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Question 1

Let H and K be subgroups of a group G. Showthat HK := {hk : h € H,k € K}isasubgroupof Gifandonlyif HK = KH.

Proof. "<—": Suppose that HK = KH. For a,b € HK, there exists hi,hs € H and ky,k; € K such that a = hiky, b = haks.
Then ab=! = hyki(hake) ™! = hikiky 'hy'. Since K is a subgroup of G, k1k; ' € K. Then kiky 'h; ' € KH = HK. There
exists b’ € H, k' € K such that k,k; 'hy ' = h'k’. Hence ab = hih'k’ € HK since hyh’ € H. By the subgroup test, HK is
a subgroup of G.

"=—": Suppose that HK is a subgroup of G. For kh ¢ KH (k €¢ Kand h € H), h~'k~! € HK. Since HK < G,
(h~1k=1)"! = kh € HK. Hence KH C HK. On the other hand, for hk € HK (k € K and h € H), there exists
Wk' e HK (k' € K and i/ € H) such that hkh'k’ = e. Then hk = k'~'h/~! € KH. Hence HK C K H. We conclude that
HK = KH. L]

Question 2

Let K < G. Denote G = G/K and let H < G. Show that H = {h € G : hK € H} is a subgroup of G, containing K as a
normal subgroup and such that H/K = H. Show further that if H is normal in G then H is normal in G.

Proof. Forhy,hy € H,h K, ho K € H. Since H < G, h1K(hoK)™' = hihy ' K € H.Hence hihy' € H. BY the subgroup test H is
asubgroup of G. Since K € H,wehave K C H. K<G implies that K<H. And itis trivial that H/K = {hK : h€ H} = H.
Finally, suppose that H <« G. For h € H, g € G, hK € H, and we have (gK) '(hK)(gK) = (¢ 'hg)K € H. Hence
g 'hg € H. We deduce that H is normal in G. O

Question 3

Identify the following groups from the given presentations.

(i) Gi=(z]a°=e).

(i) G2 = (z,y | zy = yx).

(x

(

(ili) G = (z,y | 2%y = y?a® = 2%y).

(iv) Gy = (2,y |2y = ya, 2° = y°).
(

V) G5 = (z,y |2y = ya, a* = y°).

Proof. (i) We claim that G; = Cs. Suppose that Cg is generated by g. Consider the map that sends = to g € Cs. By universal
property of free groups it induces a group epimorphism ¢ : F({z}) — Cs. Since ¢(2°) = g% = e, by universal
property of quotient groups, ¢ induces the group epimorphism ¢ : G; = F({z})/{(2®)) — Cs.

It remains to prove the injectivity. For 2™ € ker ¢, ¢(z") = ¢" = e = n € 6Z —> =™ = e. Hence ker ¢ = {e}. We
conclude that ¢ is a group isomorphism.

(ii) We claim that G5 = Z2. Consider the map which sends x to (0,1) and y to (0, 1). It induces a group epimorphism
¢ : F({z,y}) — Z2. Since p(zy(yz)~!) = (1,0) + (0,1) — (1,0) — (0,1) = 0, ¢ induces the group epimorphism
¢ : Gy — 72.

It remains to prove the injectivity. Since xy = yz is a relation, we can verify that z, y, ="' and y~! commutes with
each other. Inductively we have 2™y™ = y"2™ for all m,n € Z. Suppose that w € F({z,y}) such that p(w) = 0. w
is a finite string with alphabet {z, y}. For each substring y™z™ in w, we insert the relation y~™2"y™2~" between
y™ and z". Inductively we have that w = z'y’/ € G..



Therefore ¢(w) = (i,0) + (0,5) = (¢4,5) = (0,0) = ¢ = 0,5 = 0 = w = 0. We conclude that ¢ is a group
isomorphism.

Remark. Using the same idea, we can prove that (X; | R;) x (X5 | Re) = (X3 U X5 | Ry U Ry U [X7, X)), where
(X1, Xo] := {z12027 25t s 21 € X1, 20 € Xy} is the commutator of X; and X,.

(iii) We claim that G'3 = {e}. The relation 23y = 2%y implies that x = e. Hence 23y = 3?22 implies that y = y?, which
implies that y = e. Then G3 is the trivial group.

(iv) As we have shown in part (ii), the relation zy = yx implies that G, is Abelian. Then it is a finitely-presented
Z-module. There is an exact sequence:

72 %

7 —" % Gy {e}

The group homomorphism ¢ : Z — Z? sends 1 to (4, —2), which corresponds to the relations in G,4. This gives the

presentation matrix:
(D
LA

We can put the matrix of ¢ into Smith normal form by repeatedly applying Euclidean algorithm:
) -1 1 1
-3 -3 3 0
Hence im ¢ = Z. By exactness and first isomorphism theorem, we have

Gy =imnm 272 /kerm 2 7?/imp = Z2/Z = 7.

(v) The proceduce is the same as in part (iv). The relation xy = yx implies that G is Abelian. We can write down its
presentation matrix and put it into Smith normal form:

=(4)-(3)-()

Gs 2 cokerp =72/ imp =72 /2L 27 L)27.

Hence im ¢ = 27Z. We have

Remark. Part (iv) and (v) are special cases of the Structure Theorem for finitely generated modules over a PID.

O

Question 4

Let G be a non-Abelian group of order 8. We know then that all elements have order 1, 2 or 4 and there exist elements of
order 4. Let a be an element of order 4, set A = (a) and let b € G\ A. Show that b~'ab = o~ and that either *> = e or
b? = a2. Use this to prove that up to isomorphism there are just five groups of order 8.

Proof. If G has an element of order 8, then G = Cs is a cyclic group and is Abelian. If G has only elements of order 1 and 2,
then by Prelim Group Theory Sheet 4 Question 5 we know that G = C3 is Abelian.

Suppose that G is non-Abelian. We have G = (a) U b{a). We obtain a complete list of elements in G:
G ={e,a,a? a®b,ba,ba?, ba’}.
Consider the element ab € G. Clearly ab ¢ (a) because b ¢ (a). ab # ba because G is non-Abelian. If ab = ba?, then
a®b = a’ba = aba* = ab = a® = ¢,

which is a contradiction. It could only be the case that



ab="ba® =ba"! = b lab=a"1.

The order of b is 2 or 4. If b> = ¢, then G = (a,b | a*, %, abab=1) = Dg. If b? # e, then b has order 4, and b* has order 2.
Since a and a> has order 2, b2 # a,a®. If b> = ba, then b = a, which is impossible. If b> = ba?, then b = a2 has order 2,
which is impossible. If b = ba?, then b = a3, which is impossible. The only possibility is that 5> = 2. The map a ~ 1,
b+ j, ba — k, a® — —1 induces a group isomorphism G — Qg. We deduce that any non-Abelian group of order 8 is
isomorphism to Dg and Qg. Moreover, we know that the Abelian groups of order 8 are Cg, Cy x Cy and Cj. We conclude
that there are five different groups of order 8 up to isomorphism. O

Question 5
Let G = (x,y | 2 = e = y?) and let D, denote the isometry group of Z, the infinite dihedral group.
(i) Show that G is infinite.

(i) Let z = xy. Show that every element of G can be uniquely written as z* or yz* where k € Z. Showthat G = (y, 2 |y =
e,yzy = 2z~ 1).
(iii) Show that y(n) = —n and z(n) = n + 1 are elements of D,,. Deduce that G = D,

Proof. (i) We claim that (zy)™ are distinct elements in G for different n € Z. Suppose that there are ny,ns € Z such that
(xy)™ = (xy)". Then we have (zy)™ = e in G, where m := n; — ny. Since G = F({z,y})/{(z?,y?)) and (zy)™ is a
reduced word in F({z,y}), (zy)™ € ((«?,y*)). But

((%,9%) = uw 2w, wly?w: we F({z,y})})

Every non-empty word in ((z2, y?)) must contain the substring x? or y2. Therefore m = 0 and (zy)™ = (zy)"2. We
conclude that G is infinite.

(ii) We can perform a sequence of Tietze transformations:
G = (z,y|2°% v°)

z,y,z| 2%, y?, 2 ay)

z,y,z| 2%, 2, a7 ay )

y,z | zy tayh y)
y,z |z =yz""y, y°)

2 lyzy =271 Y%

I

Il

1

1%

{
{
{
{
{
{y

Il

yzy = 2z~ ! inplies that z~'y~1271y~! and zyzy are relations in G. For a word w € F({y, z}), we insert the relation

2z~ ty~12z71y~! into the middle of the substrings zy and zy !, and zyzy into the middle of the substrings z~'y and

2z~ 1y~!. After each operation we invert the order of y* and 27 in the substrings. Since w has finite length, eventually
we will obtain that w equals 3'z* in G. Since y? = e in G, we may assume that [ € {0,1}. In conclusion, every
element in G can b written as z* or y2*.

Moreover, the expression is unique of each element, as we have proven in part (i) that z*1 # 2*2 for ky # ks.

(iii) Form,n € Z, ly(m) —y(n)| =] —m —(—n)| =|m —n|. Soy € Dx. |z2(m) — z(n)| = |m +1— (n+1)| = |m — n|. So
z € D. Since

yoy(n)=y(-n)=n
and

yozoyn)=yoz(-n)=y(-n+1)=n—-1=z"1(n)



y? and yzy = 2z~ ! are relations in D.. Therefore there exists a group epimorphism ¢ : G — D, which sends y, z in
G toy, z in D,. It remains to check the injectivity. For z¥ € G, ¢(2*)(n) = n + k. Therefore z* € ker ¢ implies that
k = 0. For yz* € G, ¢(yz*)(n) = —n + k. Then yz* ¢ ker ¢ for all k € Z. We deduce that ker » = {e}. We conclude
that ¢ : G — D, is an isomorphism.

O

Question 6
(i) Let n > 1. Show that (12) and (123 - - - n) generate S,,.

(i) Show that Q is not finitely generated.

Proof. (i) We follow the convention of multiplication order which is consistent with map compositions. First, note that
(23)=(12---n)"1(12)(12--- n)
B34)=(12---n)"123)(12 ---n)
m)=012--n)"tn—-1n)(12 - n)
Hence (12)and (12 --- n) generates {(12), (23), ..., (n—1n), (n 1)}

Second, note that
(13)=(23)(12)(23)
(14)=(34)(12)(34)
(In)=Mmn-1n)(1n—-1)(n—1n)
Hence (12)and (12 --- n) generates {(12), (13), ..., (1n)}.

Third, note that (i j) = (14)(15)(14) foralli,j € {1,...,n}. Hence (1 2) and (1 2 --- n) generates all transpositions
in S,.

Finally, for any k-cycle in S,,, (i1 -+ ix) = (41 i) (21 ig—1) - - - (i1 i2). All k-cycles are products of transpositions.
In addition, all elements in S,, can be written uniquely as disjoint product of cycles. We conclude that (1 2) and
(12 --- n) generates S,,.

(ii) Q is Abelian group. In particular it is a Z-module. Suppose that it is finitely generated. Notice that 2Z is an ideal
of Z and (2Z)Q = Q since 2 € Q is a unit. Then by Nakayama’s Lemma there exists = € 2Z such that (1 + z)Q = 0.
But x # —1 implies that (1 + z) - 1 # 0, which is a contradiction. Hence Q is not a finitely generated Z-module.

O

Question 7

Write down all possible composition series of the following groups, verifying the Jordan-Holder Theorem where appro-
priate.

Z/12Z, Dy, Dy, Qs.

Proof. The composition series of Z/127Z:

{e}<Z/2Z<Z/AZ < Z]/12Z
{e}QZ/2Z <Z/6Z < Z]12Z
{e}<Z/3217Z/6Z<Z]/12Z



The length of composition series of Z/127Z is 3. The composition factors are Cs, Cy and Cs.
Let Dy = (0,7 | 0%, 72, o7o7). The only non-trivial subgroup of D, is (o). Then the only composition series of D1 is
{e} < (o) <« D19
The composition factors are Cy and Cs.
Let Dg = (0,7 | 0, 72, o7o7). Since Dy is solvable, we know that every composition series of it has the form
{e} «G1 <G5 < Ds,

where G, is a normal subgroup of Dg of order 4, and G is a subgroup of G, of order 2. If G, is cyclic, then G; = (o). The
only subgroup in G is (02). If G5 is not cyclic, then it contains onl elements of order 1 and 2. The only possibilitiies are
(02, 7) and (02, o7), each of which is isomorphic to V;. In summary, all composition series of Dg are:

{e} < (0?) < (o) < Dg
{e} < (0?) < (02 ,7) < Dg
{e} a ()< (0? 7)< Dg

{e} < {o?7) < (0%, 7)< Dg
{e} < (0?) < (02, 07) < Dg
{e}<(oT) < (0% 07) < Dg
{e} < (0®7) < (0% 07) < Dg

All composition series of Dg have length 3 and composition factors C5, Cs, Cs.
Let Qs = {*1,+¢, £7, tk}. Since Qs is solvable, we know that every composition series of it has the form
{1}« G1<aG2<Qs,

where G, is a normal subgroup of Dg of order 4, and G is a subgroup of G5 of order 2. The normal subgroups of order 4
are (+¢), (+j) and (£k), each of which is cyclic. Therefore all composition series of Qg are:

{1}« (1) < () Qs
{1} a{-1)<a(3) < Qs
{1} a(=1) < (k) < Qs

All composition series of Qg have length 3 and composition factors Cy, Cs, Cs. O

Question 8
Let
{e}<«G1 <G and {e}=Hy<Hi<---<H, =G

be two composition series for a group G. Why is r > 2? Whyisr = 2if H._y = G1? Show that if H,_; # G; then
G1 N H,_; = {e}. Show that Gy H,_ is normal in G and that G/G, = H,_;. Deduce that r = 2.

Proof. If r = 0, then G = {e}, which is impossible. If »r = 1, then {e} < G is a composition series. In particular, G is simple.
Then G; = {e} or G, which is impossible. Hence r > 2.

If H._1 = Gy, then H,_, is simple. {e} < H,_; <G is a composition series. We deduce that » = 2.

If H._1 # G1,thenlet K = G; N H,_;. Since G and H,_; are normal subgroups of G, K is normal in G. In particuler K
is normal in G;. But G; is simple implies that K = {e}.

For aj,as € Gy and by, by € H,_y, ajby,agby € G1H,_ 1. aibi(agbs)™' = aybibytay’. Since H,_; <« G, biby' € H,
and there exists bs € H,_; such that byb; 'a;' = aybs. Hence ab;(asbs)~' = ajashs € G1H,_;. By subgroup test,
G1H, 1 <G.Forge G,ac Gyandbec H,_1,g *(ab)g = (9 tag)(gtbg) € G1H,_,. Hence G1 H,_, < G.



We have G; <« G1H,_1 <«G. If G1H,_1 = G4, then H,._; C G, contradicting that Gy N H,_; = {e} and H,_; # {e}.
Therefore G, H,_; = G. By second isomorphism theorem,

G GH.,_, H,_1

G GGy NH,_q -
But we know that G/G; is simple. Hence H,_; is simple. {e} < H,_; < G is a composition series. We conclude that
r=2. O]




