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Question 1

LetΛ= {mω1 +nω2 : m,n ∈Z} be a lattice in C and let f be meromorphic and doubly periodic with respect toΛ.

Let Γ(a) denote the solid parallelogram with vertices at a, a+ω1, a+ω2, a+ω1+ω2 and let γ(a) be the boundary
of Γ(a). Choose a so that f has no zeroes or poles on γ(a).

Let β1, . . . ,βs denote the set of poles of f inside γ(a).

Show that

s∑
i=1

Res
(

f ;βi
)= 0

Proof. Without loss of generality let γ(a) be positively oriented. By residue theorem,∮
γ(a)

f (z)dz = 2πi
s∑

i=1
Res( f ;βi )

Since f is doubly peroidic with repsect to Λ, we have f (z) = f (z ±ω1) = f (z ±ω2) for all z in the domain of f .
We have ∫ a+ω1

a
f (z)dz =

∫ a+ω1

a
f (z −ω2)dz =

∫ a+ω1+ω2

a+ω2

f (z)dz∫ a+ω2

a
f (z)dz =

∫ a+ω2

a
f (z −ω1)dz =

∫ a+ω1+ω2

a+ω1

f (z)dz

(Abuse of notation:
∫ d

c means integrating along the line segment from c to d .) Hence∮
γ(a)

f (z)dz =
(∫ a+ω1

a
+

∫ a+ω1+ω2

a+ω1

+
∫ a+ω2

a+ω1+ω2

+
∫ a

a+ω2

)
f (z)dz

=
(∫ a+ω1

a
+

∫ a+ω2

a
+

∫ a

a+ω1

+
∫ a

a+ω2

)
f (z)dz

= 0

We deduce that
s∑

i=1
Res( f ;βi ) = 0

Question 2

Consider the affine nodal cubic Caff in C2 with equation

y2 = x3 +x2

Show that the formula

t 7→ (
t 2 −1, t − t 3)

describes a map from C onto Caff. Describe the fibres of this map (ie. the preimages of points in Caff ).

What can you deduce about the topology of the projective nodal cubic y2z = x3 +x2z?

Proof. First note that t 7→ t 2 − 1 is surjective onto C. For any x ∈ C there exists t ∈ C such that x = t 2 − 1. Then
y2 = x2(x +1) = t 2(t 2 −1)2. So y =±t (1− t 2). By replacing t with ±t we can always have y = t − t 3. So the map
t 7→ (t 2 −1, t − t 3) is surjective onto Caff.

For (0,0) ∈Caff, we note that the preimages of the point are t =±1. For (x, y) ∈Caff \ {(0,0)}, the map t 7→ t 2 −1
is two to one, and each t corresponds to a branch y =±

p
x3 +x2. So t 7→ (t 2 −1, t − t 3) is one to one for t 6= ±1.

The topology of the projective nodal cubic looks like:
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The cubic resembles the torus but has a nodal singularity at the origin. (I am not sure how to understand this
directly from the equation...)

Question 3

Let ℘(z) be the Weierstrass ℘-function associated to a lattice Λ. Consider the meromorphic function ℘′(z) as a
function from the elliptic curve X =C/Λ to the Riemann sphere.

Determine its degree and the number and ramification indices of its ramification points.

Is there a meromorphic function f on X with f ′(z) =℘(z)?

Proof. LetΛ := {mω1 +nω2 : m,n ∈Z}. By definition,

℘(z) = 1

z2 + ∑
ω∈Λ\{0}

(
1

(z +ω)2 + 1

ω2

)
Since the series converges absolutely, we can differentiate termwise:

℘′(z) =−2
∑
ω∈Λ

1

(z +ω)3

At z = 0, the leading term in the Laurent expansion of ℘′ is −2z−3. Hence z = 0 is a triple pole of ℘′. As a map
from C/Λ to CP1, ℘′ has degree 3. And z = 0 is a ramification point of ℘′ of index 3.

We know that
℘′(z)2 = 4(℘(z)−e1)(℘(z)−e2)(℘(z)−e3)

where e1 =℘(ω1/2), e2 =℘(ω2/2), and e3 =℘((ω1 +ω2)/2). Moreover, we can in fact show that e1 + e2 + e3 = 0,
which gives another expression for ℘′:

(℘′)2 = 4℘3 −20c1℘−28c2

I have done this in Sheet 2 of Geometry of Surfaces. The proof is as follows:

Starting from

℘(z) := 1

z2 + ∑
ω∈Λ\{0}

(
1

(z −ω)2 − 1

ω2

)
Note that

1

(1−w)2 =
∞∑
`=0

(`+1)w`, for |w | < 1

which is obtained by differentiating the geometric series. Hence for |z| < |ω|:

1

(z −ω)2 = 1

ω2

∞∑
`=0

(`+1)
( z

ω

)`
Therefore we obtain the Laurent expansion of ℘ near z = 0:

℘(z) = 1

z2 + ∑
ω∈Λ\{0}

(
1

ω2

∞∑
`=0

(`+1)
( z

ω

)`
− 1

ω2

)
= 1

z2 + ∑
ω∈Λ\{0}

∞∑
`=1

(`+1)
z`

ω`+2

= 1

z2 +
∞∑
`=1

(`+1)z`
∑

ω∈Λ\{0}
ω−(`+2)

By symmetry, replacing (m,n) with (−m,−n), we see that the following series is zero for odd `.∑
ω∈Λ\{0}

ω−(`+2) = ∑
(m,n)6=(0,0)

(mω1 +nω2)−(`+2)
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Hence

℘(z) = 1

z2 +
∞∑

k=1
(2k +1)z2k

∑
ω∈Λ\{0}

ω−(2k+2) = 1

z2 +
∞∑

k=1
ck z2k

From the Laurent expansion we find that

℘= z−2 + c1z2 + c2z4 +O
(
z6)

℘3 = z−6 +3c1z−2 +3c2 +O
(
z2)

(℘′)2 = 4z−6 −8c1z−2 −16c2 +O
(
z4)

Hence g = (℘′)2 −4℘3 +20c1℘+28c2 = O
(
z2

)
near z = 0. So g can be extended to a holomorphic function near

z = 0. Since g is doubly periodic, the image g (C/Λ) is compact inC. Hence by Liouville’s Theorem g is constant.
g (z) = 0 implies that

(℘′)2 = 4℘3 −20c1℘−28c2

By differentiating the expression we find that

℘′′(z) = 6℘(z)2 −20c1

whenever ℘′(z) 6= 0. If ℘′′(z) = 0, then ℘(z)2 = 10

3
c1. There are exactly 4 points in C/Λ satisfying the equation,

because ℘ has degree 2. Hence ℘′ has 4 ramification points away from z = 0. We claim that all of them has
ramification index 2.

By Riemann-Hurwitz formula,

χ(C/Λ) = deg℘′ ·χ(CP1)− ∑
z∈C/Λ

(
ν℘′ (z)−1

)
Hence

∑
z∈C/Λ

(
ν℘′ (z)−1

) = 6. We already know that ν℘′ (0) = 3, and that there are four more points such that

ν℘′ (z) Ê 2. We must have ν℘′ (z) = 2 at these points.

Suppose that there exists a meromorphic function f on C/Λ such that f ′ =℘. At z = 0, the leading term of the
Laurent expansion of f is −1/z. Hence f has degree 1. This implies that f has no ramification points. This is
impossible by Riemann-Hurwitz formula:

0 =χ(C/Λ) 6= deg f ·χ(CP1) = 2

Such meromorphic function f does not exist.

Question 4

Let E be an elliptic curve, that is, a Riemann surface of genus 1, and let p be a point on E .

Calculate `(mp) for m = 1,2,3, . . .

Deduce that there exist meromorphic functions f and g on E with, respectively, a double pole at a and a triple
pole at a, and no other poles. Describe L (mp) for m = 1,2,3,4,5 in terms of the functions f and g .

By considering L (6p), deduce that we have a polynomial relation between f and g , and interpret your results
in terms of the Weierstrass ℘-function.

Proof. For m ∈Z+, by Riemann-Roch Theorem:

`(mp)−`(κ−mp) = deg(mp)+1− g = m

Since E has genus 1, the canonical divisor κ has degree 2g −2 = 0. Hence

deg(κ−mp) = deg(κ)−m =−m < 0

Then `(κ−mp) = 0. We deduce that `(mp) = m.

Next we study the structure of L (mp). We know that a meromorphic function on E is uniquely determined up
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to a constant by the number of zeros and poles. For ϕ ∈ L (mp), by definition (ϕ)+mp Ê 0. In other words,
ϕ is either entire or has a unique pole at p of multiplicity not greater than p. By Liouville’s Theorem, entire
functions on E are constant.

Since dimL (2p) − `(2p) = 2, there exists non-constant functions in L (2p). Let f be such a function. As
discussed in Question 3, f cannot have a simple pole at p. So f must have a double pole at p.

Similarly, there exists a meromorphic function g with a unique triple pole at p, which means g ∈L (3p)\L (2p).

In general, L (mp) = 〈
1,ϕ2, ...,ϕm

〉
, where ϕk is a meromorphic function with a unique pole of multiplicity k

at p.

Note that f i g j is a meromorphic function with a unique pole of multiplicity 2i +3 j at p. We have:

L (p) = 〈1〉 , L (2p) = 〈
1, f

〉
, L (3p) = 〈

1, f , g
〉

, L (4p) = 〈
1, f , g , f 2〉 , L (5p) = 〈

1, f , g , f 2, f g
〉

We note that f 3 and g 2 are meromorphic functions with a hextuple pole at p. That is, f 2, g 3 ∈L (6p) \L (5p).
Since `(6p) = 6, the functions {1, f , g , f 2, f g , f 3, g 2} are linearly dependent. There exists c0, ...,c6 ∈C such that

c0 + c1 f + c2g + c3 f 2 + c4 f g + c5 f 3 + c6g 2 = 0

which is a non-trivial polynomial relation between f and g .

The Weierstrass ℘-function is a meromorphic function on the torus C/Λ (which is homeomorphic to the ellip-
tic curve CΛ) with a unique double pole at z = 0. The derivative ℘′ is a meromorphic function with a unique
triple pole at z = 0. We already know the polynomial relation between ℘ and ℘′:

℘′2 = 4(℘−e1)(℘−e2)(℘−e3)


