
Peize Liu
St. Peter’s College

University of Oxford

Problem Sheet 1
Manifolds and Cobordisms

C3.12: Low-Dimensional
Topology & Knot Theory

3 February, 2022



1

Section A: Introductory

Question 1

Let M and N be manifolds with boundary. Show that

∂(M ×N ) = (∂M ×N )∪ (M ×∂N )

Question 2

Construct atlases on the topological manifolds: (a) Sn , (b) RPn , (c) CPn .

Section B: Core

Question 3

Recall that an n-dimensional (topological) manifold M is a topological space such that

1. each point of M has a neighbourhood homeomorphic to Rn ,

2. M is second countable (i.e., it has a countable basis of open sets), and

3. M is Hausdorff (i.e., different points have disjoint neighbourhoods).

Give examples of topological spaces that satisfy exactly two of conditions (1)-(3) for n = 1.

Proof. 1&2: Let X be a “line with two origins”. That is, we define X := (R× {0,1})/ ∼, where (x,0) ∼ (x,1) for all x �= 0.

For each x ∈ X , if x �= (0,0), then x ∈ X \ {(0,0)} ∼= R. Hence x has a neighbourhood homeomorphic to R. If

x = (0,0), x ∈ X \ {(0,1)} ∼=R, and x still has a neighbourhood homeomorphic to R.

To show that X is second countable, note that X \{(0,0)} ∼=R has a countable basis ℬ, and X \{(0,1)} ∼=R has

a countable basis ℬ�. Then B∪B� is a countable basis of X .

X is not Hausdorff because (0,0) and (0,1) does not have disjoint open neighbourhoods.

1&3: Let R� be R endowed with the discrete topology. Let X :=R×R�.

For (x, y) ∈ X , R× {y} is an open neighbourhood of (x, y), which is homeomorphic to R. Since both R and R�

are Hausdorff, X is also Hausdorff.

Suppose thatℬ is a countable basis of X . For each y ∈R�, the subsetR×{y} is open in X . ThenR×{y} =�
i Ui

for some {Ui } ⊆ℬ. Then there exists some Uy = I × {y} ∈ℬ with I ⊆R open. In particular Ux �=Uy for x �= y .

Therefore we have a injection R� →ℬ. The basis ℬ is uncountable. Contradiction. Hence X is not second

countable.

2&3: Let X =R2.

It is clear that X is Hausdorff (since it is metrisable). X has a countable basis given by

�
B

�
(q1, q2),

1

n

�
⊆R2 : q1, q2 ∈Q, n ∈N

�

Now suppose that each x ∈ X has a neighbourhood homeomorphic to R. Let U be a neighbourhood of 0 ∈ X

such that U ∼= R. Then U \ {0} ∼= R \ {∗} for some ∗ ∈ R. Note that U \ {0} is path-connected whereas R \ {∗} is

not. This is a contradiction. Hence X does not satisfy the condition (1).
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Question 4

(a) Construct a cell decomposition of RPn .

(b) Use this to compute the homology group H∗ (RPn ;Z).

(c) For what n is RPn orientable?

(d) Compute H∗ (RPn ;Z2).

(e) Compute the cohomology ring H∗ (RPn ;Z2).

Proof. (a) We can construct a CW-complex structure of RP n inductively as follows: Let RP 1 = S1. For each n, let

RP n =RP n−1 ∪ϕ en , where the attaching map ϕ : Sn−1 →RP n−1 is the double covering map.

(b) For each k � n, RP n has exactly one k-cell. The cellcular chain complex is given by

Z · · · Z Z
∂1∂2

For k ∈Z+, ∂k : Hn(RP k ,RP k−1) → Hk−1(RP k−1,RP k−2) is determined by the degree of the map

∂Dk = Sk−1 RP k−1 RP k−1/RP k−2 ∼= Sk−1ϕk qk

which is degid+deg(− id) = 1+ (−1)k . Hence ∂k = 2 for even k and ∂k = 0 for odd k.

The cellular chain complex is given by

Z · · · Z Z Z Z Z
×2 0 ×2 0

Taking the homology, we have

Hk (RP n) =





Z k = 0

Z/2 k = 1,3, ...,n −1

0 otherwise

(n even) Hk (RP n) =





Z k = 0,n

Z/2 k = 1,3, ...,n −2

0 otherwise

(n odd)

(c) When n is even, Hn(RP n) = 0, and RP n is non-orientable; when n is odd, Hn(RP n) = Z, and RP n is ori-

entable.

(d) If working with Z/2-modules, we have the cellcular chain complex:

Z/2 · · · Z/2 Z/2 Z/2 Z/2 Z/20 0 0 0

Taking the homology, we have

Hk (RP n ;Z/2) =
�
Z/2, 0 � k � n

0, otherwise

(e) By universal coefficient theorem for cohomology, we have the short exact sequence

0 Ext1
Z/2(Hk−1(RP n ;Z/2),Z/2) H k (RP n ;Z/2) HomZ/2(Hk (RP n ;Z/2),Z/2) 0

Since Hk (RP n ;Z/2) ∼= Z/2 is a projective Z/2-module, the extensions module Ext1
Z/2(Hk−1(RP n ;Z/2),Z/2) = 0.

Hence H k (RP n ;Z/2) ∼= HomZ/2(Hk (RP n ;Z/2),Z/2) ∼= HomZ/2(Z/2,Z/2) ∼=Z/2. The cohomology groups are

H k (RP n ;Z/2) =
�
Z/2, 0 � k � n

0, otherwise



3

For k,� ∈N such that k +�� n, letωk ,ω� be generators of H k (RP n ;Z/2) and H�(RP n ;Z/2) respectively. From the

intersection theory, these forms arises naturally from the inclusions RP n−k ⊆ RP n and RP n−� ⊆ RP n . Since all

spaces involved are Z/2-orientable, we have

ωk �ω� =ωRP n−k �ωRP n−� =ωRP n−k∩RP n−� =ωk+� ∈ H k+�(RP n ;Z/2)

Let x be a generator of H 1(RP n ;Z/2). The the cohomology ring is given by

H•(RP n ;Z/2) ∼=Z/2[x]/
�

xn+1� , |x| = 1

Question 5

Show that the 1-jet spaces J 1(R, M) =R×T M and J 1(M ,R) = T ∗M ×R.

Proof. By definition,

J1(R, M) =
�
t∈R

J1
t (R, M) =

�
t∈R

C∞(R, M)/
�

f ∼ g ⇐⇒ f (t ) = g (t )∧ f �(t ) = g �(t )
�

For q ∈ M and v ∈ Tq M , let ft ,q,v ∈ C∞(R, M) such that f (t ) = q and f �(t ) = v . By definition ft ,q,v = gt ,q �,v � ∈
J 1

t (R, M) if and only if q = q � and v = v �. Then (t , q, v) �→ (t , ft ,q,v ) is a well-defined map from R×TM to J1(R, M)

with inverse given by (t , ft ,q,v ) �→ (t , q, v). It is clear that the following diagram commutes

R×TM J1(R, M)

R
πt πt

So this defines the 1-jet space J1(R, M) as a trivial vector bundle over R. In this sense we have J1(R, M) =R×TM .

By definition,

J1(M ,R) =
�

q∈M
J1

q (M ,R) =
�

q∈M
C∞(M ,R)/

�
f ∼ g ⇐⇒ f (q) = g (q)∧d f |q = dg |q

�

For t ∈ R and ω ∈ T∗
q M , let fq,t ,ω ∈ C∞(M ,R) such that f (q) = t and d f |q = ω. By definition fq,t ,ω = gq,t �,ω� ∈

J1
q (M ,R) if and only if t = t � and ω=ω�. Then (q,ω, t ) �→ (q, fq,t ,ω) is a well-defined map from T∗M ×R to J1(M ,R)

with inverse given by (q, fq,t ,ω) �→ (q,ω, t ). As both bundles are defined fibre-wise on M , it is clear that the follow-

ing diagram commutes

T∗M ×R J1(M ,R)

M
πq πq

So this defines the 1-jet space J1(M ,R) as a vector bundle over M . In this sense we have J1(M ,R) = T∗M ×R.

Question 6

Prove that the cobordism groupΩSO
0 of compact oriented 0-manifolds is Z.

Proof. Note that the 0-manifolds are discrete countable topological spaces, of which the compact ones are the finite

topological spaces. Note that if X is a compact 0-manifold with cardinality n, then H0(X ) ∼=Zn . By choosing the

generators of H0 at each connected component of X , we see that X has 2n distinct orientations. LetϕX : X → {±1}

be the map which choose the orientation at each point. If X = {x1, ..., xn}, then let φX :=�n
i=1ϕX (xi ).

• φ−X =−φX : Obvious by definition.
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• φX�Y =φX +φY : Obvious by definition.

• Any two oriented compact 0-manifolds X and Y are cobordant if and only if φX =φY .

" =⇒ ": Suppose that M is an oriented cobordism from X to Y . Then ∂M =−X �Y . Note that M is a compact

orientable 1-manifold with boundary. Then M is a disjoint union of compact intervals and circles S1. The

boundary ∂M = {ai ,bi : i = 1, ...,m}, with ϕ∂M (ai ) = −1 and ϕ∂M (bi ) = 1. Then φ∂M = φ−X�Y = 0. Hence

φX =−φ−X =−φ−X�Y +φY =φY .

" ⇐= ": Suppose that φX = φY . Then φ−X�Y = 0. Let x1, ..., xn ∈ −X �Y be the points with positive orien-

tation, and y1, ..., yn ∈ −X �Y be the point with negative orientation. Then we define M = [0,1]× {1, ...,n},

which is a compact oriented 1-manifold with boundary {0,1}× {1, ...,n}. We then define α : −X �Y → ∂M by

α(xi ) = (0, i ) and α(yi ) = (1, i ). Then M is a cobordism from ∅ to −X �Y , and hence a cobordism from X to

Y .

Now we can conclude that φ defines a group isomorphism fromΩSO
0 to Z.

Question 7

Letψ : M → N be diffeomorphism of smooth n-manifolds. Show that the cobordisms Wψ and Wψ� are equivalent if

and only if ψ and ψ� are pseudo-isotopic.

Proof. Suppose that Wψ and Wψ� are equivalent. Let Φ : Wψ → Wψ� be an equivalence of cobordism. We claim that

Ψ= (ψ�× idI )◦Φ : M × I → N × I is a pseudo-isotopy from ψ� to ψ. To see this, we can compute:

Ψ(x,0) = (ψ�× idI )◦ (φ�
0)−1 ◦φ0(x,0) = (ψ�× idI )◦ (φ�

0)−1(x) = (ψ�× idI )(x,0) = (ψ�(x),0)

Ψ(x,1) = (ψ�× idI )◦ (φ�
1)−1 ◦φ1(x,1) = (ψ�× idI )◦ (φ�

0)−1(ψ(x)) = (ψ�× idI )((ψ�)−1 ◦ψ(x),1) = (ψ(x),1)

Hence ψ and ψ� are pseudo-isotopic.

Conversely, suppose that Ψ : M × I → N × I is a pseudo-isotopy from ψ to ψ�. We claim that Φ := (ψ−1 × idI )◦Ψ :

M × I → M × I is an equivalence of cobordism from Wψ� to Wψ.

Φ(x,0) = (ψ−1 × idI )(ψ(x),0) = (x,0) =φ−1
0 ◦φ�

0(x,0)

Φ(x,1) = (ψ−1 × idI )(ψ�(x),1) = (ψ−1 ◦ψ�(x),1) =φ−1
1 ◦φ�

1(x,1)

HenceΦ|M×{i } =φ−1
i ◦φ�

i for i ∈ {0,1}. The cobordisms Wψ and Wψ� are equivalent.

Question 8

Let W be a cobordism from M0 to M1, and suppose that W, M0, and M1 are simply-connected. Show that the

following are equivalent:

1. the embedding e0 : M0 �→W is a homotopy equivalence,

2. H∗ (W, M0) = 0,

3. H∗ (W, M1) = 0,

4. H∗ (W, M1) = 0,

5. e1 : M1 �→W is a homotopy equivalence.

Proof. Suppose that dimW = m +1 and dim M0 = dim M1 = m.

1 =⇒ 2: Consider the long exact sequence of relative homology:
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Hn(M0) Hn(W ) Hn(W, M0) Hn−1(M0) Hn−1(W )
(e0)n πn δn (e0)n−1

Since the embedding e0 : M0 →W is a homotopy equivalence, it induces isomorphisms of homology groups

(e0)n : Hn(M0) → Hn(W ) for each n ∈N. By exactness at Hn(W ) and at Hn−1(M0), we must have πn = 0 and

δn = 0. By exactness at Hn(W, M0), we deduce that Hn(W, M0) ∼= 0.

2 =⇒ 3: We need to use a generalised version of the Lefschetz duality. First we note that W is orientable since it is

simply-connected. We quote Theorem 3.43 of Hatcher:

Suppose that W is a compact orientable (m +1)-manifold with ∂W = M0 ∪ M1, where M0, M1 are

compact m-manifolds such that ∂M0 = ∂M1 = M0 ∩M1. Then cap product with the fundamental

class [W ] ∈ Hm(W,∂W ) gives isomorphisms DW : H k (W, M1) → Hm−k (W, M0) for all k ∈N.

So Hn(W, M0) = 0 for all n ∈N implies that H n(W, M1) = 0 for all n ∈N.

3 =⇒ 4: By the universal coefficient theorem for cohomology, we have the short exact sequence

0 Ext1
Z

(Hn−1(W, M1),Z) H n(W, M1) HomZ(Hn(W, M1),Z) 0

Since H n(W, M1) = 0 for all n ∈N, we have Ext1
Z

(Hn−1(W, M1),Z) = 0 and HomZ(Hn(W, M1),Z) = 0 for n ∈N.

Since M1 and W are compact, they have finitely generated homology groups. From the long exact sequence

of relative homology, it is easy to prove that the relative homology groups Hn(W, M1) are also finitely gener-

ated (the proof is similar to a step in Question 10 of Sheet 4 of C3.1 Algebraic Topology).

By the structure theorem for finitely generated Abelian groups, Hn(W, M1) =Zkn⊕Tn , where Tn is the torsion

subgroup of Hn(W, M1). Then by elementary homological algebra,

0 = Ext1
Z(Hn(W, M1),Z) = Tn , 0 = HomZ(Hn(W, M1),Z) =Zkn

Hence Hn(W, M1) = 0 for all n ∈N as claimed.

4 =⇒ 5: For this step we need some homotopy theory, which I think is not covered in C3.1 Algebraic Topology.

Since W and M1 are smooth, by Proposition 1.6.5 they have handle decompositions. In particular they are

CW-complexes. By the relative Hurewicz Theorem, the Hurewicz map h is a morphism between the long

exact sequences of relative homotopy groups and relative homology groups:

πn+1(W, M1) πn(M1) πn(W ) πn(W, M1)

Hn+1(W, M1) Hn(M1) Hn(W ) Hn(W, M1)

h h h h

Since (M1,W ) is a pair of simply connected spaces, and Hn(W, M1) = 0 for all n ∈ N, then h : πn(W, M1) →
Hn(W, M1) is an isomorphism, and henceπn(W, M1) = 0 for all n ∈N. Therefore the embedding e1 : M1 →W

induces isomorphisms of homotopy groups πn(M1) → πn(W ) for each n ∈N. By Whitehead’s Theorem, e1

is a homotopy equivalence.

5 =⇒ 1: We can simply swap the labels of M0 and M1. Then the above sequence of arguments 1 =⇒ 2 =⇒ 3 =⇒
4 =⇒ 5 becomes 5 =⇒ 4 =⇒ 3� =⇒ 2 =⇒ 1, where 3� is the statement that H•(W, M0) = 0. This finishes

the proof.
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Section C: Optional

Question 9

Let f : M → N be a submersion.

(a) Show that if f is proper; i.e., f −1(K ) is compact for every K ⊆ N compact, then M is a fibre bundle over N

with fibre f −1({y}) for y ∈ N .

(b) Give a counterexample when f is not proper.


