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Question 1

i) Construct the scheme Pn
R bu gluing (n + 1) copies of An

R = SpecR[y1, ..., yn], where for the i-th copy
you use y1 =

x0
xi

, ..., yn =
xn
xi

(omit
xi
xi

) (these generate a R-subalgebra of S�1R[x0, ..., xn] for S

multiplicative set generated by x0, ..., xn.)

ii) Show that a homomorphism of rings R � S yields a natural map Pn
S � Pn

R.

iii) Construct Pn
U for any open subscheme U ⇥ SpecR. (Compare lecture notes on An

U .)

iv) Construct Pn
X : the projective n-space over any scheme X, and explain why a morphism X � Y induces

a natural morphism Pn
X � Pn

Y .

Proof. i) Let S be the multiplicative set in R[x0, ..., xn] generated by x0, ..., xn. For i ⇤ {0, ..., n}, we define
�i : R[y1, ..., yn] � S�1R[x0, ..., xn] by

y1 ⌅� x0/xi, ..., yi ⌅� xi�1/xi, yi+1 ⌅� xi+1/xi, ..., yn ⌅� xn/xi.

Then let
Ri := im�i = R

�
x0
xi

, ...,
⇥xi
xi
, ...,

xn
xi

⇤
, Ai := SpecRi

Equivalently, Ri is the zeroth grading of the localisation ring R[x0, ..., xn]xi . Now let

Rij := Ri

�
xi
xj

⇤
= (Ri)xj/xi

=
⌅
S�1
ij R[x0, ..., xn]

⇧

0

where Sij is the multiplicative set generated by xi, xj . Let Aij := SpecRij . By symmetry we can see
that Rij = Rji and hence Aij = Aji. The localisation natural map ⇥ : Ri � Rij = (Ri)xj/xi

induces
an embedding Spec⇥ : Aij ⇤� Ai. And similarly there is an embedding Aij ⇤� Aj .

Now we define Pn
R as a topological space to be the push-out:

Pn
R := A0 ⇧ · · · ⇧An

where Ai and Aj are glued along Aij . So in Pn
R we can say that Aij = Ai ⌃Aj .

As spectrum of rings, Ai carries the structure sheaf OSpecRi . We need the gluing of sheaves. Let ⌅ij
be the composite isomorphism OAi |Aij

OAij OAj |Aij

⇥ ⇥ We need to check the compatibility
conditions. It is clear that ⌅ii = id. Let Aijk := Ai ⌃ Ai ⌃ Ak = Aij ⌃ Ajk. It is easy to observe
that Aijk = SpecRijk, where Rijk :=

⌅
S�1
ijkR[x0, ..., xn]

⇧

0
, Sijk is the multiplicative set generated by

xi, xj , xk. Then we simply have

⌅ik|Aijk
= OAk |Aijk

= OAijk = ⌅jk ⌥ ⌅ij |Aijk

Therefore there exists a unique sheaf OPn
R

on Pn
R such that OPn

R
|Ai

= OAi . This makes Pn
R a well-defined

scheme.

ii) The ring homomorphism � : R � S induces ⌃� : R[y1, ..., yn] � S[y1, ..., yn] and hence a morphism of

schemes (Spec�,�#) : An
S � An

R. From (i) we have constructed Pn
R as

n⌥

i=0

Ai, where Ai
�= An

R. Similarly

Pn
S =

n⌥

i=1

A⇤
i, where A⇤

i
�= An

S . Then we define fi by A⇤
i An

S An
R Ai Pn

R
Spec� ⇥⇥ . For

i  = j, it is clear that fi|A�
i⌅A�

j
= fi|A�

ij
= fj |A�

ij
= fj |A�

i⌅A�
j
. So by gluing lemma, we have a unique

morphism f : Pn
S � Pn

R such that f |A�
i
= fi.
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iii) Since U is open in SpecR, there exists f1, ..., fm ⇤ R such that U =
m⌥

i=1

Dfi . The localisation R � Rfi

induces an embedding of schemes Pn
Rfi

⇤� Pn
R by (ii). So we can view each Pn

Rfi
as an open subscheme

of Pn
R. We define Pn

U :=
m⌥

i=1

Pn
Rfi

. This is also an open subscheme of Pn
R.

iv) Let {X1, ..., Xm} be an a⇥ne open cover of X, so Xi
�= SpecRi for some ring Ri. Since Xi ⌃ Xj is

open in Xi, by (iii) we have defined Pn
Xi⌅Xj

as an open subscheme of Pn
Xi

. Now we can define Pn
X as

the push-out
Pn
X1

⇧ · · · ⇧ Pn
Xm

where Pn
Xi

and Pn
Xj

are glued along Pn
Xi⌅Xj

.

Let (f, f#) : (X,OX) � (Y,OY ) be a morphism of schemes. Let {Y1, ..., Ym} be an a⇥ne open cover
of Y . For each i, Xi := f�1(Yi) is open in X. So there exists a⇥ne open subsets Xi1, ..., Xiki such that

Xi =
ki⌥

j=1

Xij . Let Xij
�= SpecRij , and Yi �= SpecSi. Then f |Xij

: Xij � Yi is Spec⇥ij : SpecRij �

SpecSi for some ring homomorphism ⇥ij : Si � Rij . By (ii) ⇥ij induces ⌃⇥ij : Pn
Xij

�= Pn
Rij

� Pn
Si

�=

Pn
Yi

⇥ Pn
Y . Since X =

m⌥

i=1

ki⌥

j=1

Xij , we can glue the morphisms ⌃⇥ij to obtain the morphism Pn
X � Pn

Y .

Details of checking compatibility are omitted.

Question 2

Let (X,OX) be a scheme and s ⇤ OX(U). Show that {x ⇤ U : sx = 0 ⇤ OX,x} is open in U and need not be
closed; and {x ⇤ U : s(x) = 0 ⇤ ⇧(x)} is closed in U and need not be open.

[Hint. Look at a�ne varieties.]

Proof. Let A := {x ⇤ U : sx = 0 ⇤ OX,x}. For x ⇤ A, sx = 0 implies that there exists some open V ⌦ x such that
s = 0 on V . Then sy = 0 for all y ⇤ V . Hence V ⇥ A, and A is open in U .

Consider U = X = Spec k[x, y]/ ↵xy�, where k is an algebraically closed field. (Geometrically this is the
union of two lines {x = 0} and {y = 0} in the a�ne plane A2

k.) Then OX(U) �= k[x, y]/ ↵xy�. It is easy
(either from algebra or geometry) to write down the prime spectrum:

Spec k[x, y]/ ↵xy� = {{0}, ↵x� , ↵y�} ⇧ {↵x, y � a� : a ⇤ k} ⇧ {↵x� a, y� : a ⇤ k}

Let s = x ⇤ OX(U). We claim that A is not closed. Suppose that it is closed. Then A = V(q) for some
q ⇤ X. Note that for p ⇤ X,

sp = 0 ⇤ OX,p �✏ xp = 0 ⇤ (k[x, y]/ ↵xy�)p �✏ ⇣u /⇤ p : xu = 0

For p = {0}, y /⇤ p and xy = 0. Therefore x{0} = 0 and hence {0} ⇤ A. Then A = {0} = X.

On the other hand, if xu = 0, we write u =
�n

i=0 fi(x)y
i and find that f0(x) = 0, so y divides u. Hence

u ⇤ ↵y�. It follows that ↵y� /⇤ A. This is a contradiction. We have shown that A is not closed.

Let B := {x ⇤ U : s(x)  = 0 ⇤ ⇧(x)}. If s = 0, then B = � is trivially open in U . Suppose that s  = 0.
For x ⇤ B, s(x)  = 0 implies that sx /⇤ mx where mx is the maximal ideal of OX,x. Then fx is a unit in
OX,x and there is some g ⇤ OX(U) with fx · gx = 1. Then f · g = 1 in some open W ⌦ x. For y ⇤ W ,
fy · gy = 1 ⇤ OX,y. Then fy is a unit in OX,y and f(y)  = 0 ⇤ ⇧(y). Hence y ⇤ B, and B is open in U .



3

Consider U = X = Spec k[t], where k is an algebraically closed field. Then OX(U) �= k[t]. Let s = t ⇤ k[t].
Note that for p ⇤ X, OX,p

�= k[t]p has the maximal ideal p · k[t]p. Then

s(p) = 0 �✏ sp ⇤ p · k[t]p �✏ s ⇤ p �✏ ↵t� ⇥ p �✏ ↵t� = p

So B = {↵t�}. We claim that this is not an open set. Suppose that it is open. Then there is q ⇤ X such
that V(q) = X \ {↵t�}. Then ↵x� 1� ⇥ q and ↵x+ 1� ⇥ q implies that q = ↵1�. But q /⇤ X, contradiction.
Hence B is not open. Geometrically, this is the point of origin in the a⇥ne line A1

k.

Question 3

i) Let R1, R2 be rings. Use natural projections R1◊R2 � Ri to show that SpecR1
 

SpecR2
�= Spec(R1◊

R2). Show that Spec(R1 ◊R2) = {p1 ◊R2, R1 ◊ p2 : p1 ⇤ SpecR1, p2 ⇤ SpecR2}.

ii) Let (X,OX) be a scheme. U, V are disjoint a⇥ne open subsets of X. Show that U ⇧ V is a⇥ne.

iii) Show that (X,OX) is irreducible �✏ all a⇥ne open subsets of X are irreducible.

[Hint. For �= , consider
⌥

i

Ui = X = C1 ⇧ C2. Is Ui ⌃ Uj = � possible? ]

iv) Suppose that OX(U) is an integral domain for all a⇥ne U ⇥ X. Show that X is integral.

[Hint. First show that X is irreducible. Then use Question 2.]

v) Show that X is integral �✏ X is irreducible and reduced.

[Hint. For (iv) and (v) use Sheet 1.]

Finally deduce that SpecR is integral �✏ R is an integral domain.

Proof. i) Since Spec : CRingop � A� is an equivalence of catogory, it preserves products and coproducts. It is
immediate that SpecR1

 
SpecR2

�= Spec(R1 ◊R2).

Suppose that p ⇤ Spec(R1 ◊R2). Since (0, 0) = (1, 0) · (0, 1) ⇤ p and p is prime, then either (1, 0) ⇤ p

or (0, 1) ⇤ p. If (1, 0) ⇤ p, then R1 ◊ {0} ⇥ p. Note that R1 ◊ {0} is an ideal of R1 ◊ R2 and the
quotient (R1 ◊ R2)/(R1 ◊ {0}) �= R2. Then p/(R1 ◊ {0}) �= p2 for some p2 ⇤ SpecR2. This shows
that p = R1 ◊ p2. If (0, 1) ⇤ p, similarly we have p = p1 ◊R2 for some p1 ⇤ SpecR1. Hence

Spec(R1 ◊R2) = {p1 ◊R2 : p1 ⇤ SpecR1} ⇧ {R1 ◊ p2 : p2 ⇤ SpecR2}

ii) Suppose that U �= SpecR and V �= SpecS for some rings R,S. Since U ⌃ V = �, by (i) we have

U ⇧ V = U
⌦

V �= SpecR
⌦

SpecS �= U ⇧ V �= Spec(R◊ S)

Hence U ⇧ V is a⇥ne. (I don’t like this \coprod symbol. But \sqcup is not a good choice either...)

iii) “ =✏ ”: Suppose that U is a reducible a⇥ne open subset of X. Then U = U1 ⇧ U2, where U1, U2

are non-empty proper subsets which are closed in U . By definition of subspace of topology and some
set-theoretic massaging, U1 and U2 are also closed in X. Then X = (X ⌃ U1) ⇧ (X ⌃ U2) is reducible.

“ �= ”: Suppose that all a⇥ne subsets of X are irreducible and X is reducible. If X is a⇥ne then the
result is obvious. Otherwise, let {U1, ..., Un} be an a⇥ne open cover of X. And let X = X1⇧X2, where
X1, X2 are proper closed subsets. For each Ui, since Ui = (X1 ⌃Ui) ⌃ (X2 ⌃Ui) and Ui is irreducible,
either Ui ⌃X1 = � or Ui ⌃X2 = �. Since both X1, X2 are non-empty, without loss of generality we
assume that U1 ⌃ X2 = � and U2 ⌃ X1 = �. So U1 ⌃ U2 = �. Now by (ii), U1 ⇧ U2 is a⇥ne. But

✓

✓

Iso of →
sdrevuesby
gheiag

✓

Ímar ✗
] disagree that U = Civlz ⇒ C

,
=porfa =¢

zfiwplies that CiU or↳ = U
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we know that U1 ⇧ U2 is disconnected, and hence is reducible. This contradicts our assumption. We
conclude that X is irreducible.

iv) For an a⇥ne open subset U ⇥ X such that U �= SpecR, OX(U) �= R is an integral domain. Hence U

is irreducible by Question 3.(ii) of Sheet 1. Now by (iii) X is irreducible.

Let V be an arbitrary open subset of X. By first half of (iii) V is also irreducible. Suppose that
f, g ⇤ OX(V ) \ {0} such that fg = 0. Let Vf := {x ⇤ V : f(x) = 0} and Vg := {x ⇤ V : g(x) = 0}.
Then Vf ⇧ Vg = V . By Question 2, Vf and Vg are closed in V . By irreducibility, we may assume that
Vf = V . Let {V1, ..., Vm} be an a⇥ne open cover of V . For Vi

�= SpecRi, where Ri is an integral
domain, let fi ⇤ Ri be the restriction of f on Vi. Then fi(x) = f(x) = 0 for all x ⇤ Vi. Note that
this implies that fi ⇤ p for all p ⇤ SpecRi. Hence fi = 0 because Nil(Ri) = {0}. In particular
fx = (fi)x = 0 for all x ⇤ Vi. This holds for each i, and by the covering, we have fx = 0 for all
x ⇤ V . Hence f = 0 ⇤ OX(V ). This is a contradiction. We deduce that OX(V ) is an integral domain.
Therefore X is an integral scheme.

v) “ =✏ ”: By definition integrality implies reducedness. Since X is integral, for any a⇥ne open subset
U �= SpecR, R is an integral domain. Hence U is irreducible. By (iii) X is irreducible.

“ �= ”: For any a⇥ne open subset U �= SpecR, U is irreducible and reduced. Hence OX(U) �= R is
an integral domain. By (iv) X is integral.

We have SpecR is integral �✏ SpecR is irreducible and reduced �✏ R is an inetgral domain.

Question 4

Consider the scheme Y = Spec k[x, y]/(f) where f = y2 � x2 � x3 and k is a field with char k  = 2.

i) Show that Y is an integral scheme.

ii) Draw a picture in R2 of the curve f = 0.

Now consider the functor of points hY (X) for the following test schemes X:

iii) Let X = Spec k[[x, y]]/(f). Using the “natural choice” of ⌃ ⇤ hY (X), show that ⌃�1(Y ) is reducible.

[Hint. Newton binomial theorem:

(1 + x)r = 1 + rx+
r(r � 1)

1 · 2
x2 +

r(r � 1)(r � 2)

1 · 2 · 3
x3 + · · · ⇤ k[[x, y]]

provided the fractions exist in k and r ⇤ Q. Z ⌦
↵
2n

n

�
=

(2n)!

n!n!
and

↵
2n

n

�
1

n+ 1
=

↵
2n

n+ 1

�
1

n
.]

iv) What would happen in (iii) for X = SpecOY,0 ? Comment in view of the picture in (ii).

Proof. i) By Question 3, it su⇥ces to prove that k[x, y]/ ↵f� is an integral domain. This is true if and only if
↵f� is a prime ideal, if and only if f is irreducible in k[x, y]. The remaining work is elementary school
mathematics.

Suppose that f = gh for non-constant g, h ⇤ k[x, y]. By considering f, g, h as polynomials in y and
comparing coe⇥cients, we have g(x, y) = y � ⌃g(x) and h(x, y) = y � ⌃h(x) for some ⌃g,⌃h ⇤ k[x]. Then
we have ⌃g(x) + ⌃h(x) = 0 and ⌃g(x)⌃h(x) = �x2(x + 1). The first equality suggests that deg ⌃g = deg ⌃h,
so that deg(⌃g⌃h) is even, contradicting the second equality. Hence f is irreducible.

ii) Sketch of y2 = x2 + x3 in R2:

✓

"

✓

✓
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✓

✓
✓
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iii) Let ⌥ : k[x, y]/ ↵f� ⇤� k[[x, y]]/ ↵f� be the canonical embedding. Then ⌥ induces the morphism of schemes
⌃ = Spec ⌥ : X � Y . We need to show that ⌃�1(Y ) = X is reducible.

The phrasing of the question is confusing as the reducibility of ⌃�1(Y ) = X has nothing to do with ⌃.

By Question 3 of Sheet 1, it su⇥ces to show that the nilradical N of k[[x, y]]/ ↵f� is not prime. First
we claim that there exists �(x) ⇤ k[[x]] such that �(x)2 = x+ 1. To prove this, we observe that

1

n!

n�1�

m=0

↵
1

2
�m

�
=

(�1)n�1

n!2n

n�1�

m=1

(2m� 1) =
(�1)n�1

n!2n
(2n)!

n!2n
1

2n� 1
=

(�1)n�1

22n

↵
2n

n

�
1

2n� 1

is an element of k, because char k  = 2 and
�2n
n

✏
1

2n�1 ⇤ Z. Then by the Newton’s binomial theorem,

�(x) = 1 +
⇧⇣

n=1

1

n!

n�1�

m=0

↵
1

2
�m

�
xm ⇤ k[[x]]

satisfies that �(x)2 = 1 + x. Then

f(x) = y2 � x2(x+ 1) = y2 � x2�(x)2 = (y + x�(x))(y � x�(x)) ⇤ k[[x, y]]

Second, we need the following lemma (Atiyah & MacDonald Exercise 1.5.(i)): for any ring R, p ⇤ R[[x]]

is a unit if and only if the constant term a0 ⇤ R of p is a unit in R. The proof is straightforward and
we omit it. In particular, if a0 is irreducible in R, then p is irreducible in R[[x]].

Third, we need the fact that k[[x, y]] is a unique factorisation domain. The proof is very lengthy and
we omit it.

With these results in hand, we can prove our claim that N is not prime. Since the constant term of
�(x) is 1, �(x) is a unit in k[[x]]. We know that x is irreducible in k[[x]] (↵x� is the unique maximal ideal).
Then x�(x) is irreducible in k[[x]]. Note that y ± x�(x) ⇤ k[[x]][[y]] has constant term x�(x) ⇤ k[[x]].
So y ± x�(x) are irreducible in k[[x]][[y]] = k[[x, y]]. Since k[[x, y]] is a UFD, the ideals ↵y ± x�(x)� are
prime. In the quotient ring k[[x, y]]/ ↵f�, since ↵0� is not prime, ↵y ± x�(x)� are minimal prime.

Finally, we claim that ↵y + x�(x)�  = ↵y � x�(x)�. Suppose not. Then there exists a unit u ⇤ k[[x, y]]

such that y + x�(x) = u(y � x�(x)). Then (u � 1)y = (u + 1)x�(x). So u � 1 = u + 1 = 0. Since
2  = 0 in k, this is impossible. We deduce that ↵y + x�(x)� and ↵y � x�(x)� are distinct in k[[x, y]].
Therefore they are distinct minimal prime ideals of k[[x, y]]/ ↵f�. We conclude that N is not prime,
and ⌃�1(Y ) = X is reducible.

iv) 0 ⇤ Y is ambiguous. It could be the zero ideal ↵0� ⇤ Y , or could be the maximal ideal corresponding to
the point (0, 0) in A2

k, which is ↵x, y�.

✓
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✓
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• For the firsr case, OY,⌃0⌥ = (k[x, y]/ ↵f�)⌃0⌥ = Frac(k[x, y]/ ↵f�). So SpecOY,⌃0⌥ is the prime
spectrum of a field, and is a singleton as a set. The natural choice of ⌃ ⇤ hY (X) is ⌃ = Spec�,
where � : k[x, y]/ ↵f� � OY,⌃0⌥ is the embedding into the field of fractions. X is trivially irreducible.

• For the second case, OY,⌃0⌥ = (k[x, y]/ ↵f�)⌃x,y⌥ is the localisation of an integral domain, which is
again an integral domain. Then by Question 3, X = SpecOY,⌃0⌥ is an integral scheme, and hence
is irreducible.

This suggests that the ring of formal power series k[[x, y]]/ ↵f� better reflects the local geometric
property of the a⇥ne variety at (0, 0) than the stalk OY,0, as it captures the fact that the variety
is locally reducible as shown on the graph.

Question 5

An element e is called idempotent if e2 = e. In integral domains, only 0, 1 are idempotents; e is an idempotent
=✏ 1� e is an idempotent.

Let X = SpecR.

i) Show that X = De ⌘D1�e for all idempotents e ⇤ R.

[Hint. What is e = e(p) ⇤ ⇧(p)? ]

Example. In 3.(i), SpecR1 ◊R2 = D(1,0) ⌘D(0,1) = SpecR1 ⌘ SpecR2.

ii) Show that Df ⌃Dg = � �✏ fg is nilpotent.

Example: De ⌃D1�e = � in (i).

iii) Show that U ⇥ X is open and closed �✏ there exists a unique idempotent e ⇤ R with U = De.

[Hint. U = V(I), V = X \ U = V(J). Show that (IJ)N = 0 for some N , hence 1 = 12N ⇤ IN + JN .]

iv) Show that {connected component of p ⇤ X} = V(↵idempotents e ⇤ R with e(p) = 0 ⇤ ⇧(p)�).

[Use the fact from topology: If a topological space X is compact, and that it has a basis of compact open
subsets, the intersection of any two of which is compact, then the connected component of x ⇤ X is⌘

{clopen U ⌦ x}.]

Finally deduce that SpecR is connected �✏ 0, 1 are the only idempotents of R.

Proof. i) To show that X = De ⌘D1�e, it su⇥ces to show that De ⌃D1�e = � and Dc
e ⌃Dc

1�e = �. Note that
De = {p ⇤ X : e /⇤ p} and D1�e = {p ⇤ X : 1� e /⇤ p}.

Suppose that p ⇤ X such that p ⇤ De ⌃D1�e. Then e, 1� e /⇤ p. But then 0 = e� e2 = e(1� e) /⇤ p

since p is prime. This is impossible. So De ⌃D1�e = �.

Suppose that p ⇤ X such that p ⇤ Dc
e ⌃Dc

1�e. Then e, 1� e ⇤ p. But then 1 = e+ (1� e) ⇤ p. This
is impossible. So Dc

e ⌃Dc
1�e = �.

ii) We have

Df ⌃Dg = � �✏ ¬⇣ p ⇤ X : f /⇤ p ✓ g /⇤ p

�✏ ◆ p ⇤ X : f ⇤ p  g ⇤ p

�✏ ◆ p ⇤ X : fg ⇤ p

�✏ fg ⇤ Nil(R)

�✏ fg is nilpotent.
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iii) Since U is clopen, U = V(p) and U c = V(q) for some p, q ⇤ X. SpecR = V(p) ⌘ V(q) implies that
p+ q = R and

�
pq =

✓
{0}. The first one implies that there exist f ⇤ p, g ⇤ q such that f + g = 1.

Then fg ⇤ pq ⇥ Nil(R) is nilpotent. There exists N ⇤ N such that (fg)N = 0. On the other hand, we
have 1 = (f + g)2N ⇤ ↵f�N + ↵g�N . So there exist a, b ⇤ R such that 1 = afN + bgN . Now let e = bgN

and 1� e = afN . Then e(1� e) = 0 and hence e is idempotent.

For a ⇤ X, we have

a ⇤ V(p) =✏ p ⇥ a =✏ f ⇤ a =✏ 1� e = afn ⇤ a =✏ e /⇤ a =✏ a ⇤ De

Hence U ⇥ De. Similarly U c ⇥ D1�e. But X = U ⌘ U c = De ⌘D1�e. We must have U = De.

It remains to show that e is unique. Suppose that there is an idempotent e⇤ such that De = De� .
Then De ⌃ D1�e = De ⌃ D1�e� = De(1�e�) = � and similarly De�(1�e) = �. It follows that e(1 � e⇤)

and e⇤(1 � e) are nilpotent. But they are also idempotents. Hence e(1 � e⇤) = e⇤(1 � e) = 0. Finally,
e� e⇤ = e(1� e⇤)� e⇤(1� e) = 0. The idempotent e is unique.

For the converse direction, X = De ⌘D1�e implies that De is clopen.

iv) It is straightforward to check that X satisfies the condition in the given fact. So the connected
component Y of p ⇤ X is the intersection of clopen sets containing x. By (iii), we have

Y =
◆

{De : p ⇤ De} =
◆

{De : e /⇤ p} =
◆

{D1�e : e ⇤ p} =
◆

{V(↵e�) : e ⇤ p} = V(↵e : e ⇤ p�)

If SpecR is disconnected, then SpecR = U ⌘ V for some non-empty clopen U, V ⇥ SpecR. Then U = De

some idempotents e ⇤ R. Since U  = � or SpecR, e  = 0 or 1.

Conversely, suppose that e ⇤ R \ {0, 1} is an idempotent. Then SpecR = De ⌘D1�e is disconnected.

Question 6

A family of schemes is a morphism f : X � B of schemes. Think of this as the collection of schemes
Xb = f�1(b) = Spec(K(b) ◊B X) (fibre product: on a�nes this is the tensor product of algebras). A family
of closed subschemes of Y over B is a closed subscheme

X ⇥ Y ◊B

B

project

i) Let B = Spec k[t] = A1
k. B� = D0 = Spec k[t, t�1] = A1

k \ {0}, and X� = V
�
x2 � t2

✏
⇥ A1

B⇥ =

Spec k[t, t�1, x]. Calculate the closure X of X� ⇥ A1
B = Spec k[t, x] and the fibre X0. (Think of X0 as

the “limit” of Xb as b � 0.)

ii) Repeat (i) for X� = V(xy � t) ⇥ A2
B⇥ = Spec k[t, t�1, x, y]. What pictures over k = R and k = C does

this correspond to? (Only consider closed points for the picture.)

iii) For the family X = SpecZ[x, y]/(x2 � y2 � 5) � B = SpecZ (induced by obvious map on rings), what
are the fibres X(0), X(2), X(3), X(5)?

Show that this is a flat family (the notes will help). What happens if you replace x2 � y2 � 5 by
2x2 � 2y2 � 6?
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