
Peize Liu
St. Peter’s College

University of Oxford

Problem Sheet 4

Gravitational Radiation

B5: General Relativity

13 March, 2020



1

Question 1. The Burke-Thorne Potential.

Consider the following unusual Newtonian potential, due to Burke and Thorne:

Φ=
G J (5)

i j

5c7 xi x j

where J (5)
i j is the traceless (energy) moment of inertia tensor, differentiated five times with respect to time:

Ji j = c2 d 5

d t 5

[∫
ρ

(
xi x j −δi j r 2/3

)
dV

]
= d 5

d t 5

[
Ii j −δi j Ikk /3

]
Ii j = c2

∫
ρxi x j dV is the standard moment of inertia tensor. The indices i and j represent spatial Cartesian coordinates, and

we use the Minkowski metric, so spatial index placement is unimportant. The radius r 2 = xi xi . Show that this potential gives
rise to a force, −∂iΦ exactly analogous to the "radiation reaction force" in electromagnetism. In other words, show that we
recover Einstein’s gravitational energy loss formula,

dE

d t
=

〈
−

∫
ρvi∂iΦdV

〉
=− G

5c9

〈 ...
J i j

...
J i j

〉
which states that the work done by the force, averaged over time (this is the meaning of the angle brackets 〈〉) equals the rate
at which energy is lost from the system. This also works for angular momentum loss as well. Show that:

dL

d t
=−

〈∫
εi j kρxi∂ jΦdV

〉
=− 2G

5c9

〈
εi mk ...

J mn J̈i n

〉
which states that the effect of ‘r×F’ torque, averaged over time, equals the angular momentum loss.

Here are some hints:

i) When in doubt, integrate by parts, either in time or in space.

ii) The equation of mass conservation

∂ρ

∂t
+ ∂

(
ρvi

)
∂xi

= 0

is used for the energy loss formula derivation. (You don’t have to take the time here to prove this, though you should be
familiar with it by now.)

iii) You will also need

Ji j Ji j = Ii j Ii j − Ii i I j j /3

Show this result if you want to use it!

iv) You should find that for the angular momentum loss formula, the result holds either for the traceless moment of intertia
Ji j or for Ii j

Proof. For physical reason we must have ρ→ 0 as ‖x‖ →∞. We process the spatial integral first.

−
∫
R3
ρvi∂iΦdV =

∫
R3

(−∂i
(
ρviΦ

)+Φ∂i (ρvi )
)

dV

=
∫
R3
Φ∂i (ρvi )dV

=
∫
R3

−Φ∂tρdV (mass conservation)

We have assumed that
∫
R3
∂i

(
ρviΦ

)
dV = 0 because we can integrate the xi component by Fubini’s Theorem and use ρ→ 0

as |xi |→∞.
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Next we process the time-average energy loss. Let τ be the period of the system.

dE

dt
= 1

τ

∫ τ

0

(
−

∫
R3
ρvi∂iΦdV

)
dt

= 1

τ

∫ τ

0

(∫
R3

−Φ∂tρdV

)
dt

= 1

τ

∫
R3

(∫ τ

0
−Φ∂tρdt

)
dV

= 1

τ

∫
R3

(∫ τ

0

(−∂t (ρΦ)+ρ∂tΦ
)

dt

)
dV

= 1

τ

∫
R3

(∫ τ

0
ρ∂tΦdt

)
dV

= 1

τ

∫
R3

(∫ τ

0
ρ

G

5c7 J (6)
j k x j xk dt

)
dV

= 1

τ

∫ τ

0

(∫
R3
ρx j xk dV

)
G

5c7 J (6)
j k dt

= 1

τ

∫ τ

0

G

5c9 J (6)
j k I j k dt

=−1

τ

∫ τ

0

G

5c9

...
J j k

...
I j k dt (partial integration 3 times)

We claim that
...
J j k

...
I j k = ...

J j k
...
J j k .

...
J j k

...
J j k = ( ...

I j k −δ j k Imm/3
)( ...

I j k −δ j k Inn/3
)

= ...
I j k

...
I j k −2

...
I j j

...
I mm/3+3 · ...

I mm
...
I nn/9

= ...
I j k

...
I j k −

...
I j j

...
I ``/3

= ...
I j k

( ...
I j k −

...
I j kδ j k

...
I ``/3

)
= ...

I j k
...
J j k

Hence we deduce that
dE

dt
=− G

5c9

〈 ...
I j k

....
J j k

〉=− G

5c9

〈 ...
J j k

....
J j k

〉
Now we turn to angular momentum. We process the spatial integral:

−
∫
R3
εi j kρxi∂ jΦdV =−

∫
R3
εi j kρxi

G J (5)
mn

5c7 ∂ j (xm xn)dV

We claim that J (5)
mn∂ j (xm xn) = 2J (5)

j m xm . For m,n 6= j , ∂ j (xm xn) = 0. For m = j ,n 6= j or m 6= j ,n = j , J (5)
mn∂ j (xm xn) = J (5)

mn xm

because J (5)
mn is symmetric. For m = n = j , ∂ j (xm xn) = 2xm . This justifies the claim.

Hence

−
∫
R3
εi j kρxi∂ jΦdV =−

∫
R3
εi j kρxi

2G J (5)
j m

5c7 xm dV

=−εi j k
2G J (5)

j m

5c7

∫
R3
ρxi xm dV

=−εi j k 2G

5c9 J (5)
j m Ii m

For similar reason as above, we have J (5)
j m Ii m = J (5)

j m Ji m . Next we process the time-average angular momentum loss.

dLk

dt
= 1

τ

∫ τ

0
−εi j k 2G

5c9 J (5)
j m Ji m dt =−1

τ

∫ τ

0
εi j k 2G

5c9

...
J j m J̈i m dt =− 2G

5c9

〈
εi j k J j m J̈i m

〉
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Question 2. Desert island GR.

Here we will construct a linear, weak field theory gravity from scratch. Then we will construct GR from scratch! (Well, practi-
cally.)

Imagine that it is 1912. Minkowski has formulated the concept of his spacetime geometry (1908). Einstein has had his happy
(1907) Equivalence Principle thought, and has just understood that gravity is a Riemannian geometric theory of a curved
Minkowski spacetime, and that the name of the game is to relate the derivatives of gµν to Tµν. But he knows nothing more.
Let’s help him out.

a) Our weak gravity field equation will need, on the left side, a sum of second derivatives of gµν. More conveniently, we use
derivatives of the small quantity hµν = gµν−ηµν. Not only is the background spacetime geometry flat Minkowski, our
coordinates are very close to Cartesian. So, with h ≡ hρρ , there are but five combinations that could possibly appear:

ähµν, ∂µ∂νh,
(
∂ρ∂µhρν +∂ρ∂νhρµ

)
, ηµνäh, ηµν∂ρ∂λhρλ(ä≡ ∂ρ∂ρ . We use the handy notation ∂µ = ∂/∂xµ,∂µ = ∂/∂xµ, and raise and lower indices on hµν with ηρµ.

)
Justify this

statement and explain fully.

b) We accordingly search for an equation of the form:

ähµν+α
(
∂ρ∂µhρν +∂ρ∂νhρµ

)+β∂µ∂νh +ηµν
(
γäh +δ∂ρ∂λhρλ

)
=C Tµν

whereα,β,γ,δ and C are constants to be determined. You remember, of course, the stress tensor Tµν, now in Newtonian
guise. We demand that ∂µTµν = 0 as an identity. What is the reason for this? Show that α=−1,δ= 1,γ=−β follow:

ähµν−
(
∂ρ∂µhρν +∂ρ∂νhρµ

)+β∂µ∂νh −ηµν
(
βäh −∂ρ∂λhρλ

)
=C Tµν

c) By taking the trace of this last equation and using T00 À Ti i (valid in the Newtonian limit - why?), show that

∂ρ∂λhρλ = 3β−1

2
äh − C T00

2

Be careful with signs and up-down indices.

d) Taking the static Newtonian limit of the (2b) final equation, show that

∇2h00 + 1−β
2

∇2h = C

2
T00

where ∇2 is the usual Laplacian operator. Explain why this implies β= 1 and C =−16πG :

ähµν−
(
∂ρ∂µhρν +∂ρ∂νhρµ

)+∂µ∂νh −ηµν
(
äh −∂ρ∂λhρλ

)
=−16πGTµν

Compare this with section (9.1) in the notes and comment.

e) Given that the Ricci tensor Rµν and gµνRρ
ρ are the only second rank tensors that are linear in the second derivatives of

the metric tensor gµν when the curvature is weak, explain why the general field equations must take the form

Rµν−
gµνR

2
=−8πGTµν

where R ≡ Rρ
ρ . Notice: not a Bianchi identity in sight. If Einstein could only have seen this in 1912.

Proof. a) In general the second-derivative of hµν is ∂ρ∂λhµν, which is a (coordinate-dependent) type (0,4) tensor. Since Tµν is a
symmetric tensor of type (0,2), we need to raise one index of ∂ρ∂λhµν and contract it to obtain a symmetric type (0,2)
tensor.

Since hµν is symmetric and ∂ρ is torsion-free, the possible type (1,3) tensors are ∂ρ∂λhµν and ∂ρ∂λhµν. Now we enumer-
ate their possible contractions (with symmetrisations):

∂ρ∂{µhν}ρ = ∂ρ∂{µhρν} =
1

2

(
∂ρ∂µhρν +∂ρ∂νhρµ

)
, ∂µ∂νhρρ = ∂µ∂νh, ∂ρ∂ρhµν =ähµν



4

We can also raise two indices to obtain a type (2,2) tensor and contract it to a scalar. The possibilities are

∂ρ∂ρhλλ = ∂ρ∂ρhλλ = ∂ρ∂ρhλλ =äh, ∂ρ∂λhρλ = ∂ρ∂λhλρ = ∂ρ∂λhρλ

The scalars acting on Minkowski metric ηµν are also candidates of the field equation. In summary, our field tensor
would be the linear combination of

ähµν, ∂µ∂νh,
(
∂ρ∂µhρν +∂ρ∂νhρµ

)
, ηµνäh, ηµν∂ρ∂λhρλ

b) It would be clear to write gµν = ηµν+εγµν for ε¿ 1, so that we know that hµν = εγµν is of order ε. The linear combina-
tions in (a) is of order ε. So the energy-momentum tensor Tµν is also of order ε. We know that it is divergenceless:

∇µT µ
ν = 0

Accordingly, we need an asymptotic expansion of ∇µ to order 1. Note that the Christoffel symbol

Γ
µ

νλ
= 1

2
gµσ

(
∂νgσλ+∂λgσν−∂σgνλ

)= 1

2
ηµσ (∂νhσλ+∂λhσν−∂σhνλ)+O(ε2)

It vanishes at order 1. Therefore ∇µ = ∂µ at order 1. Therefore at O(ε) we have

∂µT µ
ν = ∂µTµν = 0

Next we apply ∂µ to the left hand side of the equation:

0 = ∂µ
(
ähµν+α

(
∂ρ∂µhρν +∂ρ∂νhρµ

)+β∂µ∂νh +ηµν
(
γäh +δ∂ρ∂λhρλ

))
=ä∂µhµν+αä∂ρhρν +α∂ρ∂ν∂µhρµ+βä∂νh +γä∂νh +δ∂ρ∂λ∂νhρλ

= (α+1)ä∂µhµν+ (α+δ)∂ρ∂ν∂
µhρµ+ (β+γ)ä∂νh

Hence
α+1 = 0, α+δ= 0, β+γ= 0

We deduce that α=−1, β= γ, and δ= 1. Hence the field equation becomes

ähµν−
(
∂ρ∂µhρν +∂ρ∂νhρµ

)+β∂µ∂νh −ηµν
(
βäh −∂ρ∂λhρλ

)
=C Tµν

c) Technically we need to raise an index before taking trace, which is equivalent to acting ηµν on both sides of the equation.
On the RHS, we have

ηµνTµν =−T00 +T i i

From the expression of the energy-momentum tensor

Tµν = P gµν+
(
ρ+ P

c2

)
UµUν

In the Newtonian limit, c →∞. So the 4-velocity is given by

U = dt

dτ

(
−c∂t + v i∂i

)
≈−c∂t =⇒ U [ ≈ cdt

We have T ≈ ρc2dt 2 or T00 À Ti i . Hence ηµνTµν ≈−T00.

On the LHS, we have

ηµν
(
ähµν−

(
∂ρ∂µhρν +∂ρ∂νhρµ

)+β∂µ∂νh −ηµν
(
βäh −∂ρ∂λhρλ

))
=äh −2∂ρ∂λhρλ+βäh −4

(
βäh −∂ρ∂λhρλ

)
= (1−3β)äh +2∂ρ∂λhρλ

Hence

(1−3β)äh +2∂ρ∂λhρλ =−C T00 =⇒ ∂ρ∂λhρλ = 3β−1

2
äh − C

2
T00

Pietro
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d) In the static Newtonian limit, ∂0 = 0 and hence ä=∇2. We take the (0,0) component of the equation in (b):

∇2h00 +
(
β∇2h −∂ρ∂λhρλ

)
=C T00

Substituting the result of (c):

∇2h00 +
(
β∇2h −

(
3β−1

2
∇2h − C

2
T00

))
=C T00 =⇒ ∇2h00 + 1−β

2
∇2h = C

2
T00

Next we shall relate the classical gravitational potentialϕwith the perturbation in metric hµν. From the geodesic equa-
tion:

dxµ

dτ
+Γµ

νλ

dxµ

dτ

dxλ

dτ
= 0

In the Newtonian limit, τ≈ t and

∣∣∣∣dxi

dτ

∣∣∣∣¿ dx0

dτ
≈ c. We have

d2xi

dt 2 + c2Γi
00 = 0

where

Γi
00 ≈ ηiσ

(
∂0h0σ− 1

2
∂σh00

)
≈−1

2
∂i h00

Comparing with the classical Newton second law:

d2xi

dt 2 =−∂iϕ

We find that (up to a constant)

ϕ= c2

2
h00

Substituting back to the equation in (d):
2

c2 ∇2ϕ+ 1−β
2

∇2h = C

2
ρc2

Recall that the Newtonian gravity satisfies the Poisson equation:

∇2ϕ=−4πGρ

We find that β= 1 and C =−16πG

c4 . We have:

ähµν−
(
∂ρ∂µhρν +∂ρ∂νhρµ

)+∂µ∂νh −ηµν
(
äh −∂ρ∂λhρλ

)
=−16πGTµν

This is exactly Equation (512) in the notes. In this way, we construct a linearised theory from scratch and obtain the
same equation as does in directly linearise the Einstein field equation.

e) We assume that the Einstein tensor is homogeneous in the second derivatives of the metric. Then the field equation
takes the form

Rµν+agµνR = bTµν

for some constants a,b. We can expand the LHS as in Section 9.1 of the notes, and then compare the coefficients with

the equation we obtain in (d). In this way we can determine the constants a =−1

2
and b =−8πG

c4 .

Question 3. Coordinate sinuosities, the speed of gravitational radiation, and the harmonic gauge.

a) Recall the linear fully covariant curvature tensor:

Rλµνκ =
1

2

(
∂2hλν
∂xκ∂xµ

− ∂2hµν

∂xκ∂xλ
− ∂2hλκ
∂xµ∂xν

+ ∂2hµκ

∂xν∂xλ

)

Pietro
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For a plane wave of the form hµν = Aµν exp
(
i kρxρ

)
travelling in vacuum, show that

Rλµνκ =
1

2

(−kκkµhλν+kκkλhµν+kµkνhλκ−kνkλhµκ
)

and that the linear vacuum field equation is

kκkρhρµ+kµkρhρκ−k2hµκ = 0

where hµν = hµν−ηµνh/2 and k2 = kρkρ . We do not yet assume that k2 = 0, but shall try to deduce this.

b) Show that if k2 6= 0 then Rλµνκ = 0. Yikes! No curvature. A mere coordinate sinuosity propagating at the speed of thought.

c) Finally, show that if we consider only disturbances propagating at the speed of light, then we must have kρhρσ = 0. In
other words, the harmonic gauge condition must be satisfied. You want gravitational radiation to travel at the speed of
light and to actually produce curvature? No choice: use a harmonic gauge.

Proof. a) For the plane wave metric hµν = Aµν exp
(
ikρxρ

)
, we have

∂λhµν = ∂λ
(

Aµν exp
(
ikρxρ

))= Aµν exp
(
ikρxρ

)
∂λ

(
ikρxρ

)= ikλhµν

The type (0,4) Riemann curvature tensor is given by

Rλµνκ = ∂κ∂[µgλ]ν−∂ν∂[µgλ]κ =−kκk[µhλ]ν+kνk[µhλ]κ =
1

2

(−kκkµhλν+kκkλhµν+kνkµhλκ−kνkλhµκ
)

The Ricci curvature tensor is given by

Rµκ = gλνRλµνκ ≈ ηλν
(−kκk[µhλ]ν+kνk[µhλ]κ

)= 1

2

(
kλkκhλµ+kλkµhλκ −kκkµh −k2hµκ

)
For the trace-reversed metric perturbation hµν = hµν− 1

2
ηµνh, we find that

kκkρhρµ+kµkρhρκ = kκkρhρµ+kµkρhρκ−kµkκh

Therefore
Rµκ = kκkρhρµ+kµkρhρκ−k2hµκ

The vacuum field equation Rµκ = 0 is simply

kκkρhρµ+kµkρhρκ−k2hµκ = 0

b) We have a gauge freedom in that the geometry is invariant under the infinitesimal diffeomorphism ξ, that is, g 7→
g +Lξη or hµν 7→ hµν+∂µξν+∂νξµ. As in the notes we can choose the harmonic gauge äξµ = −∂ρhµρ , which gives
∂ρhµρ = 0. Hence we have

k2hµκ = 0

If k2 6= 0, then hµκ = 0, gµκ = ηµν and Rλµνκ = 0. The spacetime is flat.

c) From (b) we know that k2 = 0 for curvature-producing gravitational plane wave. Therefore the field equation becomes

kκkρhρµ+kµkρhρκ = 0

(I think this equation is insufficient to determine that kρhρµ = 0...)

Question 4. Radiation from a parabolic fly by.

The Peters-Mathews formula for the time-averaged gravitational wave luminosity of a binary system in an elliptical orbit (with

Pietro
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semi-major axis a, masses m1 and m2, M ≡ m1 +m2, eccentricity e) is given by (c is now back in the equation):

〈LGW 〉 = 32

5

G4

c5

m2
1m2

2M

a5

[
1+ (73/24)ε2 + (37/96)ε4(

1−ε2
)7/2

]

It’s derivation is outlined in the notes (§9.6), or you may take it on perfect good faith from your humble instructor, however
startling it may seem. Using this result, show that the total gravitational wave energy emitted by a single parabolic encounter
between two bodies is

EGW = 85π
p

2

24

G7/2M 1/2m2
1m2

2

c5b7/2

where b is radius of closest approach. Recall that for a parabolic orbit, the radius r and aximuthφ are related by r (1+cosφ) = L,
where L = a

(
1−ε2

)
is the "semi-latus rectum," a constant. A parabola corresponds to the ε→ 1 limit, with a

(
1−ε2

)= L finite.
You may find the material in §6.8.1 useful.

Proof.
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