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Question 1

LetH andK be subgroups of a groupG. Show thatHK := {hk : h ∈ H, k ∈ K} is a subgroup ofG if and only ifHK = KH.

Proof. "⇐=": Suppose that HK = KH. For a, b ∈ HK, there exists h1, h2 ∈ H and k1, k2 ∈ K such that a = h1k1, b = h2k2.
Then ab−1 = h1k1(h2k2)

−1 = h1k1k
−1
2 h−12 . SinceK is a subgroup ofG, k1k−12 ∈ K. Then k1k−12 h−12 ∈ KH = HK. There

exists h′ ∈ H, k′ ∈ K such that k1k−12 h−12 = h′k′. Hence ab = h1h
′k′ ∈ HK since h1h′ ∈ H. By the subgroup test,HK is

a subgroup of G.

"=⇒": Suppose that HK is a subgroup of G. For kh ∈ KH (k ∈ K and h ∈ H), h−1k−1 ∈ HK. Since HK 6 G,
(h−1k−1)−1 = kh ∈ HK. Hence KH ⊆ HK. On the other hand, for hk ∈ HK (k ∈ K and h ∈ H), there exists
h′k′ ∈ HK (k′ ∈ K and h′ ∈ H) such that hkh′k′ = e. Then hk = k′−1h′−1 ∈ KH. Hence HK ⊆ KH. We conclude that
HK = KH.

Question 2

Let K / G. Denote G = G/K and let H 6 G. Show that H = {h ∈ G : hK ∈ H} is a subgroup of G, containing K as a
normal subgroup and such thatH/K = H. Show further that ifH is normal in G thenH is normal in G.

Proof. For h1, h2 ∈ H, h1K,h2K ∈ H. SinceH 6 G, h1K(h2K)−1 = h1h
−1
2 K ∈ H. Hence h1h−12 ∈ H. BY the subgroup testH is

a subgroup ofG. SinceK ∈ H, we haveK ⊆ H. K/G implies thatK/H. And it is trivial thatH/K = {hK : h ∈ H} = H.
Finally, suppose that H / G. For h ∈ H, g ∈ G, hK ∈ H, and we have (gK)−1(hK)(gK) = (g−1hg)K ∈ H. Hence
g−1hg ∈ H. We deduce thatH is normal in G.

Question 3

Identify the following groups from the given presentations.

(i) G1 = 〈x | x6 = e〉.

(ii) G2 = 〈x, y | xy = yx〉.

(iii) G3 = 〈x, y | x3y = y2x2 = x2y〉.

(iv) G4 = 〈x, y | xy = yx, x5 = y3〉.

(v) G5 = 〈x, y | xy = yx, x4 = y2〉.

Proof. (i) We claim that G1
∼= C6. Suppose that C6 is generated by g. Consider the map that sends x to g ∈ C6. By universal

property of free groups it induces a group epimorphism ϕ : F ({x}) → C6. Since ϕ(x6) = g6 = e, by universal
property of quotient groups, ϕ induces the group epimorphism ϕ̃ : G1 = F ({x})/〈〈x6〉〉 → C6.

It remains to prove the injectivity. For xn ∈ ker ϕ̃, ϕ̃(xn) = gn = e =⇒ n ∈ 6Z =⇒ xn = e. Hence ker ϕ̃ = {e}. We
conclude that ϕ is a group isomorphism.

(ii) We claim that G2
∼= Z2. Consider the map which sends x to (0, 1) and y to (0, 1). It induces a group epimorphism

ϕ : F ({x, y}) � Z2. Since ϕ(xy(yx)−1) = (1, 0) + (0, 1) − (1, 0) − (0, 1) = 0, ϕ induces the group epimorphism
ϕ̃ : G2 � Z2.

It remains to prove the injectivity. Since xy = yx is a relation, we can verify that x, y, x−1 and y−1 commutes with
each other. Inductively we have xmyn = ynxm for allm,n ∈ Z. Suppose that w ∈ F ({x, y}) such that ϕ(w) = 0. w
is a finite string with alphabet {x, y}. For each substring ymxn in w, we insert the relation y−mxnymx−n between
ym and xn. Inductively we have that w = xiyj ∈ G2.
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Therefore ϕ̃(w) = (i, 0) + (0, j) = (i, j) = (0, 0) =⇒ i = 0, j = 0 =⇒ w = 0. We conclude that ϕ̃ is a group
isomorphism.

Remark. Using the same idea, we can prove that 〈X1 | R1〉 × 〈X2 | R2〉 ∼= 〈X1 t X2 | R1 t R2 t [X1, X2]〉, where
[X1, X2] := {x1x2x−11 x−12 : x1 ∈ X1, x2 ∈ X2} is the commutator ofX1 andX2.

(iii) We claim that G3
∼= {e}. The relation x3y = x2y implies that x = e. Hence x3y = y2x2 implies that y = y2, which

implies that y = e. Then G3 is the trivial group.

(iv) As we have shown in part (ii), the relation xy = yx implies that G4 is Abelian. Then it is a finitely-presented
Z-module. There is an exact sequence:

Z2 Z G4 {e}
ϕ π

The group homomorphism ϕ : Z → Z2 sends 1 to (4,−2), which corresponds to the relations in G4. This gives the
presentation matrix:

ϕ =

(
5

−3

)
We can put the matrix of ϕ into Smith normal form by repeatedly applying Euclidean algorithm:(

5

−3

)
∼

(
−1
−3

)
∼

(
1

3

)
∼

(
1

0

)
Hence imϕ = Z. By exactness and first isomorphism theorem, we have

G4 = imπ ∼= Z2/ kerπ ∼= Z2/ imϕ = Z2/Z ∼= Z.

(v) The proceduce is the same as in part (iv). The relation xy = yx implies that G5 is Abelian. We can write down its
presentation matrix and put it into Smith normal form:

ϕ =

(
4

−2

)
∼

(
2

−2

)
∼

(
2

0

)
Hence imϕ = 2Z. We have

G5
∼= cokerϕ = Z2/ imϕ = Z2/2Z ∼= Z⊕ Z/2Z.

Remark. Part (iv) and (v) are special cases of the Structure Theorem for finitely generated modules over a PID.

Question 4

Let G be a non-Abelian group of order 8. We know then that all elements have order 1, 2 or 4 and there exist elements of
order 4. Let a be an element of order 4, set A = 〈a〉 and let b ∈ G\A. Show that b−1ab = a−1 and that either b2 = e or
b2 = a2. Use this to prove that up to isomorphism there are just five groups of order 8.

Proof. If G has an element of order 8, then G ∼= C8 is a cyclic group and is Abelian. If G has only elements of order 1 and 2,
then by Prelim Group Theory Sheet 4 Question 5 we know that G ∼= C3

2 is Abelian.

Suppose that G is non-Abelian. We have G = 〈a〉 ∪ b〈a〉. We obtain a complete list of elements in G:

G = {e, a, a2, a3, b, ba, ba2, ba3}.

Consider the element ab ∈ G. Clearly ab /∈ 〈a〉 because b /∈ 〈a〉. ab 6= ba because G is non-Abelian. If ab = ba2, then

a3b = a2ba = aba4 = ab =⇒ a2 = e,

which is a contradiction. It could only be the case that
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ab = ba3 = ba−1 =⇒ b−1ab = a−1.

The order of b is 2 or 4. If b2 = e, then G = 〈a, b | a4, b2, abab−1〉 ∼= D8. If b2 6= e, then b has order 4, and b2 has order 2.
Since a and a3 has order 2, b2 6= a, a3. If b2 = ba, then b = a, which is impossible. If b2 = ba2, then b = a2 has order 2,
which is impossible. If b2 = ba3, then b = a3, which is impossible. The only possibility is that b2 = a2. The map a 7→ i,
b 7→ j, ba 7→ k, a2 7→ −1 induces a group isomorphism G → Q8. We deduce that any non-Abelian group of order 8 is
isomorphism toD8 andQ8. Moreover, we know that the Abelian groups of order 8 are C8, C4 ×C2 and C3

2 . We conclude
that there are five different groups of order 8 up to isomorphism.

Question 5

Let G = 〈x, y | x2 = e = y2〉 and letD∞ denote the isometry group of Z, the infinite dihedral group.

(i) Show that G is infinite.

(ii) Let z = xy. Show that every element ofG can be uniquely written as zk or yzk where k ∈ Z. Show thatG = 〈y, z | y2 =

e, yzy = z−1〉.

(iii) Show that y(n) = −n and z(n) = n+ 1 are elements ofD∞. Deduce that G ∼= D∞.

Proof. (i) We claim that (xy)n are distinct elements in G for different n ∈ Z. Suppose that there are n1, n2 ∈ Z such that
(xy)n1 = (xy)n2 . Then we have (xy)m = e in G, wherem := n1 − n2. Since G = F ({x, y})/〈〈x2, y2〉〉 and (xy)m is a
reduced word in F ({x, y}), (xy)m ∈ 〈〈x2, y2〉〉. But

〈〈x2, y2〉〉 = 〈
{
w−1x2w, w−1y2w : w ∈ F ({x, y})

}
〉

Every non-empty word in 〈〈x2, y2〉〉must contain the substring x2 or y2. Thereforem = 0 and (xy)n1 = (xy)n2 . We
conclude that G is infinite.

(ii) We can perform a sequence of Tietze transformations:

G = 〈x, y | x2, y2〉
∼= 〈x, y, z | x2, y2, z−1xy〉
∼= 〈x, y, z | x2, y2, x−1zy−1〉
∼= 〈y, z | zy−1zy−1, y2〉
∼= 〈y, z | z = yz−1y, y2〉
∼= 〈y, z | yzy = z−1, y2〉

yzy = z−1 inplies that z−1y−1z−1y−1 and zyzy are relations in G. For a word w ∈ F ({y, z}), we insert the relation
z−1y−1z−1y−1 into the middle of the substrings zy and zy−1, and zyzy into the middle of the substrings z−1y and
z−1y−1. After each operation we invert the order of yi and zj in the substrings. Sincew has finite length, eventually
we will obtain that w equals ylzk in G. Since y2 = e in G, we may assume that l ∈ {0, 1}. In conclusion, every
element in G can b written as zk or yzk.

Moreover, the expression is unique of each element, as we have proven in part (i) that zk1 6= zk2 for k1 6= k2.

(iii) Form,n ∈ Z, |y(m)− y(n)| = | −m− (−n)| = |m− n|. So y ∈ D∞. |z(m)− z(n)| = |m+ 1− (n+ 1)| = |m− n|. So
z ∈ D∞. Since

y ◦ y(n) = y(−n) = n

and

y ◦ z ◦ y(n) = y ◦ z(−n) = y(−n+ 1) = n− 1 = z−1(n)
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y2 and yzy = z−1 are relations inD∞. Therefore there exists a group epimorphism ϕ : G� D∞ which sends y, z in
G to y, z inD∞. It remains to check the injectivity. For zk ∈ G, ϕ(zk)(n) = n+ k. Therefore zk ∈ kerϕ implies that
k = 0. For yzk ∈ G, ϕ(yzk)(n) = −n+ k. Then yzk /∈ kerϕ for all k ∈ Z. We deduce that kerϕ = {e}. We conclude
that ϕ : G→ D∞ is an isomorphism.

Question 6

(i) Let n > 1. Show that (12) and (123 · · ·n) generate Sn.

(ii) Show that Q is not finitely generated.

Proof. (i) We follow the convention of multiplication order which is consistent with map compositions. First, note that

(2 3) = (1 2 · · · n)−1(1 2)(1 2 · · · n)
(3 4) = (1 2 · · · n)−1(2 3)(1 2 · · · n)

· · ·
(n 1) = (1 2 · · · n)−1(n− 1 n)(1 2 · · · n)

Hence (1 2) and (1 2 · · · n) generates {(1 2), (2 3), ..., (n− 1 n), (n 1)}.

Second, note that

(1 3) = (2 3)(1 2)(2 3)

(1 4) = (3 4)(1 2)(3 4)

· · ·
(1 n) = (n− 1 n)(1 n− 1)(n− 1 n)

Hence (1 2) and (1 2 · · · n) generates {(1 2), (1 3), ..., (1 n)}.

Third, note that (i j) = (1 i)(1 j)(1 i) for all i, j ∈ {1, ..., n}. Hence (1 2) and (1 2 · · · n) generates all transpositions
in Sn.

Finally, for any k-cycle in Sn, (i1 · · · ik) = (i1 ik)(i1 ik−1) · · · (i1 i2). All k-cycles are products of transpositions.
In addition, all elements in Sn can be written uniquely as disjoint product of cycles. We conclude that (1 2) and
(1 2 · · · n) generates Sn.

(ii) Q is Abelian group. In particular it is a Z-module. Suppose that it is finitely generated. Notice that 2Z is an ideal
of Z and (2Z)Q = Q since 2 ∈ Q is a unit. Then by Nakayama’s Lemma there exists x ∈ 2Z such that (1 + x)Q = 0.
But x 6= −1 implies that (1 + x) · 1 6= 0, which is a contradiction. Hence Q is not a finitely generated Z-module.

Question 7

Write down all possible composition series of the following groups, verifying the Jordan-Hölder Theorem where appro-
priate.

Z/12Z, D10, D8, Q8.

Proof. The composition series of Z/12Z:

{e} / Z/2Z / Z/4Z / Z/12Z
{e} / Z/2Z / Z/6Z / Z/12Z
{e} / Z/3Z / Z/6Z / Z/12Z
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The length of composition series of Z/12Z is 3. The composition factors are C2, C2 and C3.

LetD10 = 〈σ, τ | σ5, τ2, στστ〉. The only non-trivial subgroup ofD10 is 〈σ〉. Then the only composition series ofD10 is

{e} / 〈σ〉 / D10

The composition factors are C2 and C5.

LetD8 = 〈σ, τ | σ4, τ2, στστ〉. SinceD8 is solvable, we know that every composition series of it has the form

{e} / G1 / G2 / D8,

whereG2 is a normal subgroup ofD8 of order 4, andG1 is a subgroup ofG2 of order 2. IfG1 is cyclic, thenG1 = 〈σ〉. The
only subgroup inG1 is 〈σ2〉. IfG2 is not cyclic, then it contains onl elements of order 1 and 2. The only possibilitiies are
〈σ2, τ〉 and 〈σ2, στ〉, each of which is isomorphic to V4. In summary, all composition series ofD8 are:

{e} / 〈σ2〉 / 〈σ〉 / D8

{e} / 〈σ2〉 / 〈σ2, τ〉 / D8

{e} / 〈τ〉 / 〈σ2, τ〉 / D8

{e} / 〈σ2τ〉 / 〈σ2, τ〉 / D8

{e} / 〈σ2〉 / 〈σ2, στ〉 / D8

{e} / 〈στ〉 / 〈σ2, στ〉 / D8

{e} / 〈σ3τ〉 / 〈σ2, στ〉 / D8

All composition series ofD8 have length 3 and composition factors C2, C2, C2.

Let Q8 = {±1,±i, ±j,±k}. Since Q8 is solvable, we know that every composition series of it has the form

{1} / G1 / G2 / Q8,

whereG2 is a normal subgroup ofD8 of order 4, andG1 is a subgroup ofG2 of order 2. The normal subgroups of order 4
are 〈±i〉, 〈±j〉 and 〈±k〉, each of which is cyclic. Therefore all composition series of Q8 are:

{1} / 〈−1〉 / 〈i〉 / Q8

{1} / 〈−1〉 / 〈j〉 / Q8

{1} / 〈−1〉 / 〈k〉 / Q8

All composition series of Q8 have length 3 and composition factors C2, C2, C2.

Question 8

Let

{e} / G1 / G and {e} = H0 / H1 / · · · / Hr = G

be two composition series for a group G. Why is r > 2? Why is r = 2 if Hr−1 = G1? Show that if Hr−1 6= G1 then
G1 ∩Hr−1 = {e}. Show that G1Hr−1 is normal in G and that G/G1 = Hr−1. Deduce that r = 2.

Proof. If r = 0, then G = {e}, which is impossible. If r = 1, then {e} / G is a composition series. In particular, G is simple.
Then G1 = {e} or G, which is impossible. Hence r > 2.

IfHr−1 = G1, thenHr−1 is simple. {e} / Hr−1 / G is a composition series. We deduce that r = 2.

IfHr−1 6= G1, then letK = G1 ∩Hr−1. Since G andHr−1 are normal subgroups of G,K is normal in G. In particulerK
is normal in G1. But G1 is simple implies thatK = {e}.

For a1, a2 ∈ G1 and b1, b2 ∈ Hr−1, a1b1, a2b2 ∈ G1Hr−1. a1b1(a2b2)−1 = a1b1b
−1
2 a−12 . Since Hr−1 / G, b1b−12 ∈ Hr−1

and there exists b3 ∈ Hr−1 such that b1b−12 a−12 = a2b3. Hence a1b1(a2b2)−1 = a1a2b3 ∈ G1Hr−1. By subgroup test,
G1Hr−1 6 G. For g ∈ G, a ∈ G1 and b ∈ Hr−1, g−1(ab)g = (g−1ag)(g−1bg) ∈ G1Hr−1. Hence G1Hr−1 / G.
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We have G1 / G1Hr−1 / G. If G1Hr−1 = G1, then Hr−1 ⊆ G, contradicting that G1 ∩ Hr−1 = {e} and Hr−1 6= {e}.
Therefore G1Hr−1 = G. By second isomorphism theorem,

G

G1
=
G1Hr−1

G1

∼=
Hr−1

G1 ∩Hr−1
∼= Hr−1.

But we know that G/G1 is simple. Hence Hr−1 is simple. {e} / Hr−1 / G is a composition series. We conclude that
r = 2.


