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In these problems K denotes an arbitrary field and K [x] denotes the ring of polynomials in one variable x over K . If p is a prime
number, then Fp denotes the field of integers modulo p.

Question 1

Let E/K is a finite extension of fields and let α ∈ E/K . Prove that there is a unique monic irreducible polynomial p ∈ K [x] such
that the homomorphism

K [x] → K (α)

which maps x 7→α, induces an isomorphism

K (α) ∼= K [x]/〈p〉

Proof. First, suppose that [E : K ] = n. Then {1,α, ...,αn} is linearly dependent over K . Hence there exists a0, ..., an ∈ K such that

f (α) = anα
n +·· ·+a1α+a0 = 0

and hence α is algebraic over K .

Let m ∈ K [x] be the minimal polynomial of α over K . That is, m is a monic polynomial of least degree such that m(α) = 0. By
definition m is irreducible.

For f ∈ K [x] such that f (α) = 0, by division algorithm there exist q,r ∈ K [x] such that f = qm+r where degr < degm. Hence

0 = f (α) = q(α)m(α)+ r (α) = r (α)

By minimality of degm we must have r = 0. Hence m | f .

Now suppose that m1,m2 are minimal polynomials of α over K . Then we have m1 | m2 and m2 | m1. That is m1(x) = am2(x)
for some a ∈ K . But both m1 and m2 are monic. Therefore a = 1 and m1 = m2. We deduce that the minimal polynomial of α
is unique.

Recall that the polynomial ring satisfies the following universal property:

For any unital commutative ring E, α ∈ E, and unital ring homomorphism f : K → E, there exists a unique ring homomor-
phism evα : K [x] → E such that evα ◦ ι= f and evα(x) =α.

K (E ,α)

(K [x], x)

f

ι ∃! evα

where evα is called the evalution homomorphism.

With f : K ,→ E being the inclusion map, we apply the First Isomorphism Theorem to the evalution homomorphism:

K [α] = imevα ∼= K [x]/kerevα

We have shown previously that kerevu = 〈m(x)〉. Hence

K [α] = K [x]/〈m〉

Since K is a field, K [x] is a principal ideal domain. As m is irreducible, 〈m〉 is a maximal ideal in K [x]. Hence K [α] ∼ K [x]/〈m〉
is a field. Since K (α) is the field of fractions of K [α], we have K [α] = K (α). We conclude that

K (α) = K [x]/〈m〉

Question 2

Prove the Tower Law.



2

Proof. The Tower Law states that for field extensions F ⊆ K ⊆ L, [L : F ] = [L : K ][K : F ], where [L : F ] := dimF L and similar for the
other two.

Let B be a basis of L over K and C a basis of K over F . We claim that BC := {x y ∈ L : x ∈B, y ∈C } is a basis of L over F .

For u ∈ L, there exists a unique expression:

u =
m∑

i=1
ri xi

where x1, ..., xn ∈B are distinct and r1, ...,rn ∈ K .

For each ri , there exists a unique expression:

ri =
mi∑
j=1

λi , j yi , j

where yi ,1, ..., yi ,mi ∈C are distinct and λi ,1, ...,λi ,mi ∈ F .

Combining the expressions we express u uniquely in the spanning of BC :

u =
m∑

i=1

mi∑
j=1

λi , j xi yi , j

Hence BC is a basis of L over F . In particular,

[L : F ] = cardBC = cardB ·cardC = [L : K ][K : F ]

Question 3

Find the minimal polynomial for

p
3

1+21/3

overQ; that is, the monic polynomial m(x) of smallest possible degree with rational coefficients satisfying

m

( p
3

1+21/3

)
= 0

Solution. Let u =
p

3

1+21/3
. We have

u =
p

3

1+21/3
=⇒ (1+21/3)u =p

3

=⇒ 21/3u =p
3−u

=⇒ 2u3 = (
p

3−u)3 =−u3 +3
p

3u2 −9u +3
p

3

=⇒ u3 +3u =p
3(u2 +1)

=⇒ u2(u2 +3)2 = 3(u2 +1)2

=⇒ u6 +3u4 +3u2 −3 = 0

Hence f (x) := x6 +3x4 +3x2 −3 ∈Q[x] is an annihilating polynomial of u.

By Eisenstein’s criterion with p = 3, we find that f is irreducible. Since the minimal polynomial of u divides f , we deduce
that f is the minimal polynomial of u.



3

Question 4

The formal derivative D : K [x] → K [x] is defined by

D
(
a0 +a1x +·· ·+an xn)= a1 +2a2x +·· ·+nan xn−1

Prove that if a,b ∈ K and f , g ∈ K [x] then

(a) D(a f +bg ) = aD f +bDg

(b) D( f g ) = f Dg + g D f

(c) Dh(x) = Dg (x)D f (g (x)) when h(x) = f (g (x))

If a ∈ K show that

(d) (x −a) divides f (x) in K [x] if and only if f (a) = 0

(e) (x −a)2 divides f (x) in K [x] if and only if f (a) = 0 = D f (a)

Deduce that if the polynomials f and D f are relatively prime in K [x], then f has no multiple root.

Proof. Suppose that f =
n∑

i=0
ci xi and g =

m∑
i=0

di xi , where cn ,dm 6= 0. Without loss of generality we assume that n Ê m and put

dm+1 = ·· · = dn = 0.

(a) D(a f +bg ) = D

(
a

n∑
i=0

ci xi +b
n∑

i=0
di xi

)
= D

(
n∑

i=0
(aci +bdi )xi

)
=

n∑
i=0

i (aci +bdi )xi−1

= a
n∑

i=0
i ci xi−1 +b

n∑
i=0

i di xi−1 = aD f +bDg

(b) f Dg + g D f =
(

n∑
i=0

ci xi

)(
n∑

i=0
i di xi−1

)
+

(
n∑

i=0
di xi

)(
n∑

i=0
i ci xi−1

)
=

n∑
k=0

k∑
i=0

(k − i )ck dk−i xk−1 +
n∑

k=0

k∑
i=0

i ck dk−i xk−1

=
n∑

k=0

k∑
i=0

kck dk−i xk−1 = D

(
n∑

k=0

k∑
i=0

ci dk−i xk

)
= D

((
n∑

i=0
ci xi

)(
m∑

i=0
di xi

))
= D( f g )

(c) We use induction on n to show that D(g n) = ng n−1D(g ). Base case: When n = 1 it holds trivially. Induction case:
Suppose that it holds for all k < n. Then

D(g n) = D(g · g n−1) = g n−1D(g )+ g D(g n−1) = g n−1D(g )+ g · (n −1)g n−2D(g ) = ng n−1D(g )

By linearity of D ,

D(h) = D

(
n∑

i=0
ai g (x)i

)
= ∑

i=0
ai D

(
g (x)i

)
= ∑

i=0
i ai g (x)i−1D(g ) = Dg ·D f ◦ g

(d) By division algorithm there exist q ∈ K [x] and r ∈ K such that f (x) = (x − a)q(x)+ r . Then f (a) = (a − a)q(a)+ r = r .
Hence

f (x) = (x −a)q(x)+ f (a)

In particular, (x −a) divides f (x) in K [x] if and only if f (a) = 0.

(e) If (x−a)2 divides f , then f (a) = 0 and f (x) = (x−a)2g (x) for some g ∈ K [x]. Then D f (x) = 2(x−a)g (x)+(x−a)2Dg (x).
Hence D f (a) = 0.

Conversely, if f (a) = D f (a) = 0, by (d) x − a divides f . Hence f (x) = (x − a)g (x) for some g ∈ K [x]. Then D f (x) =
g (x)+ (x −a)Dg (x). 0 = D f (a) = g (a) implies that x −a divides g . Hence (x −a)2 divides f .

If f and D f are coprime, then exists a,b ∈ K such that a f (x)+bD f (x) = 1. Hence f and D f have no common roots. By (e)
we deduce that f has no multiple root.

Question 5

Show that if a ∈Z is divisible by a prime p but not by p2, then xn −a is irreducible overQ for all n ≥ 1. Show also that it has no
repeated roots in any extension ofQ.
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Proof. The first part is a special case of Eisenstein’s criterion. Suppose that f (x) = xn −a is not irreducible in Z[x]. Then there exists
non-constant g ,h ∈Z[x] such that f = g h. Let π :Q�Z/pZ induces the homomorphism π :Q[x] � (Z/pZ)[x]. The image
of f , g ,h are f , g ,h. So f = g h. Let b0, c0 be the constant coefficients of g and h. Then a =−b0c0. Since p | a, we have 0 = b0c0

in Z/pZ. Since Z/pZ is a field, it has no zero-divisors. So p | b0 and p | c0. Hence p2 | a, which is a contradiction. Hence
f (x) = xn −a is irreducible in Z[x]. By (a corollary of) Gauss’ Lemma, f is irreducible inQ[x].

The formal derivative of f , D f (x) = nxn−1, has a unique root x = 0 in any extension of Q. But x = 0 is not a root of f , as
f (0) =−a 6= 0 (otherwise p2 | a). f and D f have no common roots, so f has no repeated roots in any extension ofQ.

Question 6

Show that if m is any positive integer, then the polynomial xpm −x has no multiple root in any extension of fields L : Fp .

Let

K =
{
α ∈ L :αpm =α

}
be the set of roots of xpm −x in the extension L. Show that K is a subfield of L.

Let n be a positive integer. Show that if m divides n then pm −1 divides pn −1 in Z and xpm −x divides xpn −x in Fp [x].

Proof. Note that any extension field of Fp has characteristic p. Let f (x) = xpm −x. The formal derivative of f is

D f (x) = pm xpm−1 −1 =−1

as pm = 0. D f has no roots in any extension of Fp . Hence f has no multiple roots in any extension of Fp .

For α1,α2 ∈ K , it is clear from definition that α1α2 ∈ K and α−1
1 ∈ K . By Binomial Theorem,

(α1 +α2)pm =αpm

1 +αpm

2 +
pm−1∑
k=1

pm !

k !(pm −k)!
αk

1α
pm−k
2 =αpm

1 +αpm

2

because p divides
pm !

k !(pm −k)!
for k < pm . Hence α1 +α2 ∈ K .

If p = 2, then −α=α ∈ K . If p > 2, then pm is odd. Hence (−α)pm = (−1)pm
αpm =−α. Hence −α ∈ K . We conclude that K is a

subfield of L.

Suppose that n = km for k ∈Z+. Then

pkm −1 = (p −1)(pkm−1 +·· ·+p +1) = (p −1)(pm−1 +·· ·+p +1)(p(k−1)m +·· ·+pm +1) = (pm −1)(p(k−1)m +·· ·+pm +1)

Hence pm −1 divides pn −1 in Z[x].

Note that xpm − x = x
(
xpm−1 −1

)
and xpn − x = x

(
xpn−1 −1

)
. Since pm −1 divides pn −1 in Z, we have

(
xpm−1 −1

)
divides(

xpn−1 −1
)

in x ∈Z[x]. Hence xpm −x divides xpn −x in Fp [x].

Question 7

(a) Let f (x) = x3 − s1x2 + s2x − s3 = (x −α)(x −β)(x −γ) ∈Q[x] where α,β,γ ∈ C. Denoting σi = αi +βi +γi for i ≥ 0, show
that σ0 = 3,σ1 = s1 and σ2 = s2

1 −2s2 Show further that

σr = s1σr−1 − s2σr−2 + s3σr−3

for all r ≥ 3.

(b) Let δ= (α−β)(α−γ)(β−γ) and ∆= δ2. Show that

∆=−4s3
1 s3 + s2

1 s2
2 +18s1s2s3 −4s3

2 −27s2
3
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[Hint: You may find it useful to consider the Van der Monde determinant

det

 1 1 1
α β γ

α2 β2 γ2


and the determinant of this matrix multiplied by its transpose to deduce first that

∆= det

 σ0 σ1 σ2

σ1 σ2 σ3

σ2 σ3 σ4

 .]

Proof. (a) By comparing the coefficients we observe that

s1 =α+β+γ s2 =αβ+βγ+γα s3 =αβγ

Hence σ0 =α0 +β0 +γ0 = 3. σ1 =α+β+γ= s1. σ2 =α2 +β2 +γ2 = (α+β+γ)2 −2(αβ+βγ+γα) = s2
1 −2s2.

In general, we expand the expression below

s1σr−1 − s2σr−2 + s3σr−3 = (α+β+γ)(αr−1 +βr−1 +γr−1)− (αβ+βγ+γα)(αr−2 +βr−2 +γr−2)+αβγ(αr−3 +βr−3 +γr−3)

=αr +βr +γr

=σr

(b) First we calculate σ3 and σ4:

σ3 = s1σ2 − s2σ1 + s3σ0 = s3
1 −2s1s2 − s1s2 +3s3 = s3

1 −3s1s2 +3s3

σ4 = s1σ3 − s2σ2 + s3σ1 = s4
1 −3s2

1 s2 +3s1s3 − s2
1 s2 −2s2

2 + s1s3 = s4
1 −4s2

1 s2 +4s1s3 −2s2
2

It is well known that the van de Monde determinant satisfies

(α−β)(α−γ)(β−γ) = det

 1 1 1
α β γ

α2 β2 γ2


Hence

∆= (α−β)2(α−γ)2(β−γ)2 = det


 1 1 1

α β γ

α2 β2 γ2


 1 1 1

α β γ

α2 β2 γ2


T = det

 3 α+β+γ α2 +β2 +γ2

α+β+γ α2 +β2 +γ2 α3 +β3 +γ3

α2 +β2 +γ2 α3 +β3 +γ3 α4 +β4 +γ4


= det

σ0 σ1 σ2

σ1 σ2 σ3

σ2 σ3 σ4

= det

σ0 σ1 σ2 − s1σ1 + s2σ0

σ1 σ2 σ3 − s1σ2 + s2σ1

σ2 σ3 σ4 − s1σ3 + s2σ2

= det

σ0 σ1 s2

σ1 σ2 s3σ0

σ2 σ3 s3σ1

= det

σ0 σ1 s2

σ1 σ2 3s3

σ2 σ3 s1s3


= det

 σ0 σ1 s2

σ1 σ2 3s3

σ2 − s1σ1 + s2σ0 σ3 − s1σ2 + s2σ1 s1s3 −3s1s3 + s2
2

= det

σ0 σ1 s2

σ1 σ2 3s3

s2 3s3 s2
2 −2s1s3


= det

 3 s1 s2

s1 s2
1 −2s2 3s3

s2 3s3 s2
2 −2s1s3

= 3
(
(s2

1 −2s2)(s2
2 −2s1s3)−9s2

3

)− s1
(
s1(s2

2 −2s1s3)−3s2s3
)+ s2

(
3s1s3 − s2(s2

1 −2s2)
)

= 18s1s2s3 + s2
1 s2

2 −4s3
2 −4s3

1 s3 −27s3
3
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Question 8

Let E/F be an extension field of prime degree ` and let α ∈ E\F . Let Mα be F -linear map induced by the multiplication by α :

Mα : E → E

u 7→α ·u

Show that the characteristic polynomial of Mα is equal to the minimal polynomial of α. [Hint: Cayley-Hamilton.]

Proof. Consider the tower of field extensions: F ⊆ F [α] ⊆ E . By tower law, [F [α] : F ] divides ` = [E : F ]. Since ` is prime and α ∉ F ,
[F [α] : F ] = ` and hence E = F [α].

We claim that {1,α, ...,α`−1} is a basis of E = F [α]. let m be the minimal polynomial of α over F . For f ∈ F [x], by division
algorithm, there exists q,r ∈ F [x] such that f = qm + r and degr < degm = `. Then

f (α) = r (α) = a0 +a1α+·· ·a`−1α
`−1 ∈ span{1,α, ...,α`−1}

That is, {1,α, ...,α`−1} spans F [α]. On the other hand, suppose that a0, ..., a`−1 ∈ F such that a0 + a1α+ ·· · + a`−1α
`−1 = 0.

Then a0 = ·· · = a`−1 = 0 by minimality of of degree of m. Hence {1,α, ...,α`−1} is linearly independent.

Let m(x) = x`+a`−1x`−1 +·· ·+a1x +a0 be the minimal polynomial of α. Then

α` =−(a`−1x`−1 +·· ·+a1x +a0)

With respect to the basis {1,α, ...,α`−1}, the matrix of Mα is the (transpose of) companion matrix of m:
0 1

. . .
. . .

0 1
−a0 · · · −a`−2 −a`−1


From linear algebra wo know that the characteristic polynomial of this matrix is exactly m, which finishes the proof.


