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Throughout this sheet we assume that all Lie algebras are over a field k.

Question 1

Show that sl2(C) is a simple Lie algebra, i.e. its only ideals are 0 and itself.

Proof. sl2(C) is the space of 2×2 traceless matrices. So dimsl2(C) = 3. We can write down a set of basis matrices:

A =
(

1 0
0 −1

)
, B =

(
0 1
0 0

)
, C =

(
0 0
1 0

)

The commutators between these matrices are given by

[A,B ] = 2B , [B ,C ] = A, [C , A] = 2C

Suppose that I is a non-zero ideal of sl2(C). Let X = a A+bB + cC ∈ I \ {0}. Then we have

[B , [A, X ]] = [B ,2bB −2cC ] =−2c A ∈ I

If c 6= 0, then A ∈ I . It follows that B = 1

2
[A,B ] ∈ I and C = 1

2
[C , A] ∈ I . Hence I = sl2(C).

If c = 0, then X = a A+bB . We have [B , X ] =−2aB ∈ I . If a = 0, then we must have b 6= 0 and hence B ∈ I . As above
we have I = sl2(C). If a 6= 0, then B ∈ I , we also have I = sl2(C).

In conclusion, sl2(C) is a simple Lie algebra.

Question 2

Let S be an n ×n matrix with entries in a field k. Define

glS = {
x ∈ g : x t S +Sx = 0

}
1. Show that glS is a Lie subalgebra of gln .

2. Let Jn be the n ×n-matrix:

Jn =


0 . . . 0 1
0 . . . 1 0
...

. . .
...

...
1 . . . 0 0


Now let S be the 2n ×2n matrix:

S =
(

0 Jn

−Jn 0

)
Find the conditions for a matrix to lie in glS and hence determine the dimension of glS .

Proof. 1. It is trivial linear algebra that glS is a k-subspace of gln . We need to show that glS is closed under the com-
mutator.

For x, y ∈ glS , we have

[x, y]>S +S[x, y] = (y>x> −x> y>)S +S(x y − y x)

= (y>x>S −Sy x)− (x> y>S −Sx y)

= y>(x>S −Sx)+ (y>S −Sy)x −x>(y>S −Sy)+ (x>S −Sx)y

= 0
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Hence glS is a Lie subalgebra of gln .

2. First we suppose that chark 6= 2.

Note that Jn is symmetric, and S is skew-symmetric. Then

x ∈ glS ⇐⇒ x>S +Sx = 0 ⇐⇒ −(Sx)> +Sx = 0 ⇐⇒ Sx is symmetric

Moreover,

S2 =
(
−J 2

n O
O −J 2

n

)
=− id2n

In particular S is invertible, not only as a matrix, but as a linear map S : x 7→ Sx. Let Sym2n be the k-subspace
of gln of symmetric matrices. Then we have glS = S−1(Sym2n) = S(Sym2n) = {Sx : x is symmetric}. The di-
mension

dimglS = dimSym2n = 2n(2n +1)

2
= n(2n +1)

Question 3

Classify all Lie algebras g with dim(g) = 3 and z(g) 6= 0.

Proof. The centre z(g) is an ideal of g.

• dimz(g) = 1.

Let {u} be a basis of z(g) and we extend it to a basis {u, v, w} of g. We can write down the Lie brackets

[u, v] = [u, w] = 0, x := [v, w]

If x = au +bv + cw for a,b,c ∈ k, then:

[u, x] = 0, [v, x] = c[v, w] = cx, [w, x] = b[w, v] =−bx

It is clear that x 6= 0 for otherwise g would be Abelian.

– x ∈ z(g):

We have x = du for some d ∈ k \ {0}. We can replace v by d−1v and obtain the Lie brackets for basis
vectors:

[u, v] = 0, [v, w] = u, [w,u] = 0

– x ∉ z(g):

We note that spank {x} is an ideal of g. We extend {u, x} to a basis {u, x, y} of g. Then [x, y] 6= 0 for
otherwise x ∈ z(g). We can rescale y such that [x, y] = x. The resulting Lie brackets for basis vectors:

[u, x] = 0, [x, y] = x, [y,u] = 0

• dimz(g) = 2.

Suppose that z(g) has a basis {u, v} and it extends to a basis {u, v, w} of g. Then [w, au +bv + cw ] = 0 and
hence w ∈ z(g). Contradiction. In general, a Lie algebra cannot have a centre of codimensional 1.

• dimz(g) = 3.
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This is the case where g is Abelian. If {u, v, w} is a basis, then

[u, v] = 0, [v, w] = 0, [w,u] = 0

In summary, there are 3 non-isomorphic 3-dimensional Lie algebras with non-zero kernel.

Question 4. The classical groups

In this course a fundamental role is played by the classical groups. In this question they will be defined, we will
calculate their dimensions and we will look at some small dimensional examples. Assume throughout that k is a
field of characteristic 6= 2.

a) (The special linear group sln) Recall that sln ⊆ gln denotes the subspace of traceless n ×n-matrices. Check
that sln is a subalgebra of gln by verifying Tr(ab) = Tr(ba) for n×n-matrices a,b ∈ gln Calculate the dimension
of sln .

b) (The special orthogonal group son) Recall the definition of glS and Jn from Question 2. Consider the matrix

S = Jn

We define son to be glS . Find conditions for a matrix to belong to son and hence calculate its dimension.

c) (The symplectic group sp2n) Consider the matrix

S =
(

0 Jn

−Jn 0

)

We define sp2n to be glS . You already calculated its dimension in question 3. Give an explicit description of
sp2 in terms of another Lie algebra occuring on the list above.

d) Show that so2 is abelian and that sl2 ∼= so3.

Proof. a) We note that tr : gln → k is a linear map. For A,B ∈ gln , we have

tr[A,B ] = tr(AB −B A) = tr(AB)− tr(B A) =
n∑

k=1

n∑
j=1

Ak j B j k −
n∑

k=1

n∑
j=1

Bk j A j k = 0

Hence [A,B ] ∈ sln . sln is an ideal of gln . By first isomorphism theorem, dimsln = dimgln −dimk = n2 −1.

b) We note that S = S> and S2 = id2. The same argument in Question 2 shows that x ∈ son if and only if Sx is
skew-symmetric, and therefore

son = S(Skewn) = {
Jn x : x is skew-symmetric

}
The dimension is given by

dimson = dimSkewn = n(n −1)

2

c) We use our result in Question 2. For x =
(

a b
c d

)
, we have

x ∈ sp2 ⇐⇒ Sx is symmetric ⇐⇒
(

0 1
−1 0

)(
a b
c d

)
=

(
c d
−a −b

)
is symmetric ⇐⇒ x =

(
a b
c −a

)
⇐⇒ x ∈ gl2

Hence sp2 = gl2. They are the same subalgebra of gl2.
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d) We note that dimso2 = 1, which is in fact a field. The Lie algebra is Abelian.

For so3, we first write down a basis for Skew3. The canonical choice is

L1 =

0 0 0
0 0 −1
0 1 0

 , L2 =

 0 0 1
0 0 0
−1 0 0

 , L3 =

0 −1 0
1 0 0
0 0 0


which satisfies [Li ,L j ] =∑3

k=1 εi j k Lk .

J3 maps {L1,L2,L3} to a basis of so3:

S1 =

0 1 0
0 0 −1
0 0 0

 , S2 =

1 0 0
0 0 0
0 0 −1

 , S3 =

0 0 0
1 0 0
0 −1 0


which satisfies [Si ,S j ] =∑3

k=1 εi j k Sk .

Suppose that k contains a primitive fourth root of unity, i.e. i = p−1. We consider the ladder operators
S± := iS2 ±S1, and a rescaled S′

3 = 2iS3. They satisfy the relations

[S′
3,S±] =±2S±, [S+,S−] = S′

3

Now we have a Lie algebra isomorphism from so3 to sl2 generated by S+ 7→ B , S− 7→C , and S′
3 7→ A, where

A =
(

1 0
0 −1

)
, B =

(
0 1
0 0

)
, C =

(
0 0
1 0

)

(I am unclear how to construct the isomorphism if k does not contain a square root of −1.)

Question 5

Let k be an arbitrary field.

i) For 1 É i , j É n, let Ei j denote the matrix with all entries equal to zero apart from the entry in row i and
column j , which has entry equal to 1. These are sometimes called "elementary matrices", and they form a
basis of gln(k). Calculate the structure constants of the Lie algebra gln(k) with respect to this basis, that is,
find the scalars λr s

i j ,kl ∈ k where [
Ei j ,Ekl

]= n∑
r,s=1

λr s
i j ,kl Er s

ii) Show that sln(k) is the derived subalgebra of gln(k).

Proof. i) The elements of the elementary matrix Ei j is given by (Ei j )µν = δiµδ jν. Then we have compute the commu-
tator:

[Ei j ,Ek`]µν =
n∑
κ=1

(Ei j )µκ(Ek`)κν−
n∑
κ=1

(Ek`)µκ(Ei j )κν

=
n∑
κ=1

δiµδ jκδkκδ`ν−
n∑
κ=1

δkµδ`κδiκδ jν

= δiµδ j kδ`ν−δkµδi`δ jν

= (Ei`δ j k −Ek jδi`)µν

Hence [Ei j ,Ek`] = Ei`δ j k −Ek jδi`.
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In terms of the structure constants, we have

λr s
i j k` = δr

i δ
s
`δ j k −δr

kδ
s
jδi`

ii) We have proven in Question 4.(a) that [A,B ] ∈ sln for A,B ∈ gln . Hence [gln ,gln] ⊆ sln . On the other hand,
we can write down an explicit basis of sln :

B = {
Ei j : i 6= j , 1 É i , j É n

}∪ {Ei i −Enn : 1 É i É n −1}

It is clear that B is linearly independent. B spans sln because dimsln = n2 −1 = cardB.

From (i) we know that:

Ei j = [Ei k ,Ek j ] (for any 1 É k É n), Ei i −Enn = [Ei n ,Eni ]

Hence B ⊆ [gln ,gln]. We conclude that [gln ,gln] = sln . sln is the derived subalgebra of gln .

Question 6

i) Show that sln(C) is simple, that is, show that sln(C) has no proper nontrivial ideals.

(Hint: It might be easier show that gln(C) has no non-trivial ideals contained in sln .)

ii) Now suppose k is an arbitrary field. Is sln(k) always a simple Lie algebra?

Proof. i) Suppose that I is a non-zero proper ideal of gln(C) such that I ⊆ sln(C). Let D be the C-subspace of gln(C)
generated by all diagonal matrices. we consider the mapsϕi := adEi i ∈ EndC(gln(C)) for i = 1, ...,n. We have

ϕi (E j k ) = [Ei i ,E j k ] =


Ei k , i = j 6= k;

−E j i , i = k 6= j ;

0 otherwise.

Then {ϕ1, ...,ϕn} is a family of diagonalisable and pairwise commutative operators on gln(C). They can be
simultaneously diagonalised. That is, gln(C) has the eigenspace decomposition

gln(C) = D ⊕⊕
i 6= j

CEi j

If I ∩D 6=∅, then there exists

A =
n∑

i=1
ai Ei i ∈ I ∩D

Since idn ∉ I , we may assume that 1 Éµ< νÉ n such that aµ 6= aν. Then

[A,Eµν] =
n∑

i=1
ai [Ei i ,Eµν] = (aµ−aν)Eµν ∈ I

Hence Eµν ∈ I .

If I ∩D =∅, since I is an ideal, the family {ϕ1, ...,ϕn} restricts to a family of operators on I , and we have

I =⊕
i 6= j

(I ∩CEi j )

As I 6= {0}, there exists 1 Éµ< νÉ n such that Eµν ∈ I .



6

In both cases we have some Eµν ∈ I . For j 6= µ, we have Eµ j = [Eµν,Eν j ] ∈ I . And therefore Eµµ −E j j =
[Eµ j ,E jµ] ∈ I . We deduce that D ∩sln(C) ⊆ I .

Finally, for any 1 É i < j É n, we have

Ei j = 1

2
[Ei i −E j j ,Ei j ] ∈ I

We conclude that sln(C) ⊆ I . This proves that sln(C) is a simple Lie algebra.

ii) Take k=Z/2. We note that id2 ∈ sl2(Z/2) because tr id2 = 2 = 0. We note that [id2, A] = 0 for any A ∈ sl2(Z/2).
So id2 ∈ z(sl2(Z/2)). Therefore z(sl2(Z/2)) is a non-zero ideal of sl2(Z/2). It is proper because[(

0 1
0 0

)
,

(
0 0
1 0

)]
=

(
1 0
0 −1

)
6= 0

So z(sl2(Z/2)) 6= sl2(Z/2). We conclude that sl2(Z/2) is not a simple Lie algebra.


