Peize Liu St. Peter's College University of Oxford

Problem Sheet 1 B3.1: Galois Theory

AB) Great work!
A few mistakes, but
you obviously understand
the material.

In these problems K denotes an arbitrary field and K[x] denotes the ring of polynomials in one variable x over K. If p is a prime number, then \mathbb{F}_p denotes the field of integers modulo p.

Question 1

Let E/K is a finite extension of fields and let $\alpha \in E/K$. Prove that there is a unique monic irreducible polynomial $p \in K[x]$ such that the homomorphism

$$K[x] \to K(\alpha)$$

which maps $x \mapsto \alpha$, induces an isomorphism

$$K(\alpha) \cong K[x]/\langle p \rangle$$

Proof. First, suppose that [E:K] = n. Then $\{1, \alpha, ..., \alpha^n\}$ is linearly dependent over K. Hence there exists $a_0, ..., a_n \in K$ such that

$$f(\alpha) = a_n \alpha^n + \dots + a_1 \alpha + a_0 = 0$$

and hence α is algebraic over K.

Let $m \in K[x]$ be the minimal polynomial of α over K. That is, m is a monic polynomial of least degree such that $m(\alpha) = 0$. By definition m is irreducible.

For $f \in K[x]$ such that $f(\alpha) = 0$, by division algorithm there exist $q, r \in K[x]$ such that f = qm + r where $\deg r < \deg m$. Hence

$$0 = f(\alpha) = q(\alpha)m(\alpha) + r(\alpha) = r(\alpha)$$

By minimality of deg m we must have r = 0. Hence $m \mid f$.

Now suppose that m_1, m_2 are minimal polynomials of α over K. Then we have $m_1 \mid m_2$ and $m_2 \mid m_1$. That is $m_1(x) = am_2(x)$ for some $a \in K$. But both m_1 and m_2 are monic. Therefore a = 1 and $m_1 = m_2$. We deduce that the minimal polynomial of α is unique.

Recall that the polynomial ring satisfies the following universal property:

For any unital commutative ring E, $\alpha \in E$, and unital ring homomorphism $f: K \to E$, there exists a unique ring homomorphism $\operatorname{ev}_{\alpha}: K[x] \to E$ such that $\operatorname{ev}_{\alpha} \circ \iota = f$ and $\operatorname{ev}_{\alpha}(x) = \alpha$.

$$K \xrightarrow{f} (E, \alpha)$$

$$\downarrow \downarrow \qquad \exists! \operatorname{ev}_{\alpha}$$

$$(K[x], x)$$

where ev_{α} is called the **evalution homomorphism**.

With $f: K \hookrightarrow E$ being the inclusion map, we apply the First Isomorphism Theorem to the evalution homomorphism:

$$K[\alpha] = \operatorname{im} \operatorname{ev}_{\alpha} \cong K[x] / \ker \operatorname{ev}_{\alpha}$$

We have shown previously that $\ker \operatorname{ev}_u = \langle m(x) \rangle$. Hence

$$K[\alpha] = K[x]/\langle m \rangle$$

Since *K* is a field, K[x] is a principal ideal domain. As *m* is irreducible, $\langle m \rangle$ is a maximal ideal in K[x]. Hence $K[\alpha] \sim K[x]/\langle m \rangle$ is a field. Since $K(\alpha)$ is the field of fractions of $K[\alpha]$, we have $K[\alpha] = K(\alpha)$. We conclude that

$$K(\alpha) = K[x]/\langle m \rangle$$
 Perfect!

Question 2

Prove the Tower Law.

Proof. The **Tower Law** states that for field extensions $F \subseteq K \subseteq L$, [L:F] = [L:K][K:F], where $[L:F] := \dim_F L$ and similar for the other two.

Let \mathscr{B} be a basis of L over K and \mathscr{C} a basis of K over F. We claim that $\mathscr{BC} := \{xy \in L : x \in \mathscr{B}, y \in \mathscr{C}\}$ is a basis of L over F.

For $u \in L$, there exists a unique expression:

$$u = \sum_{i=1}^{m} r_i x_i$$

where $x_1,...,x_n \in \mathcal{B}$ are distinct and $r_1,...,r_n \in K$.

For each r_i , there exists a unique expression:

$$r_i = \sum_{j=1}^{m_i} \lambda_{i,j} y_{i,j}$$

where $y_{i,1},...,y_{i,m_i} \in \mathcal{C}$ are distinct and $\lambda_{i,1},...,\lambda_{i,m_i} \in F$.

Combining the expressions we express u uniquely in the spanning of $\mathscr{B}\mathscr{C}$:

Perhaps give more
$$u = \sum_{i=1}^{m} \sum_{j=1}^{m_i} \lambda_{i,j} x_i y_{i,j}$$

$$expression is wrique.$$

Hence $\mathscr{B}\mathscr{C}$ is a basis of L over F. In particular,

$$[L:F] = \operatorname{card} \mathscr{B}\mathscr{C} = \operatorname{card} \mathscr{B} \cdot \operatorname{card} \mathscr{C} = [L:K][K:F]$$

Ouestion 3

Find the minimal polynomial for

$$\frac{\sqrt{3}}{1 + 2^{1/3}}$$

over \mathbb{Q} ; that is, the monic polynomial m(x) of smallest possible degree with rational coefficients satisfying

$$m\left(\frac{\sqrt{3}}{1+2^{1/3}}\right) = 0$$

Solution. Let $u = \frac{\sqrt{3}}{1 + 2^{1/3}}$. We have

$$u = \frac{\sqrt{3}}{1 + 2^{1/3}} \implies (1 + 2^{1/3})u = \sqrt{3}$$

$$\implies 2^{1/3}u = \sqrt{3} - u$$

$$\implies 2u^3 = (\sqrt{3} - u)^3 = -u^3 + 3\sqrt{3}u^2 - 9u + 3\sqrt{3}$$

$$\implies u^3 + 3u = \sqrt{3}(u^2 + 1)$$

$$\implies u^2(u^2 + 3)^2 = 3(u^2 + 1)^2$$

$$\implies u^6 + 3u^4 + 3u^2 - 3 = 0$$

Hence $f(x) := x^6 + 3x^4 + 3x^2 - 3 \in \mathbb{Q}[x]$ is an annihilating polynomial of u.

By Eisenstein's criterion with p = 3, we find that f is irreducible. Since the minimal polynomial of u divides f, we deduce that f is the minimal polynomial of u.

Great! (A)

Question 4

The formal derivative $D: K[x] \to K[x]$ is defined by

$$D(a_0 + a_1x + \dots + a_nx^n) = a_1 + 2a_2x + \dots + na_nx^{n-1}$$

Prove that if $a, b \in K$ and $f, g \in K[x]$ then

- (a) D(af + bg) = aDf + bDg
- (b) D(fg) = fDg + gDf
- (c) Dh(x) = Dg(x)Df(g(x)) when h(x) = f(g(x))

If $a \in K$ show that

- (d) (x-a) divides f(x) in K[x] if and only if f(a) = 0
- (e) $(x-a)^2$ divides f(x) in K[x] if and only if f(a) = 0 = Df(a)

Deduce that if the polynomials f and Df are relatively prime in K[x], then f has no multiple root.

Proof. Suppose that $f = \sum_{i=0}^{n} c_i x^i$ and $g = \sum_{i=0}^{m} d_i x^i$, where $c_n, d_m \neq 0$. Without loss of generality we assume that $n \geq m$ and put $d_{m+1} = \cdots = d_n = 0$.

$$d_{m+1} = \dots = d_n = 0.$$
(a) $D(af + bg) = D\left(a\sum_{i=0}^{n} c_i x^i + b\sum_{i=0}^{n} d_i x^i\right) = D\left(\sum_{i=0}^{n} (ac_i + bd_i) x^i\right) = \sum_{i=0}^{n} i(ac_i + bd_i) x^{i-1}$

$$= a\sum_{i=0}^{n} i c_i x^{i-1} + b\sum_{i=0}^{n} i d_i x^{i-1} = aDf + bDg$$

$$= a\sum_{i=0}^{n} i c_i x^{i-1} + b\sum_{i=0}^{n} i d_i x^{i-1} = aDf + bDg$$

(b)
$$fDg + gDf = \left(\sum_{i=0}^{n} c_{i}x^{i}\right)\left(\sum_{i=0}^{n} id_{i}x^{i-1}\right) + \left(\sum_{i=0}^{n} d_{i}x^{i}\right)\left(\sum_{i=0}^{n} ic_{i}x^{i-1}\right) \stackrel{?}{=} \sum_{k=0}^{n} \sum_{i=0}^{k} (k-i)c_{k}d_{k-i}x^{k-1} + \sum_{k=0}^{n} \sum_{i=0}^{k} ic_{k}d_{k-i}x^{k-1}$$

$$= \sum_{k=0}^{n} \sum_{i=0}^{k} kc_{k}d_{k-i}x^{k-1} = D\left(\sum_{k=0}^{n} \sum_{i=0}^{k} c_{i}d_{k-i}x^{k}\right) = D\left(\left(\sum_{i=0}^{n} c_{i}x^{i}\right)\left(\sum_{i=0}^{m} d_{i}x^{i}\right)\right) = D(fg)$$

(c) We use induction on n to show that $D(g^n) = ng^{n-1}D(g)$. Base case: When n = 1 it holds trivially. Induction case: Suppose that it holds for all k < n. Then

$$D(g^n) = D(g \cdot g^{n-1}) = g^{n-1}D(g) + gD(g^{n-1}) = g^{n-1}D(g) + g \cdot (n-1)g^{n-2}D(g) = ng^{n-1}D(g)$$

By linearity of D,

$$D(h) = D\left(\sum_{i=0}^{n} a_{i} g(x)^{i}\right) = \sum_{i=0}^{n} a_{i} D\left(g(x)^{i}\right) = \sum_{i=0}^{n} i a_{i} g(x)^{i-1} D(g) = Dg \cdot Df \circ g$$

(d) By division algorithm there exist $q \in K[x]$ and $r \in K$ such that f(x) = (x - a)q(x) + r. Then f(a) = (a - a)q(a) + r = r. Hence

$$f(x) = (x - a)q(x) + f(a)$$

In particular, (x - a) divides f(x) in K[x] if and only if f(a) = 0.

(e) If $(x-a)^2$ divides f, then f(a) = 0 and $f(x) = (x-a)^2 g(x)$ for some $g \in K[x]$. Then $Df(x) = 2(x-a)g(x) + (x-a)^2 Dg(x)$. Hence Df(a) = 0.

Conversely, if f(a) = Df(a) = 0, by (d) x - a divides f. Hence f(x) = (x - a)g(x) for some $g \in K[x]$. Then Df(x) = ag(x) + (x - a)Dg(x). 0 = Df(a) = g(a) implies that x - a divides g. Hence $(x - a)^2$ divides f.

If f and Df are coprime, then exists $a, b \in K$ such that af(x) + bDf(x) = 1. Hence f and Df have no common roots. By (e) we deduce that f has no multiple root.

Question 5

Show that if $a \in \mathbb{Z}$ is divisible by a prime p but not by p^2 , then $x^n - a$ is irreducible over \mathbb{Q} for all $n \ge 1$. Show also that it has no repeated roots in any extension of Q.

Proof. The first part is a special case of Eisenstein's criterion. Suppose that $f(x) = x^n - a$ is not irreducible in $\mathbb{Z}[x]$. Then there exists non-constant $g, h \in \mathbb{Z}[x]$ such that f = gh. Let $\pi : \bigoplus_{m \in \mathbb{Z}} \mathbb{Z}/p\mathbb{Z}$ induces the homomorphism $\pi : \mathbb{Q}[x] \twoheadrightarrow (\mathbb{Z}/p\mathbb{Z})[x]$. The image of f, g, h are $\overline{f}, \overline{g}, \overline{h}$. So $\overline{f} = \overline{g}h$. Let b_0, c_0 be the constant coefficients of g and h. Then $a = -b_0c_0$. Since $p \mid a$, we have $\overline{0} = \overline{b_0}\overline{c_0}$ in $\mathbb{Z}/p\mathbb{Z}$. Since $\mathbb{Z}/p\mathbb{Z}$ is a field, it has no zero-divisors. So $p \mid b_0$ and $p \mid c_0$. Hence $p^2 \mid a$, which is a contradiction. Hence $f(x) = x^n - a$ is irreducible in $\mathbb{Z}[x]$. By (a corollary of) Gauss' Lemma, f is irreducible in $\mathbb{Q}[x]$.

The formal derivative of f, $Df(x) = nx^{n-1}$, has a unique root x = 0 in any extension of \mathbb{Q} . But x = 0 is not a root of f, as $f(0) = -a \neq 0$ (otherwise $p^2 \mid a$). f and Df have no common roots, so f has no repeated roots in any extension of \mathbb{Q} .

Question 6

Show that if m is any positive integer, then the polynomial $x^{p^m} - x$ has no multiple root in any extension of fields $L : \mathbb{F}_p$. Let

$$K = \left\{ \alpha \in L : \alpha^{p^m} = \alpha \right\}$$

be the set of roots of $x^{p^m} - x$ in the extension L. Show that K is a subfield of L.

Let *n* be a positive integer. Show that if *m* divides *n* then $p^m - 1$ divides $p^n - 1$ in \mathbb{Z} and $x^{p^m} - x$ divides $x^{p^n} - x$ in $\mathbb{F}_p[x]$.

Proof. Note that any extension field of \mathbb{F}_p has characteristic p. Let $f(x) = x^{p^m} - x$. The formal derivative of f is

$$Df(x) = p^m x^{p^m - 1} - 1 = -1$$

as $p^m = 0$. Df has no roots in any extension of \mathbb{F}_p . Hence f has no multiple roots in any extension of \mathbb{F}_p . For $\alpha_1, \alpha_2 \in K$, it is clear from definition that $\alpha_1 \alpha_2 \in K$ and $\alpha_1^{-1} \in K$. By Binomial Theorem,

because
$$p$$
 divides $\frac{p^m!}{k!(p^m-k)!}$ for $k < p^m$. Hence $\alpha_1 + \alpha_2 \in K$. By Sinomial Theorem,

If p = 2, then $-\alpha = \alpha \in K$. If p > 2, then p^m is odd. Hence $(-\alpha)^{p^m} = (-1)^{p^m} \alpha^{p^m} = -\alpha$. Hence $-\alpha \in K$. We conclude that K is a Don't forget to check 0,1 EK

Suppose that n = km for $k \in \mathbb{Z}_+$. Then

$$p^{km} - 1 = (p-1)(p^{km-1} + \dots + p+1) = (p-1)(p^{m-1} + \dots + p+1)(p^{(k-1)m} + \dots + p^m + 1) = (p^m - 1)(p^{(k-1)m} + \dots + p^m + 1)$$

Hence $p^m - 1$ divides $p^n - 1$ in $\mathbb{Z}[x]$.

Note that $x^{p^m} - x = x(x^{p^m-1} - 1)$ and $x^{p^n} - x = x(x^{p^n-1} - 1)$. Since $p_{\underline{m}}^{\bullet} - 1$ divides $p^n - 1$ in \mathbb{Z} , we have $(x^{p^m-1} - 1)$ divides $(x^{p^n-1}-1)$ in $x \in \mathbb{Z}[x]$. Hence $x^{p^m}-x$ divides $x^{p^n}-x$ in $\mathbb{F}_p[x]$.

"by same argument as above, with P +>> x"

Question 7

(a) Let $f(x) = x^3 - s_1 x^2 + s_2 x - s_3 = (x - \alpha)(x - \beta)(x - \gamma) \in \mathbb{Q}[x]$ where $\alpha, \beta, \gamma \in \mathbb{C}$. Denoting $\sigma_i = \alpha^i + \beta^i + \gamma^i$ for $i \ge 0$, show that $\sigma_0 = 3$, $\sigma_1 = s_1$ and $\sigma_2 = s_1^2 - 2s_2$ Show further that

$$\sigma_r = s_1\sigma_{r-1} - s_2\sigma_{r-2} + s_3\sigma_{r-3}$$

for all $r \ge 3$.

(b) Let $\delta = (\alpha - \beta)(\alpha - \gamma)(\beta - \gamma)$ and $\Delta = \delta^2$. Show that

$$\Delta = -4s_1^3 s_3 + s_1^2 s_2^2 + 18s_1 s_2 s_3 - 4s_2^3 - 27s_3^2$$

[Hint: You may find it useful to consider the Van der Monde determinant

$$\det \left(\begin{array}{ccc} 1 & 1 & 1 \\ \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \end{array} \right)$$

and the determinant of this matrix multiplied by its transpose to deduce first that

$$\Delta = \det \left(\begin{array}{ccc} \sigma_0 & \sigma_1 & \sigma_2 \\ \sigma_1 & \sigma_2 & \sigma_3 \\ \sigma_2 & \sigma_3 & \sigma_4 \end{array} \right).]$$

Proof. (a) By comparing the coefficients we observe that

$$s_1 = \alpha + \beta + \gamma$$
 $s_2 = \alpha \beta + \beta \gamma + \gamma \alpha$ $s_3 = \alpha \beta \gamma$

Hence
$$\sigma_0 = \alpha^0 + \beta^0 + \gamma^0 = 3$$
. $\sigma_1 = \alpha + \beta + \gamma = s_1$. $\sigma_2 = \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) = s_1^2 - 2s_2$.

In general, we expand the expression below

$$s_1\sigma_{r-1} - s_2\sigma_{r-2} + s_3\sigma_{r-3} = (\alpha + \beta + \gamma)(\alpha^{r-1} + \beta^{r-1} + \gamma^{r-1}) - (\alpha\beta + \beta\gamma + \gamma\alpha)(\alpha^{r-2} + \beta^{r-2} + \gamma^{r-2}) + \alpha\beta\gamma(\alpha^{r-3} + \beta^{r-3} + \gamma^{r-3})$$

$$= \alpha^r + \beta^r + \gamma^r$$
Perhaps show more working
$$= \sigma_r$$

(b) First we calculate σ_3 and σ_4 :

$$\sigma_3 = s_1 \sigma_2 - s_2 \sigma_1 + s_3 \sigma_0 = s_1^3 - 2s_1 s_2 - s_1 s_2 + 3s_3 = s_1^3 - 3s_1 s_2 + 3s_3$$

$$\sigma_4 = s_1 \sigma_3 - s_2 \sigma_2 + s_3 \sigma_1 = s_1^4 - 3s_1^2 s_2 + 3s_1 s_3 - s_1^2 s_2 - 2s_2^2 + s_1 s_3 = s_1^4 - 4s_1^2 s_2 + 4s_1 s_3 - 2s_2^2$$

It is well known that the van de Monde determinant satisfies

$$(\alpha - \beta)(\alpha - \gamma)(\beta - \gamma) = \det \begin{pmatrix} 1 & 1 & 1 \\ \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \end{pmatrix}$$

Hence

$$\Delta = (\alpha - \beta)^{2}(\alpha - \gamma)^{2}(\beta - \gamma)^{2} = \det \begin{pmatrix} 1 & 1 & 1 \\ \alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ \alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \end{pmatrix}^{T} = \det \begin{pmatrix} 3 & \alpha + \beta + \gamma & \alpha^{2} + \beta^{2} + \gamma^{2} \\ \alpha + \beta + \gamma & \alpha^{2} + \beta^{2} + \gamma^{2} & \alpha^{3} + \beta^{3} + \gamma^{3} \\ \alpha^{2} + \beta^{2} + \gamma^{2} & \alpha^{3} + \beta^{3} + \gamma^{3} & \alpha^{4} + \beta^{4} + \gamma^{4} \end{pmatrix}$$

$$= \det \begin{pmatrix} \sigma_{0} & \sigma_{1} & \sigma_{2} \\ \sigma_{1} & \sigma_{2} & \sigma_{3} \\ \sigma_{2} & \sigma_{3} & \sigma_{4} - s_{1}\sigma_{3} + s_{2}\sigma_{2} \end{pmatrix} = \det \begin{pmatrix} \sigma_{0} & \sigma_{1} & s_{2} \\ \sigma_{1} & \sigma_{2} & s_{3}\sigma_{0} \\ \sigma_{2} & \sigma_{3} & s_{3}\sigma_{1} \end{pmatrix} = \det \begin{pmatrix} \sigma_{0} & \sigma_{1} & s_{2} \\ \sigma_{1} & \sigma_{2} & 3s_{3} \\ \sigma_{2} & \sigma_{3} & s_{1}s_{3} \end{pmatrix}$$

$$= \det \begin{pmatrix} \sigma_{0} & \sigma_{1} & s_{2} \\ \sigma_{1} & \sigma_{2} & 3s_{3} \\ \sigma_{2} - s_{1}\sigma_{1} + s_{2}\sigma_{0} & \sigma_{3} - s_{1}\sigma_{2} + s_{2}\sigma_{1} \\ \sigma_{1} & s_{2} - s_{1}\sigma_{1} + s_{2}\sigma_{0} & \sigma_{3} - s_{1}\sigma_{2} + s_{2}\sigma_{1} \\ s_{1} & s_{1}^{2} - 2s_{2} & 3s_{3} \\ s_{2} & 3s_{3} & s_{2}^{2} - 2s_{1}s_{3} \end{pmatrix} = 3 \begin{pmatrix} (s_{1}^{2} - 2s_{2})(s_{2}^{2} - 2s_{1}s_{3}) - 9s_{3}^{2} \end{pmatrix} - s_{1} \left(s_{1}(s_{2}^{2} - 2s_{1}s_{3}) - 3s_{2}s_{3} \right) + s_{2} \left(3s_{1}s_{3} - s_{2}(s_{1}^{2} - 2s_{2}) \right)$$

$$= 18s_{1}s_{2}s_{3} + s_{1}^{2}s_{2}^{2} - 4s_{2}^{3} - 4s_{1}^{3}s_{3} - 27s_{3}^{3}$$

Question 8

Let E/F be an extension field of prime degree ℓ and let $\alpha \in E \setminus F$. Let M_{α} be F-linear map induced by the multiplication by α :

$$M_{\alpha}: E \to E$$

 $u \mapsto \alpha \cdot u$

Show that the characteristic polynomial of M_{α} is equal to the minimal polynomial of α . [Hint: Cayley-Hamilton.]

Proof. Consider the tower of field extensions: $F \subseteq F[\alpha] \subseteq E$. By tower law, $[F[\alpha]:F]$ divides $\ell = [E:F]$. Since ℓ is prime and $\alpha \notin F$, $[F[\alpha]:F] = \ell$ and hence $E = F[\alpha]$.

We claim that $\{1, \alpha, ..., \alpha^{\ell-1}\}$ is a basis of $E = F[\alpha]$. let m be the minimal polynomial of α over F. For $f \in F[x]$, by division algorithm, there exists $q, r \in F[x]$ such that f = qm + r and $\deg r < \deg m = \ell$. Then

$$f(\alpha) = r(\alpha) = a_0 + a_1 \alpha + \dots + a_{\ell-1} \alpha^{\ell-1} \in \text{span}\{1, \alpha, \dots, \alpha^{\ell-1}\}\$$

That is, $\{1, \alpha, ..., \alpha^{\ell-1}\}$ spans $F[\alpha]$. On the other hand, suppose that $a_0, ..., a_{\ell-1} \in F$ such that $a_0 + a_1\alpha + \cdots + a_{\ell-1}\alpha^{\ell-1} = 0$. Then $a_0 = \cdots = a_{\ell-1} = 0$ by minimality of of degree of m. Hence $\{1, \alpha, ..., \alpha^{\ell-1}\}$ is linearly independent.

Let $m(x) = x^{\ell} + a_{\ell-1}x^{\ell-1} + \cdots + a_1x + a_0$ be the minimal polynomial of α . Then

$$\alpha^{\ell} = -(a_{\ell-1}x^{\ell-1} + \dots + a_1x + a_0)$$

With respect to the basis $\{1, \alpha, ..., \alpha^{\ell-1}\}$, the matrix of M_{α} is the (transpose of) companion matrix of m:

$$egin{pmatrix} 0 & 1 & & & & & \ & \ddots & \ddots & & & \ & & 0 & 1 \ -a_0 & \cdots & -a_{\ell-2} & -a_{\ell-1} \end{pmatrix}$$

From linear algebra wo know that the characteristic polynomial of this matrix is exactly *m*, which finishes the proof.

