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Question 1
Let A = {mw; + nw, : m,n € Z} be alattice in C and let f be meromorphic and doubly periodic with respect to A.

Let I'(a) denote the solid parallelogram with vertices at a, a+w;, a+ w2, a+w; + w2 and let y(a) be the boundary
of I'(a). Choose a so that f has no zeroes or poles on y(a).

Let fB1,..., B denote the set of poles of f inside y(a).

Show that

D Res(f;pi)=0
izl

Proof. Without loss of generality let y(a) be positively oriented. By residue theorem,

S
f(z)dz=2mi)_ Res(f;pBi)
y(a) i=1

Since f is doubly peroidic with repsect to A, we have f(z) = f(z+ w1) = f(z+ w;) for all z in the domain of f.

We have
a+wi a+w; a+wi+wz
f f(z)dz=f f(z—a)g)dz=f f(2)dz
a a a+wp
a+wsz a+wy a+wiy+wz
f f(z)dzzf f(z—wl)dzzf f(2)dz
a a a+m

(Abuse of notation: [ Cd means integrating along the line segment from c to d.) Hence

a+wi a+wi+wz a+wy a
f(z)dz:(f +f +f +f )f(z)dz
y(a) a a+wy a+wy+ws a+wy

a+twi a+w?z a a
( f + f + f + f ) fl2)dz
a a a+wiy a+wyz

0

We deduce that s
Y Res(f;8:) =0 O
i=1

Question 2
Consider the affine nodal cubic Cu in C? with equation

3

V=34

Show that the formula
t—(*-1,t-1)

describes a map from C onto Cyugs. Describe the fibres of this map (ie. the preimages of points in Cyg ).

What can you deduce about the topology of the projective nodal cubic y?z = x% + x?2?

Proof. First note that t — %> — 1 is surjective onto C. For any x € C there exists ¢ € C such that x = > — 1. Then
y? = x?(x+1) = t?(t> = 1)%. So y = +t(1 — t?). By replacing ¢ with +¢ we can always have y = ¢ — 3. So the map
t— (t2=1,t-13)is surjective onto Cygr.

For (0,0) € Cag, we note that the preimages of the point are ¢ = 1. For (x, y) € Cag \ {(0,0)}, the map ¢ — -1
is two to one, and each ¢ corresponds to a branch y = £v'x3 + x2. So t — (t2=1,t—t3) is one to one for ¢ # +1.

The topology of the projective nodal cubic looks like:



The cubic resembles the torus but has a nodal singularity at the origin. (I am not sure how to understand this
directly from the equation...) O

Question 3

Let p(z) be the Weierstrass g-function associated to a lattice A. Consider the meromorphic function g’(z) as a
function from the elliptic curve X = C/A to the Riemann sphere.

Determine its degree and the number and ramification indices of its ramification points.

Is there a meromorphic function f on X with f(z) = ¢(2)?

Proof. Let A :={mw; + nw» : m,n € Z}. By definition,

1 1 1
gfa(z):?+ > (—+ )

2T 2
wemoy \ (Z+0)°

Since the series converges absolutely, we can differentiate termwise:

p@=-2y —

= (z+w)3
At z = 0, the leading term in the Laurent expansion of ¢’ is —2z73. Hence z = 0 is a triple pole of '. As a map
from C/A to CP!, ' has degree 3. And z = 0 is a ramification point of ¢’ of index 3.

We know that
S{J'(Z)z =4(p(z2) —e1)(p(2) — e2) (P (2) — e3)

where e; = p(w1/2), e2 = p(w2/2), and e3 = p((w1 + w2)/2). Moreover, we can in fact show that e; +ex +e3 =0,
which gives another expression for ¢':

(©")? = 49> —20c19 — 28c,

I have done this in Sheet 2 of Geometry of Surfaces. The proof is as follows:

Starting from

1 1 1
go(z)::?+ > (— )

2 2
wemioy \(2—0)° @

Note that

m22([+l)w, for|w|<1
- =0

which is obtained by differentiating the geometric series. Hence for |z| < |w]:
1 1 & z\¢
——s=—) +1)|—=
(z-w)? wzfé‘)( )(w)

Therefore we obtain the Laurent expansion of g near z = 0:

1 1 & zy¢ 1 1 x zf
p@)=—+ Y (—ZZ(€+1)(5) _E):?+ S YD

27 weA\0} =0 weA\{0} £=1

1 ¢
— —(0+2)
_—ZZ+§ +1)z E w
=1 WeA\{0}

By symmetry, replacing (m, n) with (—m, —n), we see that the following series is zero for odd ¢.

Z w—([+2) — Z (mwy + nwz)—(l+2)
weA\{0} (m,n)#(0,0)



Hence

1 sy 1 0
g)(z) — _2 + Z (2k+ l)zzk Z (1)_(2k+2) — _2 + Z Ckzzk
% k=1 weA{0} LA

From the Laurent expansion we find that
p=z2+c12"+cz" +0(2°)

0> =2"%+301272+3c,+0(2?)
@2 =42"5-8c,272-16c,+0 (z%)

Hence g = (9')? — 4¢3 +20c19 +28c, =0 (zz) near z = 0. So g can be extended to a holomorphic function near
z=0. Since g is doubly periodic, the image g(C/A) is compact in C. Hence by Liouville’s Theorem g is constant.
g(z) =0 implies that

(9")? =49’ ~20c19 - 28¢;

By differentiating the expression we find that

0" (2) = 6p(2)* - 20¢,

10
whenever ’(z) # 0. If p”(z) =0, then go(z)2 = ?cl. There are exactly 4 points in C/A satisfying the equation,

because g has degree 2. Hence ¢’ has 4 ramification points away from z = 0. We claim that all of them has
ramification index 2.

By Riemann-Hurwitz formula,

x(C/A) =degp’ - y(CPHY— Y (vp(2)-1)
zeC/A

Hence Z (vg,/ (z) — 1) = 6. We already know that Ve (0) = 3, and that there are four more points such that
zeC/A
Vg (2) = 2. We must have vy (z) = 2 at these points.

Suppose that there exists a meromorphic function f on C/A such that f’ = g. At z = 0, the leading term of the
Laurent expansion of f is —1/z. Hence f has degree 1. This implies that f has no ramification points. This is
impossible by Riemann-Hurwitz formula:

0=y(C/A) #degf-y(CP) =2

Such meromorphic function f does not exist. O

Question 4
Let E be an elliptic curve, that is, a Riemann surface of genus 1, and let p be a point on E.
Calculate ¢(mp) form=1,2,3,...

Deduce that there exist meromorphic functions f and g on E with, respectively, a double pole at a and a triple
pole at a, and no other poles. Describe £ (mp) for m=1,2,3,4,5 in terms of the functions f and g.

By considering £ (6p), deduce that we have a polynomial relation between f and g, and interpret your results
in terms of the Weierstrass gp-function.

Proof. For m € Z,, by Riemann-Roch Theorem:
¢(mp)—¥¢(x —mp) =degimp)+1-g=m
Since E has genus 1, the canonical divisor « has degree 2g —2 = 0. Hence
deg(k —mp) =deg(x) —m=-m<0

Then ¢(x — mp) = 0. We deduce that ¢(mp) = m.

Next we study the structure of £ (mp). We know that a meromorphic function on E is uniquely determined up



to a constant by the number of zeros and poles. For ¢ € £ (mp), by definition (¢) + mp = 0. In other words,
@ is either entire or has a unique pole at p of multiplicity not greater than p. By Liouville’s Theorem, entire
functions on E are constant.

Since dim Z(2p) — ¢(2p) = 2, there exists non-constant functions in Z(2p). Let f be such a function. As
discussed in Question 3, f cannot have a simple pole at p. So f must have a double pole at p.

Similarly, there exists a meromorphic function g with a unique triple pole at p, which means g € Z3p)\Z(2p).

In general, Z(mp) = (1,2, ....m), where @y is a meromorphic function with a unique pole of multiplicity k
at p.

Note that f?g/ is a meromorphic function with a unique pole of multiplicity 2i + 3 at p. We have:
Lp)=W, 2ep=(Lf), £26p=(Lfg), <Lup=(Lf.&f*), £6p=(Lf¢&f"fg)

We note that f2 and g2 are meromorphic functions with a hextuple pole at p. Thatis, f2, g% € Z6p) \ Z(5p).
Since ¢(6p) = 6, the functions {1, f, g, f2, fg f3, g2} are linearly dependent. There exists cy, ..., cg € C such that

co+clf+czg+c_o,f2+04fg+csf3+06g2:0

which is a non-trivial polynomial relation between f and g.

The Weierstrass g-function is a meromorphic function on the torus C/A (which is homeomorphic to the ellip-
tic curve C,) with a unique double pole at z = 0. The derivative g’ is a meromorphic function with a unique
triple pole at z = 0. We already know the polynomial relation between ¢ and g’

9% =4(p—e1)(p—e)p—e3) 0



