Peize Liu
St. Peter’s College
University of Oxford

Problem Sheet 4
Gravitational Radiation

B5: General Relativity

13 March, 2020



Question 1. The Burke-Thorne Potential.

Consider the following unusual Newtonian potential, due to Burke and Thorne:
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where J S’) is the traceless (energy) moment of inertia tensor, differentiated five times with respect to time:

2 d5 2 d5
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Iij = [ px;x;dV is the standard moment of inertia tensor. The indices i and j represent spatial Cartesian coordinates, and
we use the Minkowski metric, so spatial index placement is unimportant. The radius 7% = x x. Show that this potential gives
rise to a force, —0;® exactly analogous to the "radiation reaction force" in electromagnetism. In other words, show that we
recover Einstein’s gravitational energy loss formula,

E:<—\/‘pviai®dv>=—@<]ij]ij>

which states that the work done by the force, averaged over time (this is the meaning of the angle brackets ()) equals the rate
at which energy is lost from the system. This also works for angular momentum loss as well. Show that:

% =- <f€ijkpxi6jq)dv> = —:TGQ <€imk ']"mnfin>
which states that the effect of ‘r x F’ torque, averaged over time, equals the angular momentum loss.
Here are some hints:

i) When in doubt, integrate by parts, either in time or in space.

ii) The equation of mass conservation

dp , 0(pvi) _
ot axi

is used for the energy loss formula derivation. (You don’t have to take the time here to prove this, though you should be
familiar with it by now.)

iii) You will also need
ijJij=lijlij—1iil};/3
Show this result if you want to use it!

iv) You should find that for the angular momentum loss formula, the result holds either for the traceless moment of intertia
Jij orfor I;j

Proof. For physical reason we must have p — 0 as [|z|| — co. We process the spatial integral first.

_f[Rspviai(deszs (-0i (pvi®) + ®3; (pvy)) AV
:f ®o;(pv;)dV
R3

= f , —-®4,pdV (mass conservation)
R

We have assumed that f , 9; (pvi®)dV = 0 because we can integrate the x* component by Fubini’s Theorem and use p — 0

as |x;| — oo. \_R/t/\/\/
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Next we process the time-average energy loss. Let 7 be the period of the system.
dE 1 (7
— == - ;0;2dV |dt
dr = f ( f pridi )
—-®a;p dV) dt
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=-Z f — Jji I jrdt (partial integration 3 times)
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We claim that J jx T jx= T jk J jk-
T e T jie= (T j =8 jxLmnm!3) (T jc = 8 jxInnl3)
= Ifkljk_ZIjj Imm/3+3' Imm Inn/g
=Tjl je="T5;T¢el3
= 1jk(1jk— 10k 1 ce/3)

=TT jk

Hence we deduce that
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Now we turn to angular momentum. We process the spatial integral:

—f E”kpxiaj@dV:—f kox; m"@ (x"x™MdVv
R3 RS

We claim that ](5) 0j(x"x") = 2](‘5) x™. For m,n # j, 0-(xmx”) =0.Form=j,n#jorm#jn=j, J,(f;),,aj(xmx”) = ]ﬁ,sl)nxm
because /%), is symmetric. For m=n = j, d;(x™x™) = 2x™. This justifies the claim.
Hence

](5)
—| €l*px;0;0dV =~ 2 xmdv
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For similar reason as above, we have ];5,1)1 Lim = ];5,1)1 Jim- Next we process the time-average angular momentum loss.
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Question 2. Desert island GR.

Here we will construct a linear, weak field theory gravity from scratch. Then we will construct GR from scratch! (Well, practi-

cally.)

Imagine that it is 1912. Minkowski has formulated the concept of his spacetime geometry (1908). Einstein has had his happy
(1907) Equivalence Principle thought, and has just understood that gravity is a Riemannian geometric theory of a curved
Minkowski spacetime, and that the name of the game is to relate the derivatives of g, to T,. But he knows nothing more.
Let’s help him out.

a)

b)

c)

d)

e)

Proof.

Our weak gravity field equation will need, on the left side, a sum of second derivatives of g,,,. More conveniently, we use
derivatives of the small quantity h;, = g,v — nyv. Not only is the background spacetime geometry flat Minkowski, our
coordinates are very close to Cartesian. So, with i = hz, there are but five combinations that could possibly appear:

Ohyv,  0udvh,  (0p0uhY +0,0,h0), nuwOh, 10,0, kP

(O=0Pa,. We use the handy notation 0* = 0/9dx,0, = 8/0x*, and raise and lower indices on hy, with n°*.) Justify this
statement and explain fully.

We accordingly search for an equation of the form:
Oy + @ (0p0uh +3p0y hf) + 0,0y b+ Ny (YO + 60,01 hPY) = C Ty,

where a, §,7,6 and C are constants to be determined. You remember, of course, the stress tensor T},,, now in Newtonian
guise. We demand that 6 T),, = 0 as an identity. What is the reason for this? Show that a = —1,6 = 1,y = - follow:

Oy — (9p0hl) + 00y 15) + B0 h 11y (ﬁmh—apaﬂhﬂ) = CTy

By taking the trace of this last equation and using Ty > Tj; (valid in the Newtonian limit - why?), show that

36-1 CT
8,0, hP* = 3Pl TOO
Be careful with signs and up-down indices.

Taking the static Newtonian limit of the (2b) final equation, show that

1- C
V2h00 + T’szh = ETOO

where V? is the usual Laplacian operator. Explain why this implies =1 and C = —167G :
Oy = (0p0uh +3p0y hf) + 0,0y~ 1y (Oh = 0,01 hPY) = ~167G Ty,

Compare this with section (9.1) in the notes and comment.

Given that the Ricci tensor R,y and gung are the only second rank tensors that are linear in the second derivatives of
the metric tensor g, when the curvature is weak, explain why the general field equations must take the form

R
Ry — — = -87GTyy
where R = R;,) . Notice: not a Bianchi identity in sight. If Einstein could only have seen this in 1912.

a) In general the second-derivative of hyy is 6,,0 Ahuy, which is a (coordinate-dependent) type (0,4) tensor. Since Ty, is a
symmetric tensor of type (0,2), we need to raise one index of 8,0, h,, and contract it to obtain a symmetric type (0,2)
tensor.

Since hy,y is symmetric and 9, is torsion-free, the possible type (1,3) tensors are 4,0, h! and 0°d, hyv. Now we enumer-
ate their possible contractions (with symmetrisations):

1
0P 0y hyyp = 00y hf), = 5 (0,0, 1y + 0,0, hy), 0,0,hh =0,0,h, 00, hyy = Ohyy



b)

c)

We can also raise two indices to obtain a type (2,2) tensor and contract it to a scalar. The possibilities are
0,0, = 0P, h} = 0P8 hyy =0k, 0p0phPt =00y = 070"y

The scalars acting on Minkowski metric 77, are also candidates of the field equation. In summary, our field tensor
would be the linear combination of

V4
Ohyv, 0udvh,  (0p0uhY +0,0,h0), nuwDh, 10,0, hP*

It would be clear to write g,y = v + €Yy for € < 1, so that we know that hy,, = £y, is of order ¢. The linear combina-
tions in (a) is of order €. So the energy-momentum tensor T, is also of order €. We know that it is divergenceless:

VuTh =0

Accordingly, we need an asymptotic expansion of V, to order 1. Note that the Christoffel symbol

1 1
F':,l = Eg'ug (avgml +0)8ov — 6agwl) = E””U (Oyhgr+0rhgy —0ghyp) + 0(52)
It vanishes at order 1. Therefore V,, = d,, at order 1. Therefore at O(¢) we have \/

0uTH =0"Tyy =0
Next we apply 0* to the left hand side of the equation:
0= 0% (Thyy + @ (3p0, 1Y + 0,0, ) + BO,Ov h -+ 1y (YO + 60,0, 1Y)

=00 hyy + @00, b + ad 0,0 k) + OOy h +yDdy h+ 50,08, h**
= (@ + 100" hyyy + (@ +6)0,0,0" by, + (B +y)0dy h

Hence
a+1=0, a+6=0, B+y=0

We deduce that a = -1, f =7, and 6§ = 1. Hence the field equation becomes

Ohyy = (0p0u b + 30y hE) + B4y =1y (,BDh—Opa;th’l) =CTyy

Technically we need to raise an index before taking trace, which is equivalent to acting n** on both sides of the equation.
On the RHS, we have
1’]”WT‘W =—Too+ T"

From the expression of the energy-momentum tensor

U, Uy

P
Ty =Pgm+(p+ )

In the Newtonian limit, ¢ — oco. So the 4-velocity is given by

dr ,
U:—(—cat+vl6i):—cat — U’ ~cdt \/
dr

We have T ~ pc?dt? or Tog > Tj;. Hence nHY Ty, = — Top.

On the LHS, we have
0 (Ohyy — (0p0uh +0p0y hE) + 0,0y b=y (BOR = 0,01 h*)) = O = 20,0, h°* + B0 — 4 BOh - 0,0, 1"
= (1-38)0h+20,0, h**

Hence 5 ) c
(1-3B)0h+28,0,h"* = ~CToy => 8,0, h"* = ﬁT_Dh— > Too
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d) In the static Newtonian limit, 8y = 0 and hence O = V2. We take the (0,0) component of the equation in (b):

v2h00+(ﬁv2h_apaﬂ,hpl) ZCTOO \/
Substituting the result of (c):

3p-1 C 1 C \/
V2h00+(,3V2h (ﬁ Vzh——Too))ZCT00$v2h00+ zﬁvzh——Too

Next we shall relate the classical gravitational potential ¢ with the perturbation in metric . From the geodesic equa-

tion:
dx* , dxt dx?

—_— + PR
dr vAdr dr

i dx 0
In the Newtonian limit, 7 = t and |— | < — =~ ¢. We have
dr dr
d2xi o
F +C FOO =0

where ) )
Too=n'? (aohw - Eaahoo = —Eaihoo

Comparing with the classical Newton second law:

d2xt
T
We find that (up to a constant)
— CZ h
¢ = 5 1100
Substituting back to the equation in (d):
2 o 1= ﬁ 2, _C
SVi9+——V'h= pc
c

Recall that the Newtonian gravity satisfies the Poisson equation:
Vz(p =—-4nGp \/

Ohyy — (8p0uhY + 0,0y h}y) + 0,0y h — 1y (Dh—apaﬂhpﬂ) =—16nG Ty \/

167G

We find that f=1and C = — . We have:

This is exactly Equation (512) in the notes. In this way, we construct a linearised theory from scratch and obtain the
same equation as does in directly linearise the Einstein field equation.

e) We assume that the Einstein tensor is homogeneous in the second derivatives of the metric. Then the field equation
takes the form
Ryv+aguwR =0Ty,

for some constants a, b. We can expand the LHS as in Section 9.1 of the notes, and then compare the coefficients with
8nG

1
the equation we obtain in (d). In this way we can determine the constants a = — 3 and b = -— O
c
Question 3. Coordinate sinuosities, the speed of gravitational radiation, and the harmonic gauge.

a) Recall the linear fully covariant curvature tensor:

Phav _ Chyy  Phax | OChyx

Ripve = = - -
v =5 | oxkoxt  ax<oxr  0xMAx’  oxvaxh
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For a plane wave of the form hy,, = Ay, exp (ik,x?) travelling in vacuum, show that

(=K K Pay + ek By + Kkey By — K T )

D=

R)L/WK =
and that the linear vacuum field equation is
K kP Ry + Ky kP Rpw — K2 By = 0

where Ry = hyy — 1,112 and k% = kP k,,. We do not yet assume that k? = 0, but shall try to deduce this.

b) Show that if k? # 0 then R Auvk = 0. Yikes! No curvature. A mere coordinate sinuosity propagating at the speed of thought.

Proof.

c) Finally, show that if we consider only disturbances propagating at the speed of light, then we must have kpﬁpg =0.In

other words, the harmonic gauge condition must be satisfied. You want gravitational radiation to travel at the speed of
light and to actually produce curvature? No choice: use a harmonic gauge.

a) For the plane wave metric hy, = Ay, exp(ik, x”), we have
0phyy =0y (Auy exp(ikyxP)) = Ayy exp(ik, xP)0y (ikp xP) = ikphyy \/

The type (0,4) Riemann curvature tensor is given by

(=K K Py + ek Ty + oy KTy — Ky ko T ) /

Do =

R)L/WK = aKa[HgMV - ava[ugllk =—ky k[ph/l]v + kvk[uhA]K =
The Ricci curvature tensor is given by

R#K:g’lvRM“,K :T]/lv (_kkk[uhlt]v+kvk[ph/1]1<) = (k,lkkhﬁ+k1kuh,/}—kkkph—k2huk) /

N | =

— 1
For the trace-reversed metric perturbation hyy = hyy — 517 uvh, we find that
ki kP Moy + kP Rpxe = K kP Bpy + K kP Bpx — Ky ki h

Therefore \/
- - 2
Ryx = ki kP hpy + kP howe — k%

The vacuum field equation Ry, = 0 is simply

ki kP oy + kP Bpx — K2 By = 0

b) We have a gauge freedom in that the geometry is invariant under the infinitesimal diffeomorphism ¢, that is, g —

g+ or hyy — hyy +0,Ey +0,E,. As in the notes we can choose the harmonic gauge 0O¢,, = —3° hy,, which gives

6PEW, = 0. Hence we have
K By = 0 /

If k2 #£0, then hux =0, gux = Nuv and Ry = 0. The spacetime is flat.

¢) From (b) we know that k? = 0 for curvature-producing gravitational plane wave. Therefore the field equation becomes
ki kP oy + kP Bp =0

(I think this equation is insufficient to determine that kP hyy, = 0..)

Question 4. Radiation from a parabolic fly by.

The Peters-Mathews formula for the time-averaged gravitational wave luminosity of a binary system in an elliptical orbit (with
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semi-major axis a, masses m; and my, M = m; + mj, eccentricity e) is given by (c is now back in the equation):

Loy = 2 G* mmiM |1+ (73/24)€? + (37/96)¢*
Gw7s = 5 oo (1_62)7/2

5 ¢

It’s derivation is outlined in the notes (§9.6), or you may take it on perfect good faith from your humble instructor, however
startling it may seem. Using this result, show that the total gravitational wave energy emitted by a single parabolic encounter
between two bodies is

857v/2 G7/2M”2m%m§
Egw = 24 5h72

where b is radius of closest approach. Recall that for a parabolic orbit, the radius r and aximuth ¢ are related by r (1+cos¢) = L,
where L= a(1—¢€?) is the "semi-latus rectum,” a constant. A parabola corresponds to the € — 1 limit, with a (1 —¢?) = L finite.
You may find the material in §6.8.1 useful.

Proof.
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