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Question 1. Dirac delta function

The Dirac delta function ±(x) is an infinite spike of weight 1 located at x = 0. It is really a distribution, not a regular
function, and strictly only makes sense inside integrals - which means that the relationships discussed below are
only supposed to be true inside integrals. For a function f (x) that is sufficiently well-behaved in the region of x = 0,

I f [±(x)] =
Z1

°1
f (x)±(x)d x = f (0)

By considering integrals of this form show that

a) I f [±(ax)] = |a|°1I f [±(x)];

b) I f [±(g (x))] =PN
n=1

ØØg 0 (xn)
ØØ°1 I f [± (x °xn)], where g (x) has zeroes at {x = xn ,n = 1. . . N };

c) I f [±(x)] = lim≤°>0 K I f
£

≤
x2+≤2

§
, and find the value of K . What limitations on f (x) are necessary?

d) I f [±(x)] = lim≤°>0 bK I f

h
≤°1e°x2/≤2

i
, and find the value of bK . What limitations on f (x) are necessary?

Note that the results in c) and d) are often used in physics, but that the true Dirac delta function does not have the
same limitations.

Proof. The commonly used domain for distributions is D(R) = C1
c (R), the space of compactly-supported smooth func-

tions on an open set U µR. Then all distributions are infinitely differentiable in the sense of distributions.

For clarity we use Tg to denote the regular distribution induced by the function g . That is, Tg [ f ] := I f [g ]. Likewise
we denote ±[ f ] := I f [±(x)].

It is worth noting that expressions like ±(g (x)) is not well-defined in an obvious sense. One possible definition is
via mollification. We need the following lemma:

Lemma 1. Approximating the ±-Function

Let Ω" be the standard mollifiers in R. Then TΩ" converges to ± in D0(R) as "& 0.

Proof. We know that the standard mollifiers are given by Ω"(x) = 1
"
Ω
≥ x
"

¥
, and

Z

R
Ω(x)dx = 1. For f 2 C1

c (R), we

have
TΩ" [ f ] =

Z

R

1
"
Ω
≥ x
"

¥
f (x)dx =

Z

R
Ω(y) f ("y)dy

Note that f ("y) ! f (0) as "& 0, and |Ω(y) f ("y)| is integrable. By Dominated Convergence Theorem,

lim
"&0

TΩ" [ f ] =
Z

R
Ω(y) f (0)dy = f (0) = ±[ f ]

In this way we define ±(g (x)) to be the distributional limit of TΩ"±g as "& 0, provided it exists.

a)

I f [±(ax)] = lim
"&0

Z

R

1
"
Ω
≥ ax
"

¥
f (x)dx = |a|°1 lim

"&0

Z

R
Ω(x) f

≥"x
a

¥
dx

(DCT)==== |a|°1
Z

R
lim
"&0

Ω(x) f
≥"x

a

¥
dx = |a|°1

Z

R
Ω(x) f (0)dx = |a|°1 f (0)

= |a|°1I f [±(x)]

b) We assume that g (x) is piecewise invertible and the zeros x1, ..., xN are simple. Let I1, ..., Im be the intervals
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on which g is invertible, with inverses g°1
1 , ..., g°1

m .

I f [±(g (x))] = lim
"&0

Z

R
Ω"(g (x)) f (x)dx = lim

"&0

mX

i=1

Z

Ii

1
"
Ω

µ
g (x)
"

∂
f (x)dx

y=g (x)/"====== lim
"&0

mX

i=1

Z

g (Ii )/"
Ω(y) ·

f ± g°1
i ("y)

ØØg 0 ± g°1
i ("y)

ØØ dy

For sufficiently well-behaved g 1, Ω(y) ·
f ± g°1

i ("y)
ØØg 0 ± g°1

i ("y)
ØØ1g (Ii /") is integrable. Note that

lim
"&0

Ω(y) ·
f ± g°1

i ("y)
ØØg 0 ± g°1

i ("y)
ØØ1g (Ii /") =

8
><
>:
Ω(y) ·

f (x j )

|g 0(x j )|1R 0 = g (x j ) 2 g (Ii ), x j 2 {x1, ..., xN }

0 0 › g (Ii )

By Dominated Convergence Theorem, we have

I f [±(g (x))] =
NX

j=1

Z

R
Ω(y) ·

f (x j )

|g 0(x j )| dy =
NX

j=1

f (x j )

|g 0(x j )| =
I f [±(x °x j )]

|g 0(x j )|

c) The condition that f 2 C1
c (R) is too strong for this part. Following the proof of Lemma 1 we give two condi-

tions on f :

•
f (x)

1+x2 2 L1(R);

• f is continuous at 0.

The proof is essentially identical to Lemma 1.

lim
"&0

I f

h "

x2 +"2

i
= lim
"&0

Z

R
f (x)

"

x2 +"2 dx = lim
"&0

Z

R
f ("x)

1
x2 +1

dx

By assumption
f ("x)
1+x2 is integrable. By Dominated Convergence Theorem,

lim
"&0

I f

h "

x2 +"

i
=

Z

R
lim
"&0

f ("x)
1

x2 +1
dx = f (0)

Z

R

1
1+x2 dx = f (0)arctan x

ØØØØ
+1

°1
=º f (0) =ºI f [±(x)]

Hence we take K = 1/º and obtain that

I f [±(x)] = lim
"&0

1
º

I f

h "

x2 +"2

i

d) The conditions on f :

• f (x)e°x2 2 L1(R);

• f is continuous at 0.

lim
"&0

I f

h
"°1 e°x2/"2

i
= lim
"&0

Z

R
f (x)"°1 e°x2/"2

dx = lim
"&0

Z

R
f ("x)e°x2

dx

By assumption f ("x)e°x2
is integrable. By Dominated Convergence Theorem,

lim
"&0

I f

h
"°1 e°x2/"2

i
=

Z

R
lim
"&0

f ("x)e°x2
dx = f (0)

Z

R
e°x2

dx =
p
º f (0) =

p
ºI f [±(x)]

1We essentially invoke the DCT unjustified. Perhaps the best way is to treat the identity in (b) as definition.
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Hence we take K = 1/º and obtain that

I f [±(x)] = lim
"&0

1
p
º

I f

h
"°1 e°x2/"2

i

Question 2. Lorentz transformations

The four vectors pµ = (E , p) and p 0µ =
°
E 0, p 0¢ are related by a Lorentz transformation§. We frequently will have to

deal with integrals of the form Z
F (p)d 4p =

Z
F (p)dE d 3p

Find the 4£4 matrix representation of § explicitly for a boost Ø along the z-axis and the Jacobian for the change
of variables pµ! p 0µ. Hence show that the 4-volume element d 4p is Lorentz invariant. Now, by making a suitable
Lorentz invariant choice of F (p), show that

°
2Ep

¢°1 d 3p is Lorentz invariant if Ep =
p

p2 +m2

Proof. The Lorentz boost along the z-axis is given by

§(Ø) =

0
BBB@

∞ 0 0 °Ø∞
0 1 0 0
0 0 1 0

°Ø∞ 0 0 ∞

1
CCCA

where ∞= 1
p

1°Ø2
.

Note that §(Ø) is a linear transformation on the Minkowski spacetime (R4,¥). The Jacobian is given by the deter-
minant:

det J = det

0
BBB@

∞ 0 0 °Ø∞
0 1 0 0
0 0 1 0

°Ø∞ 0 0 ∞

1
CCCA= ∞2 °Ø2∞2 = 1

The volume form is given by
d4p 0 = det J ·d4p = d4p

so it is invariant under a Lorentz boost.

We consider the distribution F (p) = F (E , p) defined by

F (p) = ±(pµpµ°m2)µ0(E)

where µ0 is the Heaviside step function. The delta measure is clearly Lorentz invariant as pµpµ is, and µ0(E) is
invariant under proper orthochronous Lorentz transformations. Then we have the Lorentz invariant scalar

Z
F (p)dE d3p =

Z
±(E 2 °p2 °m2)µ0(E)dE d3p

=
Z√

±(E °
p

p2 +m2)
2E

° ±(E +
p

p2 +m2)
2E

!
µ0(E)dE d3p

=
Z
±(E °Ep )

2E
dE d3p =

Z
1

2Ep
d3p

Therefore the 3-form
1

2Ep
d3p is Lorentz invariant.
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Question 3. Simple Harmonic Oscillator

(See Gasiorowicz Chapter 6 for annihilation and creation operators in the SHO) This problem combines a review
of the harmonic oscillator with that of complex coordinates. In ordinary classical mechanics, consider a two-
dimensional harmonic oscillator with Lagrangian

L = 1
2

m
°
q̇1

2 + q̇2
2¢° 1

2
m!2

0
°
q2

1 +q2
2
¢

where to get you in the field-theory mood I’ve labeled x and y as q1 and q2. Now rewrite these coordinates as

z ¥
°
q1 + i q2

¢
/
p

2, z§ ¥
°
q1 ° i q2

¢
/
p

2

a) Find the classical equations of motion in terms of q1 and q2.

b) Then rederive them in terms of z and z§, not by just plugging into the preceding, but by rewriting L in terms
of z and z§, and then minimising the action under variations z ! z +±z and z§ ! z§ +±z§. Treat these
variations as independent.

c) Find the Hamiltonian in terms of z, z§ and the corresponding canonical momenta.

d) Now write the quantum Hamiltonian using lowering and raising operators defined in the usual way; a1, a†
1

for q1 and a2, a†
2 for q2. Then rewrite in terms of

A ¥ (a1 + i a2)/
p

2, B ¥ (a1 ° i a2)/
p

2

e) Find the commutations relation for A, A†,B and B † from those for a1 etc., and check that indeed they are an
independent pair of raising/lowering operators.

Proof. a) Euler-Lagrange equations:
d

dt
@L
@q̇i

° @L
@qi

= 0, i = 1,2

Substituting L into the equation:
mq̈i +m!2

0qi = 0, i = 1,2

The classical equations of motion are given by

q̈1 +!2
0q1 = 0, q̈2 +!2

0q2 = 0

b) We have

q1 =
z + z§
p

2
, q2 =

z ° z§
p

2i

which gives

q2
1 +q2

2 =
µ

z + z§
p

2

∂2

+
µ

z ° z§
p

2i

∂2

= 2zz§

In the new coordinates the Lagrangian is given by

L = mżż§ °m!2
0zz§

Substituting into the Euler-Lagrange equations we obtain the equations of motion:

z̈ +!2
0z = 0, z̈§+!2

0z§ = 0
i s

Howdoargue that a and
I are independent
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c) The canonical momenta are given by

pz =
@L
@ż

= mż§, p§
z = @L

@ż§ = mż

The Hamiltonian is given by the Legendre transformation:

H = żpz + ż§p§
z °L = 2mżż§ ° (mżż§ °m!2

0zz§) = mżż§+m!2
0zz§ =

pz p§
z

m
+m!2

0zz§

d) The classical Hamiltonian in the original coordinates is given by

H =
p2

1 +p2
2

2m
+ 1

2
m!2

0(q2
1 +q2

2 )

In the canoncial quantisation, the phase space R2 corresponds to the Hilbert space L2(R2). The quantum
Hamiltonian operator is given by

bH =
bp2

1 + bp2
2

2m
+ 1

2
m!2

0(bq2
1 + bq2

2 )

with the canonical commutation relation
[bqi , bp j ] = ifl±i j

From now on we only consider the quantum system and drop the hats for simplicity. The ladder operators
are defined by

ai =
1

p
2m!0fl

°
m!0qi + ipi

¢
, a†

i =
1

p
2m!0fl

°
m!0qi ° ipi

¢
, i = 1,2

Then

a†
i ai =

1
2m!0fl

°
m2!2

0q2
i +p2

i + im!0[qi , pi ]
¢
= 1

fl!0

√
1
2

m!0q2
i +

p2
i

2m

!
° 1

2

Therefore the Hamiltonian operator is given by

H =fl!0

≥
a†

1a1 +a†
2a2 +1

¥

Using

a1 =
A+B
p

2
, a2 =

A°B
p

2i

We have

H =fl!0

µ
(A† +B †)(A+B)

2
+ (A† °B †)(A°B)

2
+1

∂
=fl!0

≥
A† A+B †B +1

¥

e) The commutation relations for the ladder operators are given by

[ai , a†
i ] = 1

2m!0fl
·2m!0i[qi , pi ] = 1, [ai , a†

j ] = 0, [ai , a j ] = 0

Now we verify these relations for our new ladder operators:

[A, A†] =
"

a1 + ia2p
2

,
a†

1 ° ia†
2p

2

#
= 1

2

≥
[a1, a†

1]+ [a2, a†
2]

¥
= 1

[B ,B †] =
"

a1 ° ia2p
2

,
a†

1 + ia†
2p

2

#
= 1

2

≥
[a1, a†

1]+ [a2, a†
2]

¥
= 1
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[A,B ] =
∑

a1 + ia2p
2

,
a1 ° ia2p

2

∏
= 0

[A,B †] =
"

a1 + ia2p
2

,
a†

1 + ia†
2p

2

#
= 1

2

≥
[a1, a†

1]° [a2, a†
2]

¥
= 0

Therefore A, A† and B ,B † are indeed independent pairs of ladder operators.

Question 4. Dirac wave equation

(See the notes on Relativistic Quantum Mechanics) A plane wave solution for the Dirac equation takes the form

√(t , x) = e°
i
fl (Et°p·x)√p

where √p is a 4-component Dirac spinor satisfying the eigenvalue equation

°
p .Æ+mØ°E I4

¢
√p = 0 (1)

with

I4 =
√

I 0
0 I

!
, Ø=

√
0 I
I 0

!
, Æi =

√
°æi 0

0 æi

!

where 0 and I represent 2£ 2 null and identity matrices respectively, and æi are the Pauli sigma matrices. Show
explicitly that the determinant condition for solutions to (1) is

°
E 2 °

°
p2 +m2¢¢2 = 0

and thus that two eigenspinors √p have E =
p

p2 +m2 and two have E =°
p

p2 +m2. Show that the eigenspinors
√p can be chosen so that they are also eigenspinors of the spin projection operator

h =
√
æ ·p 0

0 æ ·p

!

Find all four independent eigenspinors of definite h for p = (0,0, p).

Proof. We compute the determinant for the eigenvalue equation:

det
°
p ·Æ+mØ°E I4

¢
= det

√
°æ ·p °E I2 mI2

mI2 æ ·p °E I2

!

Since mI2 and æ ·p °E I2 commute, we have in fact

det
°
p ·Æ+mØ°E I4

¢
= det

°
(°æ ·p °E I2)(æ ·p °E I2)°m2I2

¢
= det

°
°(æ ·p)2 + (E 2 °m2)I2

¢

Note that

(æ ·p)2 =
3X

i=1
p2

i æ
2
i =

3X

i=1
p2

i I2 = p2I2

We have
det

°
p ·Æ+mØ°E I4

¢
= det

°
(E 2 °p2 °m2)I2

¢
= (E 2 °p2 °m2)2

which is the characteristic polynomial of the operator (p ·Æ+mØ). Note that p ·Æ+mØ is symmetric and hence
diagonalisable. The eigenvalues are E± =±

p
p2 +m2, each of which corresponds to an eigenspace of dimension

two.

For h = diag{æ ·p ,æ ·p}, it is clear that it commutes with p ·Æ= diag{°æ ·p ,æ ·p} and Ø. Hence h and p ·Æ+mØ

are simultaneously diagonalisable. In order words, we can choose a basis of eigenspinors {√p } such that the spin
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projection operator is diagonalised.

For p = (0,0, p) and æ3 =
√

1 0
0 °1

!
, we have

p ·Æ+mØ°E±I4 =

0
BBB@

°p °E± 0 m 0
0 p °E± 0 m
m 0 p °E± 0
0 m 0 °p °E±

1
CCCA

We can directly read out the eigenspaces:

V± = span
©
(m,0, p +E±,0)÷, (0,m,0,°p +E±)÷

™

Since
æ ·p = p diag{1,°1,1,°1}

it is automatically diagonalised in the basis chosen above. In summary the eigenspinors are given by

√1 =

0
BBB@

m
0

p +
p

p2 +m2

0

1
CCCA , √2 =

0
BBB@

0
m
0

°p +
p

p2 +m2

1
CCCA , √3 =

0
BBB@

m
0

p °
p

p2 +m2

0

1
CCCA , √4 =

0
BBB@

0
m
0

°p °
p

p2 +m2

1
CCCA

Question 5. ∞ matrices

(1) Show that the two sets of ∞ matrices

∞0 =
√

0 I
I 0

!
, ∞i =

√
0 æi

°æi 0

!

and

∞0 =
√

I 0
0 °I

!
, ∞i =

√
0 æi

°æi 0

!

are unitarily equivalent ie there exists a unitary matrix U such that ∞µ =U †∞µU .

(2) Show that there are no three-dimensional matrix representations of the algebra ∞µ∞∫ +∞∫∞µ = 2¥µ∫ for 4-
dimensional space-time i.e. µ,∫ 2 {0,1,2,3}.

Proof. (1) It is easier to work with Kronecker products. We rewrite the ∞-matrices as

∞0 =æ1 ≠ I2, ∞0 =æ3 ≠ I2, ∞i = ∞i =°iæ2 ≠æi

We seek the unitary transformation of the form U =Æ≠Ø, withÆ,Ø 2 M2£2(C). We may further demand that
Æ,Ø are unitary. The condition that ∞µ =U †∞µU implies that

æ3 ≠ I2 =Æ†æ1 ≠ I2, æ2 ≠æi =Æ†æ2Æ≠Ø†æiØ

It is tempting to set Ø= I2 and see if it works. We have now

æ3 =Æ†æ1Æ, æ2 =Æ†æ2Æ

{I2,æ1,æ2,æ3} is a basis of M2£2(C). The second equation will hold trivially if Æ commutes with æ2. In this
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simple case we have
Æ= mI2 +næ2, m,n 2C

We substitute this into the first equation:

æ3 = (mI2 +næ2)æ1(mI2 +næ2)

= |m|2æ1 +|n|2æ2æ1æ2 +nmæ2æ1 +mnæ1æ2

=
°
|m|2 ° |n|2

¢
æ1 +Re(mn){æ1,æ2}+ Im(mn)i[æ1,æ2]

=
°
|m|2 ° |n|2

¢
æ1 +2iIm(mn)æ3

By comparing the coefficients we have

|m|2 ° |n|2 = 0, Im(mn) =°1
2

i

We also note that Æ is unitary:

I2 =Æ†Æ= (mI2 +næ2)(mI2 +næ2) =
°
|m|2 +|n|2

¢
I2 +2Re(mn)æ2

which implies that
|m|2 +|n|2 = 1, Re(mn) = 0

Hence |m| = |n| = 1
p

2
, and mn =° i

2
. We choose m = 1

p
2

and n =° i
p

2
. Then Æ= 1

p
2

(I2° iæ2). The unitary

transformation is given by2

U = 1
p

2
(I2 ° iæ2)≠ I2

In the matrix form,

U = 1
p

2

√
I2 °I2

I2 I2

!

(2) The one-line answer is that the ∞-matrices generate the 16-dimensional Clifford algebra Cl1,3(R) and hence
cannot have a faithful representation in GL3(R), which has dimension 9.

2We essentially reach this result by guessing. A rigorous proof might require writing down more variables and constraint equations.


