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Question 1

Suppose that p and q = 2p+ 1 are both odd primes. Explain why (a) 2p is a quadratic non-residue of q and (b) q has p� 1

primitive roots.

Show that the primitive roots of q are precisely the quadratic non-residues of q, other than 2p.

Proof. (a) We have 2p ⌘ �1 (mod q). By Corollary 4.1, 2p is a quadratic residue and q if and only if q ⌘ 1 (mod 4). But since p
is an odd prime, p = 2k+ 1 for some k 2 Z. Then q = 4k+ 3 ⌘ 3 (mod 4). Hence 2p is a quadratic non-residue of q.

(b) Since q is prime, (Z/qZ)⇥ is cyclic. In particular we have

(Z/qZ)⇥ ⇠= Cq�1 = C2p
⇠= C2 ⇥ Cp.

by Chinese Remainder Theorem. We note that (1, g) is a generator of C2 ⇥ Cp for g 6= 0. Hence C2 ⇥ Cp has p � 1

elements of order 2p. It follows that q has p� 1 primitive roots.

Let � : (Z/qZ)⇥ ! C2 ⇥ Cp be an group isomorphism. As {0} ⇥ Cp is a normal subgroup of C2 ⇥ Cp of index 2, it
follows that ��1({0}⇥Cp) is precisely the subgroup of quadratic residues in (Z/qZ)⇥. Then the quadratic non-residues
of (Z/qZ)⇥ hace image {1} ⇥ Cp under �. As we have shown in (b), {1} ⇥ Cp\{0} corresponds to the set of primitive
roots of q. The remaining element (1, 0) 2 C2 ⇥ Cp is the unique element in C2 ⇥ Cp of order 2. And we note that
2p ⌘ �1 (mod q) is of order 2. We then conclude that ��1((1, 0)) = 2p.

Question 2

Prove that if n has a primitive root then it has �(�(n)) of them.

Proof. Suppose that n has a primitive root. Then the muliplicative group (Z/nZ)⇥ has an element of order n � 1. It follows
that (Z/nZ)⇥ is cyclic. Let �(n) = m. Then (Z/nZ)⇥ ⇠= Cm

⇠= Z/mZ. In addition, we know that k 2 Z/mZ generates
Z/mZ if and only if gcd(m, k) = 1. Therefore Z/mZ has �(m) generators, each corresponding to a primitive root of n.
We conclude that n has �(�(n)) primitive roots.

Question 3

Let p be an odd prime. Show that every element in Z/pZ can be written as the sum of two squares.

Proof. Since p is an odd prime, p = 2k+1 for some k 2 N. It follows that (Z/pZ)⇥ is cyclic and (Z/pZ)⇥ ⇠= Cp�1 = C2k
⇠= C2⇥Ck.

The quadratic residues of p forms a subgroup of (Z/pZ)⇥ of index 2, which means that there are k of them. We have:

card{a2 : a 2 Z/pZ} = k + 1.

Form 2 Z/pZ, suppose thatm is not the sum of two squares. Thenm� a2 is a quadratic non-residue for each a 2 Z/pZ.
But

card{m� a2 : a 2 Z/pZ} = card{a2 : a 2 Z/pZ} = k + 1.

It follows that Z/pZ has at least k + 1 quadratic non-residues, which is a contradication, as the number of quadratic
residues and non-residues are equal.

Question 4

Do there exist integer solutions to the equation x2 ⌘ 251 (mod 779)? Note that 779 = 19⇥ 41.

Solution. Since 779 = 19⇥ 41 and 19 is coprime with 41, by Chinese Remainder Theorem we have C779 = C19 ⇥ C41.
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Note that 251 = 19⇥ 13 + 4 = 41⇥ 6 + 5. By Chinese Remainder Theorem,

x2 ⌘ 251 (mod 779) () x2 ⌘ 4 (mod 19) ^ x2 ⌘ 5 (mod 41)

We can check that whether 4 is a quadratic residue of 19 and whether 5 is a quadratic residue of 41 by the proceduce
described in Example 4.1.

Since 19 ⌘ 4 ⌘ 3 (mod 4), by Law of Quadratic Reciprocity,
✓

4

41

◆
= �

✓
19

4

◆
= �

✓
3

4

◆
. It is obvious that 3 is a quadratic

non-residue of 4, it follows that 4 is a quadratic residue of 19.

Since 41 ⌘ 1 (mod 4), by Law of Quadratic Reciprocity,
✓

5

41

◆
=

✓
41

5

◆
=

✓
1

5

◆
. It is obvious that 1 is a quadratic residue

of 5, it follows that 5 is a quadratic residue of 41.

We conclude that 251 is a quadratic residue of 779. There exists x 2 Z such that x2 ⌘ 251 (mod 779).

Question 5

Does the equation x2 + 10x+ 15 ⌘ 0 (mod 45083) have any integer solutions? Note that 45083 is prime.

Solution. Note that x2 + 10 + 15 = (x+ 5)2 � 10. Then

x2 + 10x+ 15 ⌘ 0 (mod 45083) () (x+ 5)2 ⌘ 10 (mod 45083)

The existence of the solutions is equivalent to that 10 is a quadratic residue of 45083.

Since 10 ⌘ 2 (mod 4), by the Law of Quadratic Reciprocity,
✓

10

45083

◆
=

✓
45083

10

◆
=

✓
3

10

◆
=

✓
10

3

◆
=

✓
1

3

◆
.

It is obvious that 1 is a quadratic residue of 3. Then 10 is a quadratic residue of 45083. We conclude that x2 +10x+15 ⌘
0 (mod 45083) has integer solutions.

Question 6

Use the Fermat method to factorise 9579, without using a calculator.

Solution. We shall first find the least perfect square bigger then 9579. Note that 902 = 8100 < 9579 < 10000 = 1002. We use
binary search and try 952 = 9025. Next we try 972 = (95 + 2)2 = 9025 + 4⇥ 96 = 9409. It is already very closed to 9579.
Next we try 982 = (97 + 1)2 = 9409 + 97 + 98 = 9604 > 9579.

It happens that 982 � 9579 = 25 = 52, which is the number we are looking for. We immediately have 9579 = 982 � 52 =

93⇥ 103 = 3⇥ 31⇥ 103. This gives the complete factorization of 9579.

Remark. The easiest way of factorizing 9579 is as follows. First we note that 9+5+7+9 = 30 is divisible by 3. Hence we obtain
9579 = 3⇥ 3193. But it is obvious that 3193 is divisible by 31. We obtain the complete factorization: 9579 = 3⇥ 32⇥ 103.
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Question 7

For any integer n > 2, let Fn = 22
n

+ 1 be the n-th "Fermat number". Suppose that p is a prime factor of Fn.

(i) Show that ordp(2) = 2n+1.

(ii) Show that 2(p�1)/2 ⌘ 1 (mod p).

(iii) Deduce that p = 1 + 2n+2k for some k 2 N.

Hence, or otherwise, verify that F4 = 65537 is prime.

Proof. (i) We have 22
n ⌘ �1 (mod Fn). Since p | Fn, 22

n ⌘ �1 (mod p). Then
�
22

n�2
= 22

n+1 ⌘ 1 (mod Fn). We have
ordp(2) | 2n+1. If ordp(2) < 2n+1, then ordp(2) | 2n, which is contradictory. We conclude that ordp(2) = 2n+1.

(ii) By Lagrange Theorm, ordp(2) | |(Z/pZ)⇥|. Since p is a odd prime, (Z/pZ)⇥ is cyclic and has order p � 1. Therefore
2n+1 | p � 1. Since n > 2, we have p ⌘ 1 (mod 8). By Proposition 4.2, 2 is a quadratic residue of p. By Euler’s
criterion, 2(p�1)/2 ⌘ 1 (mod p).

(iii) Since 2(p�1)/2 ⌘ 1 (mod p) and ordp(2) = 2n+1, we have 2n+1

����
p� 1

2
. Both sides are positive integers, there exists

k 2 Z+ such that
p� 1

2
= 2n+1k. Hence p = 1 + 2n+2k.

For n = 4, p = 1 + 26k = 1 + 64k. Suppose that F4 = pq. We have

1 ⌘ F4 = (1 + 64k)q = q + 64kq ⌘ q (mod 64).

Then there exists l 2 N such that q = 1 + 64l.

F4 = 216 + 1 = (1 + 26k)(1 + 26l) = 1 + 26(k + l) + 212kl =) 210 = 26kl + k + l.

As k + l > 0, we have 210 > 26kl. So kl < 16. If l > 0, then k < 16 and k < 16. It follows that 0 < k + l < 32. However,
210 = 26kl + k + l implies that k + l ⌘ 0 (mod 64), which is a contradiction. Hence l = 0 and k = 210. We conclude that
p = 1 + 26 ⇥ 210 = F4 and F4 is prime.

Question 8

Using the Fermat method, factorise 2881, and hence find �(2881).

A message has been encrypted using RSA and the encoding 01 $ A, 02 $ B, 03 $ C, etc. with exponent e = 5 and
modulus n = 2881. The message is 2352 2138 0828. What is the plain text message? I suggest using a free online modular
exponentation calculator, which you can find by a google search for those terms.

Solution. Since 502 = 2500 < 2881 < 602 = 3600, first we try 552 = 3025. 3025 � 2881 = 144 = 122. We find the factorization:
2881 = 552 � 122 = 43⇥ 67. Then �(2881) = (43� 1)(67� 1) = 2772.

Next we shall find d 2 Z such that de ⌘ 1 (mod 2772). By Euclidean Algorithm:

2772 = 554⇥ 5 + 2

5 = 2⇥ 2 + 1

Hence 1 = 5� 2⇥ 2 = 5� 2⇥ (2772� 554⇥ 5) = �2⇥ 2772 + 1109⇥ 5. We can set d = 1109 so that de ⌘ 1 (mod 2772).

Next we compute the following expressions using modular exponential calculator:

23521109 ⌘ 1524 (mod 2881) 21381109 ⌘ 615 (mod 2881) 8281109 ⌘ 1804 (mod 2881).

Then the decrypted message is 1524 0615 1804, which translates to "OXFORD" in plain English.
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Question 9

Let p > 7 be a prime. Show that every non-zero element of Z/pZ is a sum of two non-zero squares.

Proof. Note that 3, 4, 5 are a Pythagorean triple: 32 + 42 = 52.

Since p > 7 is prime, p is coprime with 3, 4, and 5. In particular, 5�1 2 Z/pZ. For nonzero a 2 Z/pZ, we have

a2 =

✓
3

5
a

◆2

+

✓
4

5
a

◆2

where
3

5
a and

4

5
a are both non-zero in Z/pZ. We conclude that all non-elements of Z/pZ is a sum of two non-zero

squares.
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