕi : M → Z/p iZ is a Z-module

homomorphism. Hence pnϕ= (pnϕ1, ..., pnϕn ,0, ...) = 0. So every element in
⊕
i∈I

Hom(M , Ni ) has finite order.

On the other hand, the identity homomorphism

idM ∈ Hom(M , M) = Hom

(
M ,

⊕
i∈I

Ni

)

has infinite order, because for any n ∈ Z, there exists k ∈ N such that pk > |n|, and n id is nonzero on the k-th

component of M .

In conclusion, Hom

(
M ,

⊕
i∈I

Ni

)
and

⊕
i∈I

Hom(M , Ni ) are not isomorphic as Z-modules.

Section C: Optional

Question 8

Prove that the natural inclusion
⊕
i∈N
Z→ Hom

(∏
i∈N
Z,Z

)
is an isomorphism.

Proof. https://www-users.mat.umk.pl//~gregbob/seminars/2008.11.07b.pdf presents a good proof.

α

https://www-users.mat.umk.pl//~gregbob/seminars/2008.11.07b.pdf
soren
Notat
Clever!




