Peize Liu
St. Peter’s College
University of Oxford

Problem Sheet 3
B1.2: Set Theory

September 4, 2020



We use the first-order language L := {€,C; P,|J, P; @, w}, where € and C are binary predicates, P is a binary function, | J and
‘P are unary functions, and & and w are constants.

The equality symbol = is used in £ which indicates that two terms have the same value under any model and assignment. The
equality symbol = is used in metalanguage which indicates that two strings are equal.

The ZF axioms we shall use in this sheet are listed below:

ZF1 Extensionality: VaVy(Vz(z € z <> z € y) > = = y);

ZF2 Empty Set: Vx -z € &;

ZF3 Pairs: VaVyVz(z € P(z,y) <> (z =z Vy = z));

ZF4 Unions: VxVy(y € Jz <> 32(y € z A z € 2));

ZF5 Comprehension Scheme: Let ¢ € Form(L) and z,wy, ..., wi, € Free(p). Then VaVw; - - -VwpIyVz(z € y <> (z € x A p));
ZF6 Power Sets: VaVy(y € P(z) <>y C z);

ZF7 Infinity: 3x(@ € x AVy(y €  — y* € x)), where y* is defined to be |J P(y, P(y,vy));

ZF8 Replacement Scheme: Let ¢ € Form(L) and x,y, w1, ...,wi, A € Free(p). Then VAVw; - - -Vw,(Vz(z € A — Fly ) —
dBVy(y € B +» Jz(z € AN @))), where 3y p is defined to be (3y o AV2Vy((¢ A [z/y]) = y = 2)).

ZF9 Foundation: Vz(—~z =& — Jy(y € c A —~Jz(z € y A z € 1))).
The predicate C is introduced for convenience. It satisfies VaVy(z C y +> Vz(z € . — z € y)).

The constant w is the smallest inductive set, whose existence and uniqueness follows from the Axioms of Infinity, Comprehension
Scheme, and Extensionality.

Question 1 o

Prove that there is no descending sequence X, > X; > ... of sets, that is, there is no function f with domain w such
that f(n™) € f(n) forall n € w.

[Hint: Apply the Axiom of Foundation to a suitably chosen set.]

Proof. Suppose for contradiction that there exists a map f : w — X such that f(n™) € f(n) for all n € w. Consider
im(f) C X. Since im(f) # @, by the Axiom of Foundation there exists Y € im(f) such that Y Nnim(f) = @. As
Y € im(f), there exists n € w such that Y = f(n). But by definition f(n™) € f(n) =Y. Then f(n*) € Y Nim(f).
Contradiction. ‘/ O

Question 2 oL~

Use the Axiom of Foundation to show that, if A is a non-empty set, then A # A x A.

Proof. Suppose that A = A x A. For zy € A, there exists z;,y1 € A such that zg = (z1,y1) = {{z1}, {z1,v1}}. Hence
xo 3 {x1} > z1. Recursively, we can construct a descending chain of sets:

zod{x1} 3153 {z2} 3225+
Using Qn.1 is a short-cut approach to this, but formally speaking you
contradicting the result of Question 1. ‘/ would need something as complicated as the oddity of natural numbers to [
define the recursion you mentioned.
It is actually expected that you make a tricky construction (U{A, UA}),
Question 3 o and apply the axiom of foundation directly to it.

Prove that a subset of a finite set is finite.

[Hint: First show, by induction, that, for n € w, every subset of n is equinumerous with some natural number.]

Proof. We shall use induction on n € w to show that for all n € w and = C n, z is a finite set.

Base case: For 0 = @, the only subset is 0 itself. So it is finite by definition.



Induction case: Suppose that this is true for n € w. Then for z C n": if n ¢ z, then z C n and hence = is finite by
induction hypothesis; if n € z, then 2 = (zNn) U {n}, where x Nn C n is finite by induciton hypothesis. There exist

m € w and bijection f : z N"n — m. Let f : z — m™ defined by

f(z) :: {f(z)7 z€xNn;

m z=n.

It is immediate that f is a bijection. Hence z ~ m™ is a finite set.

Now suppose that a is a finite set. There exist n € w and bijection f : a — n. For b C a, im(f|,) C n is finite. Since
f|» is a bijection between b and im(f|;), we conclude that b is ﬁnite.‘/ O

Question 4 o
Prove that the following properties of a set X are equivalent:
(1) w < X (i.e. there is an injective function f : w — X)
(2) there exists a function g : X — X which is injective but not surjective.

[Hint: For (2)=(1) use the Recursion Theorem, and induction to verify that the function you define is indeed injective.]

Proof. (1)=(2): Let h : w — w defined by n — 2 - n. Consider the function g : X — X defined by

fohofY(x), z€im(f);
g(x) := :
2, z € X\im(f)
It is straightforward that g is injective but not surjective, as f(1) ¢ im(g).

(2)=(1): Fix ap € X\ im(g). By Recursion Theorem, there exists a unique function f : w — X such that f(0) = aq
and f(n™) = go f(n) for each n € w. We claim that f is injective. It suffices to prove that f|, : n — X is injective for
all n € w. We use induction on n:

Base case: f|p : @ — X is injective vacuously.

Induction case: Suppose that f|,, is injective but f|,+ is not. If n = 0, then this is impossible because n* = 1 = {&}
is a singleton. If n > 0, then there exists m € n such that f(n) = f(m). If m =0, then f(n) = g(f(n — 1)) = ao. This
isimpossible as ag ¢ im(g). If m > 0,then g(f(n—1)) = f(n) = f(m) = g(f(m—1)) implies that f(n—1) = f(m—1),
as g is injective. But this contradiction that f|, is in]’ective.‘/ O

Question 5 o
Suppose «, A, i are cardinals. Prove (no need to check obvious bijections)
@ k+N)+p=r+AN+n
() (k-A)-p=r-(A-p)
(iii) k- A+ p)=r-A+£K-p
(iv) pMHE = A gk
(V) KM = (.ﬂ-{’\)H

Vi) (K- AP = kH A1

Proof. Let A, B, C be disjoint sets such that card (A) = &, card (B) = A, and card (C') = p.

(i) By definition, (k + ) + p = card (AU B) UC) and k + (A + p) = card (AU (B U C)). By thr Axiom of Exten-
sionality, (AUB)UC = AU (BUC).Hence (k + ) + u=r+ (A + p).

(ii) By definition, (k- \)-p=card ((Ax B) x C)and k- (A - p) = card (A x (B x C)). Themap f: (Ax B) x C —
A x (B x C) given by ({(a,b) ,c) — (a, (b, c)) is obviously a bijection. Hence (k- \) - p=r- (X~ [L).J



(iii) By definition, k- (A+pu) = card (A x (BUC))and k-A+k-pu = card (A x BU A x C). By Axiom of Extensionality
Ax(BUC)=AxBUAxC.Hencek-(A+p) =K -A+kK- .

(iv) By definition, s**# = card (APYY) and k* - k* = card (AP x A%). For f : B — Aand g : C — A, we define
fxg: BUC — Aby

f(z), =z € B;

g(z), zeC.

(f*g)(x) == {

We claim that the map (f, g) — fx*g is abijection from A x A® to ABYC. It s trivially injective. For h : BUC —

A, we have h = h|p X h|c, where h|g : B — Aand h|c : C — A. Hence the map is surjective.
It should be h =h|B U h|C o
(v) By definition, k** = card (A%*¢) and (x*)" = card ((AB) ) For f : Bx C — Aandc¢ € C, we define

fe:B— Abybw— f((b,c)). We denote the map ¢ — f. by 6. We claim that the map f — 6; is a bijection from
ABXC o (4B)€,

(vi) By definition, (k- A\)* = card ((A x B)®) and & - \* = card (A° x BY). For f : C - Aandg : C — B, we
define f x g by (f x g)(z) := (f(x), g(x)). We claim that the map (f, g) — f x g is a bijection from (4 x B)® to
A% x BC'J O

Question 6 o

(@) Let A, X,Y be sets such that X < A. Prove that XY < AY. Deduce that, for cardinals &, \, i, if & < A then
K< AP

(b) Nowlet A, B, X,Y be sets with X < Aand Y < B. Prove that, apart from exceptional case(s), XY < AB.
[You need to show that the map you give from XY to AP is really injective.]

What are the exceptional cases?

Proof. (a) Since X < A, there exists an injection f : X — A. Foreachg:Y — X, we claim that g — f o g is an injection
from XY to AY. For g1,¢> € XY suchthat fog, = f o go, we have g; = g» (injections are left-invertible). Hence

g +— f ogisinjective. We conclude that XY < AY. Hence x* < M for cardinals «, \, s XA
¥

(b) XV < ABistrueunless (A = @ A B # @ AY = ). First suppose that A # @. Suppos‘(that f:X — Y and
g : A — B are injections. We shall prove that AY < AB. Fixay € A.Forh:Y — A, we define §,, : B — A By

*Y B
h(y), x== ;
On(z) = (v) g(y)
ap,  x ¢ im(g).
0y, is well-defined since g is injective. It follows immediately that the map A — 6}, is injective. Hence AY < AB.
We have proven in (a) that X¥ < AY. By transitivity of <, we have XY < A5,

IfA=gand B=g,thenX =gandY = @. Here XY = 29 = {g} = 29 = AB. Theonlymap f : {&} — {2},
@ +— @ is bijective. Hence XY < AB.

IfA=@, B#@andY # @,then X = @. Here XY = oV = g = @B = AB, Theonlymap @ : @ — @ is
bijective. Hence XY < AB.

Assume that (A=@AB# 3AY = @).Then X = @. XY = {z} and AP = &. There are no maps from {2} to
.50 XY £ AB.‘/ O

Question 7 o=

Calculate the cardinalities of the following sets, simplifying your answers as far as possible: your answer in each case
should be a cardinal from the list R, 2%, 22" ...

(i) The set of all finite sequences of natural numbers

[Note that the axioms given so far do not prove that a countable union of countable sets is countable. Use unique
factorization of non-zero natural numbers into powers of primes.]



(ii) The set of functions f: R — R
(iii) The set of continuous functions f : R — R

[Hint: a continuous function is determined by its values on Q.]
(iv) The set of equivalence relations on w.

[Hint: To get a lower bound think about partitions of w.]

Proof. (i) The set of all finite sequences of natural numbers has cardinality X,.

First we define a finite sequence on X to be amap f : n — X for some n € w. We denote the set of all maps
n — w by w™. Then the set of all finite sequences is U w™. We claim that it is countably infinite.

new
Letp:=Vm(mew —=Vp((pewAn=p-m)— (p=1Vp=n))). Letll:= {n € w: p}. ThenIlis the set of all
prime natural numbers. It is trivial that IT is infinite. Since IT C w, it is countably infinite. In particular there
exists a bijection w — II, n +— p,,.

Since f : n — w is uniquely determined by the values f(0), ..., f(n — 1). There is a natural bijection between
" and -++ X w, so that : is identified with {£(0), ...., —1)). Let F: " iven b
w"and w x -+ X w, so that every f : n — w is identified with (f(0) f(n—=1)). Le Uw — w given by

n times new

i—1
(f(0)y.ccc, f(n = 1)) Zf(i) - p;. By the Fundamental Theorem of Arithmetics, F' is injective. Hence U w™
i=0

. . ) new
Sum of prime multiples is not unique, and

you need product of prime powers instead!
Additionally, (i) can be zero, so you will not
(ii) The set of functions f : R — R has cardinality 92", be able to differentiate ¢1,1) and ¢1,1,0) in

this way. You in fact need I1(p_i"(f(i) + 1
Firstly, card (R x R) = 2%0 . 280 = 9Ro+Xo — 9®0 — card (R), since Rg + Rg = Ng. v p_I"(H)* 1)

Secondly, R* C P(R x R). Then card (R®) < card (P(R x R)) = card (P(R)) = 2627 () — 92

w. It is trivial that U w™ is infinite. Hence U w™ is countably infinite.

new new

Thirdly, 22" = card (2%) < card (R®), since 2 < 2%,
Finally, by Schréder-Bernstein Theorem, we have card (R¥) = 22™.
(iii) The set of continuous functions f : R — R has cardinality 2%.

From analysis we know that a continuous function f : RtoR is uniquely determined by its values on a dense
subset of R. Since Q C R is dense, The set of continuous functions f : R — R has cardinality card (R?).

¥ This only shows the
By Corollary 10.12, card (Q) = R, and Xy - Ry = Ro. Then card (R?) = (2%0)%0 = 2%0-Fo — 9%, cardinality is not

(iv) The set of equivalence relations on w has cardinality 2%c. greater than
card(R"Q) though
Let S be the set of equivalence relations on w. Since S C P(w x w), card (S) < card (P(w x w)) = card (P(w)) =
2Ro,

For a C w, we define an equivalence relation R, on w: for m,n € w,
((m,n) € Ry <> (me€aAn€a)V(—-mea-nca)))

The map a — R, is clearly an injection from P(w) to S. Hence card (P(w)) = 28 < card (S).
¥®No, this is not an injection, because R_a=R_(w \ a). The correct way is to only
Finally, by Schroder-Bernstein Theorem, we have card (S) = 2%. . 1cider 2 C o that does not contain 0, so

youmap P(w \ {0}) into S
Question 8 o
Let f : X — Y be surjective. Prove that P(Y) < P(X).

[You should not assume there exists an injective map g : Y — X as the axioms we have so far do not suffice to prove this.]

Proof. Themap f: X — Y induces f~! : P(Y') — P(X), which is clearly injective as f is surjective. ‘/ O



Question 9 o
(a) Let x be any cardinal number and n € w. Prove that (for cardinal addition)
(i) k+0=randx-0=0
(i) k- nT=k-n+r

(b) We now have two definitions of addition and multiplication for elements of w. Prove that they agree.

Proof. Let A be a set disjoint from w with cardinality «.
(@) (i) Since AU = A, K+ 0 = k. Since A x @:@,/{XO:O.‘/
(ii) k-nT =rK-(n+1) = K-n+r-1. There is a natural bijection from A to A x {@} given by a — {(a, &). Hence
k-l=randx-nt =K -n+ k.
(b) The cardinal addition satisfies thatn +0 =nandn+m™* = (n+m)" = n+m + 1 for n,m € w. By Proposition
6.1, the binary operation with these proeprties is unique. So it agrees with usual addition on w.
The cardinal multiplication satisfies that n -0 = 0 and m - n* = m - n +m for n, m € w. By Proposition 6.1, the
binary operation with these proeprties is unique. So it agrees with usual multiplication on w.‘/
O



