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Section A: Introductory

Question 1

Let A, B,C € R-Mod. Show that there exist canonical R-module isomorphisms
Hom(A® B,C) = Hom(A, C) ® Hom(B, C), and Hom(A,B & C) = Hom(A, B)  Hom(A4, C)

More generally, prove that

Hom

@Mi,N) =[]Hom(M;,N) and Hom

iel iel

M,HN,-) = [[Hom(M, N;)

iel iel

Proof. * The functor Hom(—, N) : R-Mod®® — R-Mod is a right adjoint functor to itself. Therefore it commutes with
a limits. Note that the direct sum is a colimit in R-Mod and hence a limit in R-Mod°P. We have

Hom (EB M;, N) = [[Hom(M;, N)

iel iel

¢ The functor Hom(M, —-) : R-Mod — R-Mod is a right adjoint functor to (— ® M). It commutes with limits and
hence products. We have

iel iel

Hom (M, I1 N,-) = [[Hom(M, Ny) O

Question 2

A monomorphism is a morphism f satisfying [fo g1 = fog»] = [g1 = §2]. An epimorphism is a morphism satis-
fying [g10f = g20 f] = [g1=&].

Given 0 — A N B Cc— 0, show (using the language of category theory) that f is a monomorphism and g is an
epimorphism.
Proof. (We assume that this is a short exact sequence.)
a By definition, the exactness at A, B, C implies respectively that,
e kerf=(0—A)=0;
* kerg=f,cokerf=g,80f=0;
e cokerg=(B—0)=0.

Suppose that iy, i, € Hom(D, A) such that foi; = foi,. Then fo (i; —i2) = 0. By the universal property of ker f,
there exists a unique morphism 0 : D — 0 such that the diagram commutes:

0
7
A0 .- lo
s h—Dk S A f s B

Hence iy —i, =0, i; = iz, and f is a monomorphism.

Suppose that j;, j» € Hom(B, E) such that j, o g = joog. Then (j; — j2) o g = 0. By the universal property of coker g,
there exists a unique morphism 0: 0 — E such that the diagram commutes:



0 ~
0 \\?!0
A8 s p I j\z\é E
Hence j; — j» =0, j; = j2, and g is an epimorphism. O
Section B: Core
Question 3
f g

~-
o]
~-
@
~-
o

!
0 > A f}B’ > C'

~
o

Suppose i, k are isomorphisms. Show that j must then be an isomorphism.

Proof. (We assume that the sequences are row-exact, and the whole diagram is commutative.)

The result is called the short five lemma. We shall prove this first in the setting of R-Mod and then in general
(Ol  Abelian categories.

First we suppose that everything is in R-Mod, where R is a CRI (commutative ring with identity). We shall prove
this by element-theoretic diagram chasing.

¢ jisinjective.
Let x € B such that j(x) = 0. The following shows that x = 0:

We have g’'o j(x) =0.

Since k is an isomorphism, k™1 o g’ 0 j(x) = 0.
By commutativity of the right square, g(x) = k™! o g’ o j(x) = 0. Hence x € ker g.

Since the sequence is row-exact at B, we have x € im f.

As f is injective, there exists a unique y € A such that x = f(y).
By commutativity of the left sqaure, 0 = j(x) = jo f(y) = f'oi(y).
Since f is injective, i(y) = 0.

Since i is an isomorphism, y = 0. Hence x = f(y) =0.
e jissurjective.
Let z € B'. The following shows that there exists v € B such that j(v) = z:

- We have g'(z) € C'.

— Since k is an isomorphism, k"1 o g’(z) € C.

- Since g is surjective, there exists w € B such that g(w) = k™' 0 g'(2).

- By commutativity of the right square, g’ o j(w) = ko g(w) = g'(z). Hence j(w)— z€ kerg’.
- Since the sequence is row-exact at B, we have j(w) — z €im f’.

- Since [’ is injective, there exists a unique u € A’ such that f'(u) = j(w) — z.

— Since i is an isomorphism, i ! o f'(u) € A.

- By commutativity of the left sqaure, jo foi~!(u) = f'(u) = j(w) - z.

- Hence z= j(w— foi~'(u)). Wecantake v=w— foi~'(u).

We conclude that j is an isomorphism.


soren
Notat
You could also use the Snake Lemma if you want.


Then we suppose that everything is in a general Abelian category' A. We shall prove this by arrow-theoretic

diagram chasing.

We need the following lemma:

Lemma 1

Let A be an Abelian category. f € Homa (X, Y).
1. fisamonomorphismifandonlyif fog=0 = g=0forany g;
2. fis anepimorphismifand onlyifgo f=0 = g=0forany g;

3. fisanisomorphism if and only if f is both a monomorphism and an epimorphism.

Proof. Trivial. -
* jisamonomorphism.

Let X be a object of A and x € Homp (X, B) such that j o x = 0. We shall show that x = 0.

0 X 0
lx
0 >~X / y B —S >Z§ > 0
i J k
0 > ;; I > B’ g > E; > 0
0 0

We have k™! o g’ o j o x = 0. By commutativity of the right square, g o x = 0. Since the sequence is row-exact
at B, we have f = ker g. By the universal property of kernel, there exists a unique y: X — A such that the
following diagram commutes:

0 /X 0
3&{/,/ .
0 >XL/f)B g)\C/' > 0
i J k
0 >z\4/ f/)B/ gl)E’ > 0
0 0

By the commutativity of the left square, we have f'oioy=j o foy= jox=0. Since f’ and i are monomor-
phisms, we must have y =0. Hence x = foy = fo0=0.

e jisan epimorphism.

We consider the contravariant functor F: A — A°P. In A°P we have the commutative diagram:

1 The above method still works if we invoke the Freyd-Mitchell Embedding Theorem.


soren
Notat
Very nice!


F(g"h F(f"

0 s C!
F F
c f®,p P,

The same diagram chasing proves that F(j) is a monomorphism. Hence j is an epimorphism.

> B’ > Al > 0

F(k)

s

0 >

> 0

We conclude that j is an isomorphism. by our lemma above. O

Question 4

Let R := k[x, y] where k is a field. Let M; := R?/{(x,0), (y*,—x),(0,)) and M, := R/{x?,xy,y*). Provide examples
of non-split short exact sequences of R-modules

0 > M > 902 > M> >0

Proof. We wish to identify M; and M, with certain k-vector spaces with k[x, y]-module structure.

R2
M, = is a k-vector space spanned by {(1,0), (0,1),(y,0),(0,x)}. So M; = k* as k-vector
a <(x»0);(0,J/);(y2;_x)>
spaces. X,y € k[x, y] act on the basis vectors via:
x(1,0)=0, x0,D)=0,%), x(,0=yx0=0,  x(0,x) =0x"=y"x0-x(*-x)=0
y(1,0) =(y,0), y(0,1) =0, y(»,0) =-(0,x), y(0,x)=x(0,y)=0

Then we have a R-module isomorphism ¢ : M; — k*, with x, y acting on k* as matrices

00 0O 00 0 O
00 0O 00 0 O
Tx= ) Ty:
00 0O 1 0 0 O
01 00 0 0 -1 0
R _ , . .
M, = ﬁ is a k-vector space spanned by {1, x, y, y°}. x, y € k[x, y] act on the basis vectors via:
X%, XY,y
x-1=x, x-x=0, x-y=0, x-y2:y-xy:0
yl=y, y-x=0, v y=»4 Yy =0

Then we have a R-module isomorphism v : M, — k*, with x, y acting on k* as matrices

Sy =

o O = O
o © O ©
S © © O
o O O O
o = O O
oS © © O
— o O O
oS O O O

By our construction we automatically have [T, Ty] = 0 and [Sy, Sy] = 0.

Now let M = k® be a R-module such that x, y acting on M as matrices

ve=[T ©), [T A
0 s, 0 s,



soren
Notat
A better phrasing would be: Let M be an eight-dimensional k-vector space, equipped with a k[x,y]-module structure defined by...


Since xy = yx, we must have [My, My] = 0. A must satisfies Ty A — AS, = 0. By observation this is satisfied by

BS

Il
© o o o
© o o o
o = O O
© © © o

As k-vector spaces, we have M = k8 = k* @ k* = Mj @ My, with the inclusion map f : M; — M and the projection
map g: M — M,. Now we have the short exact sequence of k-vector spaces:

0 oMy — s —8 s ' 0

f is an R-module homomorphism, because x- f(v) = M, f(v) = M, (v,0)7 = (Tyv,0) = f(Tyv) = f(x-v) and
similiarly for y. The same argument shows that g is an R-module homomorphism. So the short exact sequence
is in fact of R-modules.

We claim that the short exact sequence does not split. If it splits, M = M; @ M, as R-modules. We have
Y- (1, v2) " = My(v1,v2) " = (Tyv1 + Ava, Syv) # (Tyv1, Syvz) = (y- v1, Y- v2)

which is a contradiction. O

Question 5

Prove that every short exact sequence of Z-modules of the form 0 — A — B — Z — 0 splits.

Prove that every short exact sequence of Z-modules of the form 0 — Q — B — C — 0 splits.

Proof.

B

1. Zis a projective Z-module. We define 1: Z — B by ((1) = 1,+"or any surjective g : B — Z, we have got=1idz.

Consider the short exact sequence

Let (f+1): A® Z — B be the Z-module homomorphism such that (f +t)(a, n) = f(a) + t(n). Consider the

following diagram:
0 s A ! s B—2 7 50
| o]
0 A ez T2 47 ' 0

We check the commutativity: Fora€ A, (f+1)oia(a) = (f+1)(a,0) = f(a). For (a,n)e A®Z, go(f+1)(a,n) =
go f(a)+ gou(n) = n=mnz(a,n). Hence the diagram is commutative.

By short five lemma, (f +1) is an isomorphism. Hence the short exact sequence splits.

2. We claim that Q is an injective Z-module. %
By Baer’s criterion, it suffices to prove that for évery ideal I of Z, every Z-module homomorphism I — Q lifts
to a Z-module homomorphism Z — Q. The ideals of Z are nZ and 0. Trivially, 0: 0 — Q lifts to 0: Z — Q.
For ¢ : nZ — Q, ¢ is uniquely determined by ¢(n). It lifts to ¢ : Z — Q, where ¥ (x) = f(p(n). This proves the
n
claim.

Consider the short exact sequence


soren
Notat
What is 1_B? B is not necessarily a ring, and so may not have a multiplicative identity.


0 > Q f > B d > C >0

By universal property of injective module Q, there exists r : B— Q such that ro f = idg:

Q
A~
/ El
f |
Q——B
Let (r,g) : B— Q&C be the Z-module homomorphism with b — (r(b), g(b)). Consider the following diagram:

0 vo—I w58 ¢ >0
i 7
0 yQ ——QeC—C<5C 50

The commutativity is obvious. By short five lemma, (r, g) is an isomorphism. Hence the sequence splits. O

Question 6

1
Provethat /2= @ Z [—] /Z.

p: prime

Proof. Z[%] /7 is the colimit @n Z/p"Z, and also is the ring generated by Z and 1/p in Q. For each p, the embedding
a Z[%] — Q descends to the embedding ¢, : Z[%] /Z — Q/Z. We define the Z-module homomorphism:

p=2 ¢p: Dz

peP peP

l] 17—-QlZ
p
where P is the set of primes.
* ( is surjective:
Leta = % € Q. We use induction on n to show that @ +Z € @ e p Z [%] /Z. If n is prime, then a € Z[%]. If n
is not prime, then n = pq for some p, g < n such that gcd(p, g) = 1, and by Bez6éut’s Lemma «a = % + B for

a b
some a, b € Z. By induction hypothesis, — + Z, E +Z¢€ @pepZ [%] /Z. Therefore a + Z € GBpEpZ [,lg] /7.
p

* (@ is injective:

n
Suppose that ¢(ay,...,@,,0,...) = Z ¢@p.(ag) = 0. Each ¢p, (af) is of the form x—Z where either x; = 0 or
k=1 pk

gcd(xk, px) = 1. Then we have
n —_—
l l ly
S Xy p e pyt =0
k=1
By modulo pi’“ we have pik | xx. Hence xj = 0. We conclude that (ay, ..., @5,0,...) = 0. Henec ¢ is injective.

In conclusion, ¢ defines a Z-module isomorphism from & ,cp Z [%] /1ZtoQ/Z. O

Question 7

Prove that in general, Hom

M,@Ni) Z @Hom (M, N;).

iel iel



Proof. Consider the Z-modules
Ni=Zlp'z, M=@PN=@Pz/p'z
i>0 i>0

a

For each ¢ € @Hom (M, N;), we have ¢ = (¢1,...,¢,,0,...) for some n, where ¢; : M — Z/p'Z is a Z-module
iel
homomorphism. Hence p"¢ = (p"¢1,..., p"9,,0,...) = 0. So every element in @Hom(M, Nj) has finite order.

iel

On the other hand, the identity homomorphism

idys € Hom(M, M) = Hom (M,QBN,-)

iel

has infinite order, because for any n € Z, there exists k € N such that p* > |n|, and nid is nonzero on the k-th
component of M.

In conclusion, Hom | M, @Ni) and @Hom (M, Nj) are not isomorphic as Z-modules. O
iel iel
Section C: Optional
Question 8

Prove that the natural inclusion @ Z — Hom ( [1z Z) is an isomorphism.
ieN ieN

Proof. https://www-users.mat.umk.pl// gregbob/seminars/2008.11.07b.pdf presents a good proof. O


https://www-users.mat.umk.pl//~gregbob/seminars/2008.11.07b.pdf
soren
Notat
Clever!




