Peize Liu St. Peter's College University of Oxford

Problem Sheet 2 C2.6: Introduction to Schemes

Question 1

- i) Construct the scheme \mathbb{P}^n_R bu gluing (n+1) copies of $\mathbb{A}^n_R = \operatorname{Spec} R[y_1,...,y_n]$, where for the i-th copy you use $y_1 = \frac{x_0}{x_i},...,y_n = \frac{x_n}{x_i}$ (omit $\frac{x_i}{x_i}$) (these generate a R-subalgebra of $S^{-1}R[x_0,...,x_n]$ for S multiplicative set generated by $x_0,...,x_n$.)
- ii) Show that a homomorphism of rings $R \to S$ yields a natural map $\mathbb{P}^n_S \to \mathbb{P}^n_S$.
- iii) Construct \mathbb{P}^n_U for any open subscheme $U \subseteq \operatorname{Spec} R$. (Compare lecture notes on \mathbb{A}^n_U .)
- iv) Construct \mathbb{P}_X^n : the projective *n*-space over any scheme X, and explain why a morphism $X \to Y$ induces a natural morphism $\mathbb{P}_X^n \to \mathbb{P}_Y^n$.

Proof. i) Let S be the multiplicative set in $R[x_0,...,x_n]$ generated by $x_0,...,x_n$. For $i \in \{0,...,n\}$, we define $\varphi_i: R[y_1,...,y_n] \to S^{-1}R[x_0,...,x_n]$ by

$$y_1 \mapsto x_0/x_i, \dots, y_i \mapsto x_{i-1}/x_i, y_{i+1} \mapsto x_{i+1}/x_i, \dots, y_n \mapsto x_n/x_i.$$

Then let

$$R_i := \operatorname{im} \varphi_i = R \left[\frac{x_0}{x_i}, ..., \frac{\widehat{x_i}}{x_i}, ..., \frac{x_n}{x_i} \right], \qquad A_i := \operatorname{Spec} R_i$$

Equivalently, R_i is the zeroth grading of the localisation ring $R[x_0, ..., x_n]_{x_i}$. Now let

$$R_{ij} := R_i \left[\frac{x_i}{x_j} \right] = (R_i)_{x_j/x_i} = \left(S_{ij}^{-1} R[x_0, ..., x_n] \right)_0 \bigvee_{\substack{0 \\ 0 \text{ convert}}}$$

where S_{ij} is the multiplicative set generated by x_i, x_j . Let $A_{ij} := \operatorname{Spec} R_{ij}$. By symmetry we can see that $R_{ij} = R_{ji}$ and hence $A_{ij} = A_{ji}$. The localisation natural map $\psi : R_i \to R_{ij} = (R_i)_{x_j/x_i}$ induces an embedding $\operatorname{Spec} \psi : A_{ij} \hookrightarrow A_i$. And similarly there is an embedding $A_{ij} \hookrightarrow A_j$.

Now we define \mathbb{P}_{R}^{n} as a topological space to be the push-out:

$$\mathbb{P}_{R}^{n} := A_0 \cup \cdots \cup A_n$$

where A_i and A_j are glued along A_{ij} . So in \mathbb{P}_R^n we can say that $A_{ij} = A_i \cap A_j$.

As spectrum of rings, A_i carries the structure sheaf $\mathcal{O}_{\operatorname{Spec} R_i}$. We need the gluing of sheaves. Let ξ_{ij} be the composite isomorphism $\mathcal{O}_{A_i}|_{A_{ij}} \xrightarrow{\cong} \mathcal{O}_{A_{ij}} \xrightarrow{\cong} \mathcal{O}_{A_j}|_{A_{ij}}$ We need to check the compatibility conditions. It is clear that $\xi_{ii} = \operatorname{id}$. Let $A_{ijk} := A_i \cap A_i \cap A_k = A_{ij} \cap A_{jk}$. It is easy to observe that $A_{ijk} = \operatorname{Spec} R_{ijk}$, where $R_{ijk} := \left(S_{ijk}^{-1} R[x_0, ..., x_n]\right)_0$, S_{ijk} is the multiplicative set generated by x_i, x_j, x_k . Then we simply have

$$|\xi_{ik}|_{A_{ijk}} = \mathcal{O}_{A_k}|_{A_{ijk}} = \mathcal{O}_{A_{ijk}} = |\xi_{jk} \circ \xi_{ij}|_{A_{ijk}}$$

Therefore there exists a unique sheaf $\mathcal{O}_{\mathbb{P}^n_R}$ on \mathbb{P}^n_R such that $\mathcal{O}_{\mathbb{P}^n_R}|_{A_i} = \mathcal{O}_{A_i}$. This makes \mathbb{P}^n_R a well-defined scheme.

ii) The ring homomorphism $\varphi: R \to S$ induces $\widetilde{\varphi}: R[y_1,...,y_n] \to S[y_1,...,y_n]$ and hence a morphism of schemes (Spec $\varphi, \varphi^{\#}$): $\mathbb{A}^n_S \to \mathbb{A}^n_R$. From (i) we have constructed \mathbb{P}^n_R as $\bigcup_{i=0}^n A_i$, where $A_i \cong \mathbb{A}^n_R$. Similarly $\mathbb{P}^n_S = \bigcup_{i=1}^n A_i'$, where $A_i' \cong \mathbb{A}^n_S$. Then we define f_i by $A_i' \xrightarrow{\simeq} \mathbb{A}^n_S \xrightarrow{\operatorname{Spec} \varphi} \mathbb{A}^n_R \xrightarrow{\simeq} A_i \longleftrightarrow \mathbb{P}^n_R$. For $i \neq j$, it is clear that $f_i|_{A_i' \cap A_j'} = f_i|_{A_{ij}'} = f_j|_{A_{ij}'} = f_j|_{A_{i}' \cap A_j'}$. So by gluing lemma, we have a unique morphism $f: \mathbb{P}^n_S \to \mathbb{P}^n_R$ such that $f|_{A_i'} = f_i$.

- iii) Since U is open in Spec R, there exists $f_1, ..., f_m \in R$ such that $U = \bigcup_{i=1}^m D_{f_i}$. The localisation $R \to R_{f_i}$ induces an embedding of schemes $\mathbb{P}^n_{R_{f_i}} \hookrightarrow \mathbb{P}^n_R$ by (ii). So we can view each $\mathbb{P}^n_{R_{f_i}}$ as an open subscheme of \mathbb{P}^n_R . We define $\mathbb{P}^n_U := \bigcup_{i=1}^m \mathbb{P}^n_{R_{f_i}}$. This is also an open subscheme of \mathbb{P}^n_R .
- iv) Let $\{X_1, ..., X_m\}$ be an affine open cover of X, so $X_i \cong \operatorname{Spec} R_i$ for some ring R_i . Since $X_i \cap X_j$ is open in X_i , by (iii) we have defined $\mathbb{P}^n_{X_i \cap X_j}$ as an open subscheme of $\mathbb{P}^n_{X_i}$. Now we can define \mathbb{P}^n_X as the push-out

$$\mathbb{P}_{X_1}^n \cup \cdots \cup \mathbb{P}_{X_m}^n$$

where $\mathbb{P}^n_{X_i}$ and $\mathbb{P}^n_{X_j}$ are glued along $\mathbb{P}^n_{X_i \cap X_j}$.

Let $(f, f^{\#}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of schemes. Let $\{Y_1, ..., Y_m\}$ be an affine open cover of Y. For each $i, X_i := f^{-1}(Y_i)$ is open in X. So there exists affine open subsets $X_{i1}, ..., X_{ik_i}$ such that

$$X_i = \bigcup_{j=1}^{k_i} X_{ij}$$
. Let $X_{ij} \cong \operatorname{Spec} R_{ij}$, and $Y_i \cong \operatorname{Spec} S_i$. Then $f|_{X_{ij}} : X_{ij} \to Y_i$ is $\operatorname{Spec} \psi_{ij} : \operatorname{Spec} R_{ij} \to Y_i$

Spec S_i for some ring homomorphism $\psi_{ij}: S_i \to R_{ij}$. By (ii) ψ_{ij} induces $\widetilde{\psi}_{ij}: \mathbb{P}^n_{X_{ij}} \cong \mathbb{P}^n_{R_{ij}} \to \mathbb{P}^n_{S_i} \cong \mathbb{P}^n_{S_i}$

 $\mathbb{P}^n_{Y_i} \subseteq \mathbb{P}^n_Y$. Since $X = \bigcup_{i=1}^m \bigcup_{j=1}^{k_i} X_{ij}$, we can glue the morphisms $\widetilde{\psi}_{ij}$ to obtain the morphism $\mathbb{P}^n_X \to \mathbb{P}^n_Y$.

Details of checking compatibility are omitted.

Question 2

Let (X, \mathcal{O}_X) be a scheme and $s \in \mathcal{O}_X(U)$. Show that $\{x \in U : s_x = 0 \in \mathcal{O}_{X,x}\}$ is open in U and need not be closed; and $\{x \in U : s(x) = 0 \in \kappa(x)\}$ is closed in U and need not be open.

[Hint. Look at affine varieties.]

Proof. Let $A := \{x \in U : s_x = 0 \in \mathcal{O}_{X,x}\}$. For $x \in A$, $s_x = 0$ implies that there exists some open $V \ni x$ such that s = 0 on V. Then $s_y = 0$ for all $y \in V$. Hence $V \subseteq A$, and A is open in U.

Consider $U = X = \operatorname{Spec} k[x,y]/\langle xy \rangle$, where k is an algebraically closed field. (Geometrically this is the union of two lines $\{x=0\}$ and $\{y=0\}$ in the affine plane \mathbb{A}^2_k .) Then $\mathcal{O}_X(U) \cong k[x,y]/\langle xy \rangle$. It is easy (either from algebra or geometry) to write down the prime spectrum:

Spec
$$k[x,y]/\langle xy\rangle = \{\{0\},\langle x\rangle,\langle y\rangle\} \cup \{\langle x,y-a\rangle: a\in k\} \cup \{\langle x-a,y\rangle: a\in k\}$$

Let $s = x \in \mathcal{O}_X(U)$. We claim that A is not closed. Suppose that it is closed. Then $A = \mathbb{V}(\mathfrak{q})$ for some $\mathfrak{q} \in X$. Note that for $\mathfrak{p} \in X$,

$$s_{\mathfrak{p}} = 0 \in \mathcal{O}_{X,\mathfrak{p}} \iff x_{\mathfrak{p}} = 0 \in (k[x,y]/\langle xy \rangle)_{\mathfrak{p}} \iff \exists u \notin \mathfrak{p} \colon xu = 0$$

For $\mathfrak{p} = \{0\}$, $y \notin \mathfrak{p}$ and xy = 0. Therefore $x_{\{0\}} = 0$ and hence $\{0\} \in A$. Then $A = \overline{\{0\}} = X$.

On the other hand, if xu = 0, we write $u = \sum_{i=0}^{n} f_i(x)y^i$ and find that $f_0(x) = 0$, so y divides $u \in \langle y \rangle$. It follows that $\langle y \rangle \notin A$. This is a contradiction. We have shown that A is not closed.

Let $B := \{x \in U : s(x) \neq 0 \in \kappa(x)\}$. If s = 0, then $B = \emptyset$ is trivially open in U. Suppose that $s \neq 0$. For $x \in B$, $s(x) \neq 0$ implies that $s_x \notin \mathfrak{m}_x$ where \mathfrak{m}_x is the maximal ideal of $\mathcal{O}_{X,x}$. Then f_x is a unit in $\mathcal{O}_{X,x}$ and there is some $g \in \mathcal{O}_X(U)$ with $f_x \cdot g_x = 1$. Then $f \cdot g = 1$ in some open $W \ni x$. For $y \in W$, $f_y \cdot g_y = 1 \in \mathcal{O}_{X,y}$. Then f_y is a unit in $\mathcal{O}_{X,y}$ and $f(y) \neq 0 \in \kappa(y)$. Hence $y \in B$, and B is open in U.

Consider $U = X = \operatorname{Spec} k[t]$, where k is an algebraically closed field. Then $\mathcal{O}_X(U) \cong k[t]$. Let $s = t \in k[t]$. Note that for $\mathfrak{p} \in X$, $\mathcal{O}_{X,\mathfrak{p}} \cong k[t]_{\mathfrak{p}}$ has the maximal ideal $\mathfrak{p} \cdot k[t]_{\mathfrak{p}}$. Then

$$s(\mathfrak{p}) = 0 \iff s_{\mathfrak{p}} \in \mathfrak{p} \cdot k[t]_{\mathfrak{p}} \iff s \in \mathfrak{p} \iff \langle t \rangle \subseteq \mathfrak{p} \iff \langle t \rangle = \mathfrak{p}$$

So $B = \{\langle t \rangle\}$. We claim that this is not an open set. Suppose that it is open. Then there is $\mathfrak{q} \in X$ such that $\mathbb{V}(\mathfrak{q}) = X \setminus \{\langle t \rangle\}$. Then $\langle x - 1 \rangle \subseteq \mathfrak{q}$ and $\langle x + 1 \rangle \subseteq \mathfrak{q}$ implies that $\mathfrak{q} = \langle 1 \rangle$. But $\mathfrak{q} \notin X$, contradiction. Hence B is not open. Geometrically, this is the point of origin in the affine line \mathbb{A}^1_k .

Question 3

- i) Let R_1, R_2 be rings. Use natural projections $R_1 \times R_2 \to R_i$ to show that Spec $R_1 \coprod \operatorname{Spec} R_2 \cong \operatorname{Spec}(R_1 \times R_2)$. Show that $\operatorname{Spec}(R_1 \times R_2) = \{\mathfrak{p}_1 \times R_2, R_1 \times \mathfrak{p}_2 : \mathfrak{p}_1 \in \operatorname{Spec} R_1, \mathfrak{p}_2 \in \operatorname{Spec} R_2\}$.
- ii) Let (X, \mathcal{O}_X) be a scheme. U, V are disjoint affine open subsets of X. Show that $U \cup V$ is affine.
- iii) Show that (X, \mathcal{O}_X) is irreducible \iff all affine open subsets of X are irreducible. [Hint. For \iff , consider $\bigcup U_i = X = C_1 \cup C_2$. Is $U_i \cap U_j = \varnothing$ possible?]
- iv) Suppose that $\mathcal{O}_X(U)$ is an integral domain for all affine $U \subseteq X$. Show that X is integral. [Hint. First show that X is irreducible. Then use Question 2.]
- v) Show that X is integral $\iff X$ is irreducible and reduced. [Hint. For (iv) and (v) use Sheet 1.]

Finally deduce that Spec R is integral $\iff R$ is an integral domain.

Proof. i) Since Spec: $\mathsf{CRing}^\mathsf{op} \to \mathsf{Aff}$ is an equivalence of catogory, it preserves products and coproducts. It is immediate that $\mathsf{Spec}\,R_1 \coprod \mathsf{Spec}\,R_2 \cong \mathsf{Spec}(R_1 \times R_2)$.

Suppose that $\mathfrak{p} \in \operatorname{Spec}(R_1 \times R_2)$. Since $(0,0) = (1,0) \cdot (0,1) \in \mathfrak{p}$ and \mathfrak{p} is prime, then either $(1,0) \in \mathfrak{p}$ or $(0,1) \in \mathfrak{p}$. If $(1,0) \in \mathfrak{p}$, then $R_1 \times \{0\} \subseteq \mathfrak{p}$. Note that $R_1 \times \{0\}$ is an ideal of $R_1 \times R_2$ and the quotient $(R_1 \times R_2)/(R_1 \times \{0\}) \cong R_2$. Then $\mathfrak{p}/(R_1 \times \{0\}) \cong \mathfrak{p}_2$ for some $\mathfrak{p}_2 \in \operatorname{Spec} R_2$. This shows that $\mathfrak{p} = R_1 \times \mathfrak{p}_2$. If $(0,1) \in \mathfrak{p}$, similarly we have $\mathfrak{p} = \mathfrak{p}_1 \times R_2$ for some $\mathfrak{p}_1 \in \operatorname{Spec} R_1$. Hence

$$\operatorname{Spec}(R_1 \times R_2) = \{\mathfrak{p}_1 \times R_2 \colon \mathfrak{p}_1 \in \operatorname{Spec}(R_1)\} \cup \{R_1 \times \mathfrak{p}_2 \colon \mathfrak{p}_2 \in \operatorname{Spec}(R_2)\} \setminus$$

ii) Suppose that $U \cong \operatorname{Spec} R$ and $V \cong \operatorname{Spec} S$ for some rings R, S. Since $U \cap V = \emptyset$, by (i) we have

$$U \cup V = U \coprod V \cong \operatorname{Spec} R \coprod \operatorname{Spec} S \cong U \cup V \cong \operatorname{Spec}(R \times S)$$

Hence $U \cup V$ is affine. (I don't like this \coprod symbol. But \sqcup is not a good choice either...)

- iii) " \Longrightarrow ": Suppose that U is a reducible affine open subset of X. Then $U = U_1 \cup U_2$, where U_1 , U_2 are non-empty proper subsets which are closed in U. By definition of subspace of topology and some set-theoretic massaging, U_1 and U_2 are also closed in X. Then $X = (X \cap U_1) \cup (X \cap U_2)$ is reducible.
 - "Example 12.1": Suppose that all affine subsets of X are irreducible and X is reducible. If X is affine then the result is obvious. Otherwise, let $\{U_1, ..., U_n\}$ be an affine open cover of X. And let $X = X_1 \cup X_2$, where X_1, X_2 are proper closed subsets. For each U_i , since $U_i = (X_1 \cap U_i) \cap (X_2 \cap U_i)$ and U_i is irreducible, either $U_i \cap X_1 = \emptyset$ or $U_i \cap X_2 = \emptyset$. Since both X_1, X_2 are non-empty, without loss of generality we assume that $U_1 \cap X_2 = \emptyset$ and $U_2 \cap X_1 = \emptyset$. So $U_1 \cap U_2 = \emptyset$. Now by (ii), $U_1 \cup U_2$ is affine. But

I disaprée that $U = C_1 V C_2 = > C_1 = por C_2 = p$ If implies that $C_1 = U$ or $C_2 = U$ we know that $U_1 \cup U_2$ is disconnected, and hence is reducible. This contradicts our assumption. We conclude that X is irreducible.

- iv) For an affine open subset $U \subseteq X$ such that $U \cong \operatorname{Spec} R$, $\mathcal{O}_X(U) \cong R$ is an integral domain. Hence U is irreducible by Question 3.(ii) of Sheet 1. Now by (iii) X is irreducible.
 - Let V be an arbitrary open subset of X. By first half of (iii) V is also irreducible. Suppose that $f, g \in \mathcal{O}_X(V) \setminus \{0\}$ such that fg = 0. Let $V_f := \{x \in V : f(x) = 0\}$ and $V_g := \{x \in V : g(x) = 0\}$. Then $V_f \cup V_g = V$. By Question 2, V_f and V_g are closed in V. By irreducibility, we may assume that $V_f = V$. Let $\{V_1, ..., V_m\}$ be an affine open cover of V. For $V_i \cong \operatorname{Spec} R_i$, where R_i is an integral domain, let $f_i \in R_i$ be the restriction of f on V_i . Then $f_i(x) = f(x) = 0$ for all $x \in V_i$. Note that this implies that $f_i \in \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Spec} R_i$. Hence $f_i = 0$ because $\operatorname{Nil}(R_i) = \{0\}$. In particular $f_x = (f_i)_x = 0$ for all $x \in V_i$. This holds for each i, and by the covering, we have $f_x = 0$ for all $x \in V$. Hence $f = 0 \in \mathcal{O}_X(V)$. This is a contradiction. We deduce that $\mathcal{O}_X(V)$ is an integral domain. Therefore X is an integral scheme.
- v) " \Longrightarrow ": By definition integrality implies reducedness. Since X is integral, for any affine open subset $U \cong \operatorname{Spec} R$, R is an integral domain. Hence U is irreducible. By (iii) X is irreducible.
 - " \Leftarrow ": For any affine open subset $U \cong \operatorname{Spec} R$, U is irreducible and reduced. Hence $\mathcal{O}_X(U) \cong R$ is an integral domain. By (iv) X is integral.

We have $\operatorname{Spec} R$ is integral \iff $\operatorname{Spec} R$ is irreducible and reduced \iff R is an inetgral domain.

Question 4

Consider the scheme $Y = \operatorname{Spec} k[x,y]/(f)$ where $f = y^2 - x^2 - x^3$ and k is a field with char $k \neq 2$.

- i) Show that Y is an integral scheme.
- ii) Draw a picture in \mathbb{R}^2 of the curve f = 0.

Now consider the functor of points $h_Y(X)$ for the following test schemes X:

iii) Let $X = \operatorname{Spec} k[\![x,y]\!]/(f)$. Using the "natural choice" of $\alpha \in h_Y(X)$, show that $\alpha^{-1}(Y)$ is reducible. [Hint. Newton binomial theorem:

$$(1+x)^r = 1 + rx + \frac{r(r-1)}{1\cdot 2}x^2 + \frac{r(r-1)(r-2)}{1\cdot 2\cdot 3}x^3 + \dots \in k[x,y]$$

provided the fractions exist in k and $r \in \mathbb{Q}$. $\mathbb{Z} \ni \binom{2n}{n} = \frac{(2n)!}{n!n!}$ and $\binom{2n}{n} \frac{1}{n+1} = \binom{2n}{n+1} \frac{1}{n}$.

- iv) What would happen in (iii) for $X = \operatorname{Spec} \mathcal{O}_{Y,0}$? Comment in view of the picture in (ii).
- *Proof.* i) By Question 3, it suffices to prove that $k[x,y]/\langle f \rangle$ is an integral domain. This is true if and only if $\langle f \rangle$ is a prime ideal, if and only if f is irreducible in k[x,y]. The remaining work is elementary school mathematics.

Suppose that f = gh for non-constant $g, h \in k[x, y]$. By considering f, g, h as polynomials in y and comparing coefficients, we have $g(x, y) = y - \widetilde{g}(x)$ and $h(x, y) = y - \widetilde{h}(x)$ for some $\widetilde{g}, \widetilde{h} \in k[x]$. Then we have $\widetilde{g}(x) + \widetilde{h}(x) = 0$ and $\widetilde{g}(x)\widetilde{h}(x) = -x^2(x+1)$. The first equality suggests that $\deg \widetilde{g} = \deg \widetilde{h}$, so that $\deg(\widetilde{gh})$ is even, contradicting the second equality. Hence f is irreducible.

ii) Sketch of $y^2 = x^2 + x^3$ in \mathbb{R}^2 :

iii) Let $\iota : k[x,y]/\langle f \rangle \hookrightarrow k[x,y]/\langle f \rangle$ be the canonical embedding. Then ι induces the morphism of schemes $\alpha = \operatorname{Spec} \iota : X \to Y$. We need to show that $\alpha^{-1}(Y) = X$ is reducible.

The phrasing of the question is confusing as the reducibility of $\alpha^{-1}(Y) = X$ has nothing to do with α .

By Question 3 of Sheet 1, it suffices to show that the nilradical N of $k[x,y]/\langle f \rangle$ is not prime. First we claim that there exists $\eta(x) \in k[x]$ such that $\eta(x)^2 = x + 1$. To prove this, we observe that

$$\frac{1}{n!} \prod_{m=0}^{n-1} \left(\frac{1}{2} - m \right) = \frac{(-1)^{n-1}}{n!2^n} \prod_{m=1}^{n-1} (2m-1) = \frac{(-1)^{n-1}}{n!2^n} \frac{(2n)!}{n!2^n} \frac{1}{2n-1} = \frac{(-1)^{n-1}}{2^{2n}} \binom{2n}{n} \frac{1}{2n-1}$$

is an element of k, because char $k \neq 2$ and $\binom{2n}{n} \frac{1}{2n-1} \in \mathbb{Z}$. Then by the Newton's binomial theorem,

$$\eta(x) = 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \prod_{m=0}^{n-1} \left(\frac{1}{2} - m \right) x^m \in k[\![x]\!]$$

satisfies that $\eta(x)^2 = 1 + x$. Then

$$f(x) = y^2 - x^2(x+1) = y^2 - x^2\eta(x)^2 = (y + x\eta(x))(y - x\eta(x)) \in k[x, y]$$

Second, we need the following lemma (Atiyah & MacDonald Exercise 1.5.(i)): for any ring $R, p \in R[\![x]\!]$ is a unit if and only if the constant term $a_0 \in R$ of p is a unit in R. The proof is straightforward and we omit it. In particular, if a_0 is irreducible in R, then p is irreducible in $R[\![x]\!]$.

Third, we need the fact that k[x, y] is a unique factorisation domain. The proof is very lengthy and we omit it.

With these results in hand, we can prove our claim that N is not prime. Since the constant term of $\eta(x)$ is 1, $\eta(x)$ is a unit in $k[\![x]\!]$. We know that x is irreducible in $k[\![x]\!]$ ($\langle x \rangle$ is the unique maximal ideal). Then $x\eta(x)$ is irreducible in $k[\![x]\!]$. Note that $y \pm x\eta(x) \in k[\![x]\!]$ [y] has constant term $x\eta(x) \in k[\![x]\!]$. So $y \pm x\eta(x)$ are irreducible in $k[\![x]\!]$ [y] = $k[\![x,y]\!]$. Since $k[\![x,y]\!]$ is a UFD, the ideals $\langle y \pm x\eta(x) \rangle$ are prime. In the quotient ring $k[\![x,y]\!]/\langle f \rangle$, since $\langle 0 \rangle$ is not prime, $\langle y \pm x\eta(x) \rangle$ are minimal prime.

Finally, we claim that $\langle y + x\eta(x) \rangle \neq \langle y - x\eta(x) \rangle$. Suppose not. Then there exists a unit $u \in k[\![x,y]\!]$ such that $y + x\eta(x) = u(y - x\eta(x))$. Then $(u-1)y = (u+1)x\eta(x)$. So u-1 = u+1 = 0. Since $2 \neq 0$ in k, this is impossible. We deduce that $\langle y + x\eta(x) \rangle$ and $\langle y - x\eta(x) \rangle$ are distinct in $k[\![x,y]\!]$. Therefore they are distinct minimal prime ideals of $k[\![x,y]\!]/\langle f \rangle$. We conclude that N is not prime, and $\alpha^{-1}(Y) = X$ is reducible.

iv) $0 \in Y$ is ambiguous. It could be the zero ideal $\langle 0 \rangle \in Y$, or could be the maximal ideal corresponding to the point (0,0) in \mathbb{A}^2_k , which is $\langle x,y \rangle$.

- For the first case, $\mathcal{O}_{Y,\langle 0 \rangle} = (k[x,y]/\langle f \rangle)_{\langle 0 \rangle} = \operatorname{Frac}(k[x,y]/\langle f \rangle)$. So $\operatorname{Spec} \mathcal{O}_{Y,\langle 0 \rangle}$ is the prime spectrum of a field, and is a singleton as a set. The natural choice of $\alpha \in h_Y(X)$ is $\alpha = \operatorname{Spec} \varphi$, where $\varphi : k[x,y]/\langle f \rangle \to \mathcal{O}_{Y,\langle 0 \rangle}$ is the embedding into the field of fractions. X is trivially irreducible.
- For the second case, $\mathcal{O}_{Y,\langle 0\rangle} = (k[x,y]/\langle f\rangle)_{\langle x,y\rangle}$ is the localisation of an integral domain, which is again an integral domain. Then by Question 3, $X = \operatorname{Spec} \mathcal{O}_{Y,\langle 0\rangle}$ is an integral scheme, and hence is irreducible.

This suggests that the ring of formal power series $k[\![x,y]\!]/\langle f\rangle$ better reflects the local geometric property of the affine variety at (0,0) than the stalk $O_{1,0}$ as it captures the fact that the variety is locally reducible as shown on the graph.

Question 5

An element e is called idempotent if $e^2 = e$. In integral domains, only 0, 1 are idempotents; e is an idempotent $\Rightarrow 1 - e$ is an idempotent.

Let $X = \operatorname{Spec} R$.

i) Show that $X = D_e \sqcup D_{1-e}$ for all idempotents $e \in R$.

[Hint. What is $e = e(\mathfrak{p}) \in \kappa(\mathfrak{p})$?]

Example. In 3.(i), Spec $R_1 \times R_2 = D_{(1,0)} \sqcup D_{(0,1)} = \operatorname{Spec} R_1 \sqcup \operatorname{Spec} R_2$.

ii) Show that $D_f \cap D_g = \emptyset \iff fg$ is nilpotent.

Example: $D_e \cap D_{1-e} = \emptyset$ in (i).

- iii) Show that $U \subseteq X$ is open and closed \iff there exists a unique idempotent $e \in R$ with $U = D_e$. [Hint. $U = \mathbb{V}(I)$, $V = X \setminus U = \mathbb{V}(J)$. Show that $(IJ)^N = 0$ for some N, hence $1 = 1^{2N} \in I^N + J^N$.]
- iv) Show that {connected component of $\mathfrak{p} \in X$ } = $\mathbb{V}(\langle \text{idempotents } e \in R \text{ with } e(\mathfrak{p}) = 0 \in \kappa(\mathfrak{p})\rangle).$

[Use the fact from topology: If a topological space X is compact, and that it has a basis of compact open subsets, the intersection of any two of which is compact, then the connected component of $x \in X$ is $\bigcap \{clopen \ U \ni x\}.$]

Finally deduce that Spec R is connected \iff 0,1 are the only idempotents of R.

Proof. i) To show that $X = D_e \sqcup D_{1-e}$, it suffices to show that $D_e \cap D_{1-e} = \emptyset$ and $D_e^c \cap D_{1-e}^c = \emptyset$. Note that $D_e = \{ \mathfrak{p} \in X : e \notin \mathfrak{p} \}$ and $D_{1-e} = \{ \mathfrak{p} \in X : 1 - e \notin \mathfrak{p} \}$.

Suppose that $\mathfrak{p} \in X$ such that $\mathfrak{p} \in D_e \cap D_{1-e}$. Then $e, 1-e \notin \mathfrak{p}$. But then $0=e-e^2=e(1-e) \notin \mathfrak{p}$ since \mathfrak{p} is prime. This is impossible. So $D_e \cap D_{1-e} = \emptyset$.

Suppose that $\mathfrak{p} \in X$ such that $\mathfrak{p} \in D_e^c \cap D_{1-e}^c$. Then $e, 1-e \in \mathfrak{p}$. But then $1=e+(1-e) \in \mathfrak{p}$. This is impossible. So $D_e^c \cap D_{1-e}^c = \varnothing$.

ii) We have

$$D_{f} \cap D_{g} = \varnothing \iff \neg \exists \, \mathfrak{p} \in X \colon f \notin \mathfrak{p} \land g \notin \mathfrak{p}$$

$$\iff \forall \, \mathfrak{p} \in X \colon f \in \mathfrak{p} \lor g \in \mathfrak{p}$$

$$\iff f g \in \operatorname{Nil}(R)$$

$$\iff f g \text{ is nilpotent.}$$

iii) Since U is clopen, $U = \mathbb{V}(\mathfrak{p})$ and $U^c = \mathbb{V}(\mathfrak{q})$ for some $\mathfrak{p}, \mathfrak{q} \in X$. Spec $R = \mathbb{V}(\mathfrak{p}) \sqcup \mathbb{V}(\mathfrak{q})$ implies that $\mathfrak{p} + \mathfrak{q} = R$ and $\sqrt{\mathfrak{pq}} = \sqrt{\{0\}}$. The first one implies that there exist $f \in \mathfrak{p}, g \in \mathfrak{q}$ such that f + g = 1. Then $fg \in \mathfrak{pq} \subseteq \mathrm{Nil}(R)$ is nilpotent. There exists $N \in \mathbb{N}$ such that $(fg)^N = 0$. On the other hand, we have $1 = (f+g)^{2N} \in \langle f \rangle^N + \langle g \rangle^N$. So there exist $a, b \in R$ such that $1 = af^N + bg^N$. Now let $e = bg^N$ and $1 - e = af^N$. Then e(1 - e) = 0 and hence e is idempotent.

For $\mathfrak{a} \in X$, we have

$$\mathfrak{a} \in \mathbb{V}(\mathfrak{p}) \implies \mathfrak{p} \subseteq \mathfrak{a} \implies f \in \mathfrak{a} \implies 1 - e = af^n \in \mathfrak{a} \implies e \notin \mathfrak{a} \implies \mathfrak{a} \in D_e$$

Hence $U \subseteq D_e$. Similarly $U^c \subseteq D_{1-e}$. But $X = U \sqcup U^c = D_e \sqcup D_{1-e}$. We must have $U = D_e$.

It remains to show that e is unique. Suppose that there is an idempotent e' such that $D_e = D_{e'}$. Then $D_e \cap D_{1-e} = D_e \cap D_{1-e'} = D_{e(1-e')} = \emptyset$ and similarly $D_{e'(1-e)} = \emptyset$. It follows that e(1-e') and e'(1-e) are nilpotent. But they are also idempotents. Hence e(1-e') = e'(1-e) = 0. Finally, e - e' = e(1-e') - e'(1-e) = 0. The idempotent e is unique.

For the converse direction, $X = D_e \sqcup D_{1-e}$ implies that D_e is clopen.

iv) It is straightforward to check that X satisfies the condition in the given fact. So the connected component Y of $\mathfrak{p} \in X$ is the intersection of clopen sets containing x. By (iii), we have

$$Y = \bigcap \{D_e \colon \mathfrak{p} \in D_e\} = \bigcap \{D_e \colon e \notin \mathfrak{p}\} = \bigcap \{D_{1-e} \colon e \in \mathfrak{p}\} = \bigcap \{\mathbb{V}(\langle e \rangle) \colon e \in \mathfrak{p}\} = \mathbb{V}(\langle e \colon e \in \mathfrak{p} \rangle)$$

If Spec R is disconnected, then Spec $R = U \sqcup V$ for some non-empty clopen $U, V \subseteq \operatorname{Spec} R$. Then $U = D_e$ some idempotents $e \in R$. Since $U \neq \emptyset$ or Spec R, $e \neq 0$ or 1.

Conversely, suppose that $e \in R \setminus \{0,1\}$ is an idempotent. Then Spec $R = D_e \sqcup D_{1-e}$ is disconnected.

Question 6

A family of schemes is a morphism $f: X \to B$ of schemes. Think of this as the collection of schemes $X_b = f^{-1}(b) = \operatorname{Spec}(K(b) \times_B X)$ (fibre product: on affines this is the tensor product of algebras). A family of closed subschemes of Y over B is a closed subscheme

- i) Let $B = \operatorname{Spec} k[t] = \mathbb{A}^1_k$. $B^* = D_0 = \operatorname{Spec} k[t, t^{-1}] = \mathbb{A}^1_k \setminus \{0\}$, and $X^* = \mathbb{V}(x^2 t^2) \subseteq \mathbb{A}^1_{B^*} = \operatorname{Spec} k[t, t^{-1}, x]$. Calculate the closure X of $X^* \subseteq \mathbb{A}^1_B = \operatorname{Spec} k[t, x]$ and the fibre X_0 . (Think of X_0 as the "limit" of X_b as $b \to 0$.)
- ii) Repeat (i) for $X^* = \mathbb{V}(xy t) \subseteq \mathbb{A}^2_{B^*} = \operatorname{Spec} k[t, t^{-1}, x, y]$. What pictures over $k = \mathbb{R}$ and $k = \mathbb{C}$ does this correspond to? (Only consider closed points for the picture.)
- iii) For the family $X = \operatorname{Spec} \mathbb{Z}[x,y]/(x^2 y^2 5) \to B = \operatorname{Spec} \mathbb{Z}$ (induced by obvious map on rings), what are the fibres $X_{(0)}, X_{(2)}, X_{(3)}, X_{(5)}$?

Show that this is a flat family (the notes will help). What happens if you replace $x^2 - y^2 - 5$ by $2x^2 - 2y^2 - 6$?