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This Problem Set is all to do with a field theory consisting of a scalar ¢ of mass m and a Dirac fermion 1 of mass m described
by the Lagrangian density

1 — . _
L= 5 (01606 —m?¢?) + 9 (in" O — m) Y — géP + Lin (9)
Remember that v* are four-by-four matrices and the spinor indices a,b run over {1,2,3,4} covering all the components.

Fermion lines have an arrow on them which denotes the flow of particle number; the momentum in the propagator is the
value of the momentum in the direction of the separate arrow. The Feynman rules are
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a) Scalar propagator (internal line)

b) Fermion propagator (internal line)

i ) . (P +m)ba
ba

P—m+ie ZpQ—m2+ie

i@—m+@£—(

o

Scalar fermion vertex —igdgs
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Initial state fermion (external line) u®(p),
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Final state fermion (external line) @®(p),
Initial state anti-fermion (external line) 7°(p),

Final state anti-fermion (external line) v®(p),
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Closed fermion loops have an extra factor —1, and have a Trace over the spinor indices.

Question 1. Gamma matrix manipulations.

Hard-core theorists will derive these results for themselves once in their life! However it is permissible to jump to
question 2 and simply use these formulae! The v* matrices are traceless and satisfy

VY + M =21 (2)
where I is the four-by-four identity matrix.
a) By contracting p*p” with (2) show that pp = L.
b) By contracting p*¢” with (2) and taking the Trace show that
Trppg =4p-q

1,2,3

c¢) Show that the matrix v° = 7%y1y2+3 anticommutes with 4* and that v°+° = —I.



d) By considering Try°7°y*y#~4¥, and moving one of the 7° s to the right through the other matrices, and finally
using the cyclic property of the Trace show that

Try*#y” =0
Generalise the argument to show that the Trace of any odd number of gamma matrices is zero.
e) Using (2) show that Trpgy¢ = Trpg(2s - r — ##). Repeat the manipulation to "walk” ¢ through to the left hand
end, then put it back at the right hand end by the cyclic property of the trace. Hence show that
Trpgfs =4((p-q)(s-7) = (p-7r)(qg-s)+ (p-s)(q-7))

Proof. a) We have, on the LHS:

(Y + 7Y )pupy = VY (Dppv + Pubp) = 277 Dby = 2(p)*
On the RHS:
20 Ipupy, = 2p°1
Therefore (2) implies that (p)? = p°I.
b) We have, on the LHS:
(,yu,yu + ’VV’Y“)ZMQV = 'YIL'YV(])HQV +pl/qlt) = pg + gp

On the RHS:
20" Ipuqy, = 2p - ql

Therefore (2) implies that pg +¢p = (p-¢)I. Taking the trace: 2tr (pg) = tr(pg + gp) =8p-q. So tr(pg) =4p-q.
c) We have y#~¥ = —y¥~# for v # u. Therefore

Pt = Y2 = =4y Py =

Hence {75,7“} = 0. Next,
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d) For odd n,
fr(y® ™) = — (=) = —tr (PP o)

= —(=1)" tr (") = (P )

=~y oy™)
Hence 2 tr(y®t ---y%n) = 0. Since 2 # 0, we have tr(y** ---y%n) = 0.

e) From (2):
tr(pg;‘,é) = tr(pgr#s,/y“'y”) = tr(pgrus,,(%y“”l — 7”7“)) = tr(]ﬁg@(r -s)I — M))

Using part (b) and repeat the computation 2 more times:

tr(pdrd) = 8(p- a)(r - s) — tr(pasy)
=8(p-q)(r-s) —tr(p(2(q - s)I — $d)y)
=8(p-q)(r-s)—8(p-1)(q-s)+ tr(pégr)
=8(p-q)(r-s) —8(p-r)(g-s)+tx((2(p- )1 — #p)gy)
=8(p-q)(r-s)—8(p-r)(q-s)+8(p-s)(q-r) — tr(#pgy)
=8(p-q)(r-s)—8(p-r)(q-s)+8(p-s)(q-r) — tr(pgrs)

Hence tr(pg$) = 4(p-q)(r-s) —4(p-7)(q-s) +4(p- s)(g-7)- O



Question 2. Scalar-fermion scattering.

2. Draw the Feynman diagram(s) for scattering of a scalar with four-momentum k off a fermion with four-momentum
p, spin s, to final states described by k’,p’, s’ respectively.

a) Show that the scattering matrix element can be written
M = M, + M,

where
_ @ @) (F+om)we) @ @) (<K +2m)w )

.2
M, = —ig S —m? ’ U—m?2

where we define S = (p+ k)%, T = (p —p)® and U = (p' — k)°.

b) Use the results ) uj (p)ug(p) = (P +m)ap and Y v (p)03(p) = (P — m)ap, together with the trace formulae you
found in Q.1, to show that

% ((5+2m)° + (U = 6m?)” = T (T + 6m?))

where T = (p/ —p)® and U = (p/ — k)°.

¢) In an experiment the initial fermion spin direction is unknown, and the final fermion spin direction is not measured.

Explain why % D oss |M |2 is the correct quantity to insert in the formula for the cross-section.

Proof. The Feynman diagrams at tree level (from the official solutions):

a) According to the Feynman rules, we can write down the scattering amplitudes. For the s-channel:

Vi (g™ @G Eme) o @)+ m )
M=) pt+hZ—m?+ie "7 S—mZ+ie

From the lectures we know that
(p — m)apui(p) = Y T3 (P)v (P)ui(p) =0
which implies that pu®(p) = mu®(p). Substituting into the above equation:

~ L u (p)(f + 2m)u’(p)
My =—g S —m? +ie

For the u-channel:

— L @)K rmuee) L w () (K + 2m)u(p)
Mz = (—ig)” (p—K)2-m?+ie iy’ U—m?2+ie

b) We first note that, when taking complex conjugation,

/

@ (@) (p)" = w*(p)T () (1) ()
= (=1)%u®(p)T4#~%u® (p') (a=1if p#0and a=0if u=0)



= (—1)%u* (p) T 7 u* (p')
= (p)y"u* (p)

Then the conjugate of M; is given by

- s
M = =" (p)  (k + 2m)u” (p)
Hence

A=D1 = DM M = o () (k4 2m) () (1) K+ 2m)u” (8

" g' Si / _ ,
= (e (@ ) E 4 2m)u (0 () (K 2 (8))
= (S“"jn) tr (K + 2m)u (p)* (o) (k + 2m)u” (p')°
- (S_’% tr(( +2m) (p 4 m) (k + 2m) (¢ +m)
= (5_9;2)2 tr(kpkp' + 2m° kp + m® KK + 2m>Kp' + 2m° gl + Am>pp’ + 2m*fy + 4m*)
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()

= S m2e (8(k - p)(k-p') —4k*(p - p') + 16m>(k - p) + 16m>(k - p') + 4m?k* + 16m>(p - p') + 16m*)

Note that p? = k2 = m2. We have p-k = S/2—m?, p-p' =m? —T/2, and p' - k = m? — U/2. Substituting into
the above equation:

A e (80 ) 4 16+ 16m () + 120 ) + 20
B (S—g?nz)? (28 = 2m?)(2m? — U) + 8m*(S — 2m?) +8m” (2m? —U) + 6m*(2m” —T) + 20m*)
= (SQ;Q)Q ((S+2m?)* + (U — 6m?*)*> — T(T + 6m?)) 0

Question 3. Fermion-Fermion scattering.

Draw the Feynman diagram(s) for scattering of two fermions, with spin and four-momenta s1, p; and ss, ps respectively,
to two final state fermions with spin and four-momenta s3, p3 and s4, p4.

a) Use the Feynman rules to write down the matrix element — but take care that these are identical fermions so
the matrix element must be antisymmetric under 1 <> 2, or 3 <> 4.

b) Calculate ) N| 2,

81,82,83,54 |

Proof. The Feynman diagrams at tree level (from the official solutions, the momentum on the scalar propagator of the right
hand side diagram should be ps — p1 = ps — p2.):
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a) For the t-channel, from Feynman rules we can write down the scattering amplitude:

21U (pg)u’ (p1)u* (p3)u’? (P2)
(T —m?+ie




For the u-channel:

17754 S2 7783 S1
Moy — (—i o 1% (py)u*? (po)u™ (p3)u’ (py)
2= (-19) U—m?+ie

Since the total amplitude is antisymmetric under the exchange of labels of identical fermions, we have

M = My — My = —ig? U™ (pg)ut (p)u™ (p3)u? (p2) U™ (py)u(p2)u™ (p3)u’ (Py)
T —m?2 U—m?

b) For simplicity we write u® := u®*(p,), a € {1,2,3,4}. Then

4
Z \M1|2= Z 7(T_gm2)2ﬂ4ulu3u2u2u3ulu4

g u1u4u4u1u3u2u2u3

(T — 7n2
:(T—g7m2)2 Z e (ul T utTt) tr (TP ua?)
- (T_g 7 tr((;¢1+m)(;¢ +m)) ((p +m)(p +m))
16g*

Similarly, we have
2 16g* 2 2
E | M| = 7(U—m2)2(p1 “p3 +m*)(p2 - pa + m*)
S1yeeny S4

The cross term

U 2 E u4u1u3u2u1u3u2u4
m

51, 54
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_(T—m2 (U—m2) Z tr(uuuuuuuu)
S14.04584
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2
- (T — m;l)g(U —m?) (p1-p3)(p2 - pa) — (p1 - p2)(P3 - pa) + (p1 - pa)(p2 - p3) +m? Z(Pz‘ -pj) + m*
i#]

Using the Mandelstam invariants:

S 9 9 T s U
P1'p2=P3'p4=§—ma P2 -p3 =p1-ps=m Bk P2 -ps=p1-p3=m Y
Then )
dm2 - T dm= - U
2 _ 4.4 2
E |My|" = 4g (mg_T> ; E |Ma|” = (—U>
and
4
T g 2 2 2 2 2 2 2 2 4
E MlM?_(T—mQ)(U—mQ) (2m* —U)? + (2m* = T)* — (2m® — 5)* 4+ 8m*(S — m?) + 4m?)
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(2m? —U)*+ 2m? - T)? — (2m? = U — T)* + 8m?(S — m?) + 4m*)




Finally, the total scattering amplitude is given by

A= 3" Mi-MP= > [ MP+ D MaP-2 Y MM]

S815--+,54 815554 S81;--+,84 S81;--+,84

W (Am2 —=T\?  [4m? -U\? Am2S — TU
m?2—-T m? —-U (T —m?)(U — m?)

Question 4. Scalar decay.

Just for this part assume that the scalar has a different mass p > 2m so that decay to a fermion anti-fermion pair, with
spin and four-momenta s1,p; and s, pa respectively, is kinematically allowed.

a) Draw the Feynman diagram for the decay and write down an expression for the matrix element M.

b) Working in the rest frame of the scalar, calculate ) |M |2. Explain why this is the relevant quantity for

calculating the total decay rate..

$1,52

c¢) The total decay rate I' is given by

L d’pi 1 d’py 1 712 454
=5, MI*(2m)*6% (P — p1 —
2,u/ (2m)3 2By, J (2m)3 2E Z [M|*(2m)%6" ( P1— D2)

p2 51,52

where P = (,0,0,0). Find T.
Proof. The Lagrangian is given by

L= (0,000 — 1i2¢?) + (D — m)p + ghdnb + Ling|¢]

1
2

a) The Feynman diagram of the scalar decay (from the official solution):

From the Feynman rules, the S-matrix element is given by
M = —igu* (p,)v* (p2)

b) Scattering amplitude:

Z |MJ? = ¢° Z T (p1)v* (p2)0” (P2)u (P1)

=g Z tr(u” (py)u® (p1)v™ (P2)0* (P2))
=g tr((pl +m)(p, — m))

= 4g%*(p1 - p2 — m?)

The conservation of momentum k = p; 4+ po implies that

1 w2
p1ep2 = i(kQ—pf—pi)Z 7—m2

So the amplitude is given by
> IMP? = 2¢°(u? — 4m?)

51,82



(I don’t think working in the rest frame of the scalar is relevant...)
The equation given in (c) implies that the total decay rate is proportional to the amplitude.

c¢) Total decay rate:

1 d3p1 1 d3p2 .
=5 f M|?(27)*6*(P —
2p /(QW)“ 2E,, J (27)3 2Ep, 9122‘ [*(27)*6* (P — p1 = p2)
2 2 2
g°(p” — 4m?) 1 1
G /d3p1 2E, d°py 5 0(p = Ep, = Ep,)8°(p1 + p2)
1 2
2 2 2
g°(p” —4m )/3 1
=— 5 [Py 550k —2E
(27)2p P1oE, )2 (n—2Ep,)
2(p? — 4m? o0 —9/k2 2
= M/ dk 4mk? S(p \/m)
4(2m)%p 0 k2 +m?
g — 4m?) ( Ak 2+ m? )
A@2m)2p \ K2+ m? %)y
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Question 5

Suppose that we start with a theory with +Li, (¢) = 0 ie no scalar self interaction terms.

)
b)

Write down the Lagrangian including counterterms.

Draw the Feynman diagram for the one fermion loop correction to the scalar two point function and show that

the 1PI part can be written
2M?
_—4g/d$/ (p 7M2 (2—M2)2>

where M? = m? — k?z(1 — ). Calculate the divergent parts of ,, and dz for the scalar field.

Draw the Feynman diagram for the one loop correction to the fermion two point function and show that the 1PI
part can be written
/ / d4p }é 1—z)+m
=g
-M 2)

where M? = m? — k?z(1 — ). Calculate the divergent parts of &,, and 6z for the fermion field. Compare these
results with those for the scalar.

Consider the 1PI contribution to the scalar three point function.

P,

Write down the expression for this graph using the Feynman rules. Now focus on the leading powers of k; and
using the Trace rules from Q.1 show that the k% term in the numerator vanishes. Hence show that this graph
has a divergent part const mg>log (A2 / m2) (it is not necessary to find the full result). What is the implication
of this result for £?



e) Repeat the previous part for the scalar four point function and show that it has a divergent part const g* log (A2 / m2).

Proof. a) The Lagrangian density with counterterms:
1 1 —. _
£ = 50,00"$(1+07) = 5 (% + 8)6* + VDL +02:) — (m+ 6 )J0 = (9 + 8, 6050

b) Feynman diagram (from the official solutions):

From Feynman rules the amputated Green’s function is given by

if+m) ip+E+m) >
k2—m?2+ic(p+k)2—m?+ie
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ST e e CE ek m)
4g°(k - (p+ k) + m?)

(k2 —=m2+ie)((p+ k)2 —m? +ie)

I(p) = <—1><—ig>2tr(

The contribution to fermion self-energy:
d*p 4q° 4 p-(p+ k) +m?
M0 = [ o T =~y [, P G s o+ B

_ 4g? o (1 p-(p+k) +m?
= o /Mf“’/o U@ e (1= ) + (o + b — m2ic)s)?

Y e s d’p p-(p+k)+m?
- /o ¢ /M4 (2m)% (p? + sk)% — (m2 — s(1 + s)k2?) + ie)?

1 4 2 2
dtq (g—sk)-(g+ (1 —9)k)+ M+ s(1+s)k
— 2 — 2': 2— — 2
= —4qg /0 ds /M4 )t (2 — M2 +ie)? (q:=p+sk, M? :=m? — s(1 - s)k?)

:—492/1(15/ d*q ¢+ M? +2(1—2s)q-k
0 wme (2m)4 (¢ — M? +ie)?
1 4 2
d*q 1 2M
_ 2 . .
= —4g /0 ds /M4 )t ((q2 VR + =M i€)2> (linear term vanishes due to symmetry)

de < 1 2M?

_ Wick’s rotation: £:= (i¢°, ¢, ¢% ¢°
q2—M2+(q2—M2)2) (Wick’s rotation (i¢”,q",9%,q”))

1 2 2 2

1 A 2M A

=4ig®> [ d A2 — M?log — = _[1-log—
19/0 S(mﬂ( OgM2>+16w2< ng))

1 2

g 2 2 2 2 2 A

=17 ). ds <A +2(m? — s(1 — s)k?) — 3(m S(IS)k)logn,Lz_S(l_S)kz)
) 2

_igT (o 2 1. A

=1 <A 3 <m 6k >10g m2>

Another diagram contributing to the self-energy at O(g?) is given by (from Srednicki p. 319, Figure 51.1)

S- > >
k k



It contributes ik?5z — i6,, to the self energy. For II(k) to be finite at O(g?), we must have
52 1 A2
29 (A2 -3 (m2— 2k )log — ) + k26, — 6, < 00
472 6 m?

Therefore we have

g2 A2 2 A2
b0y = 52 log poog) + finite terms; Om = — <A2 — 3m?log m2> + finite terms.



