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Question 1

i) Construct the scheme P% bu gluing (n + 1) copies of A}, = Spec R[y1, ..., yn], where for the i-th copy
you use y3 = @,...,yn - (omit &) (these generate a R-subalgebra of S~!R[xg,...,z,] for S
multiplicative set generated by xo, ..., Z.)

ii) Show that a homomorphism of rings R — S yields a natural map P — P'.
iii) Construct Py, for any open subscheme U C Spec R. (Compare lecture notes on Af.)

iv) Construct P%: the projective n-space over any scheme X, and explain why a morphism X — Y induces
a natural morphism P% — Py

Proof. i) Let S be the multiplicative set in R|x, ..., ] generated by xo,...,z,. For i € {0,...,n}, we define
©i : R[y1, ..., yn] = STIR[x0, ..., zs] by

Y1 = 20/ Tiy ooy Yi 7 Tim1/Tiy Yirl F Tig1/Tis oy Yn > T /T4 v
Then let e
. o ZT; Tn \/
R; ::lm(pz‘:R|:,...,,...,:|, A; := Spec R;
ZT; ZT; ZT; oA
(et

Equivalently, R; is the zeroth grading of the localisation ring Rz, ..., Tp)z,. Now let

R .= R; [Z} = (Ri)zj/zi = (S&lR[azo, ,xn]zgg \0{/ s

where §;; is the multiplicative set generated by x;,x;. Let A;; := Spec R;;. By symmetry we can see
that R;; = Rj; and hence A;; = Aj;. The localisation natural map ¢ : R; — R;; = (Ri)xj/a:i induces
an embedding Spec : A;; — A;. And similarly there is an embedding A;; — A;.

Now we define P'; as a topological space to be the push-out:
Bi=AoU---UA,

where A; and A; are glued along A;;. So in P, we can say that A;; = A; N A;. ‘/

As spectrum of rings, A; carries the structure sheaf Ogpec g, We need the gluing of sheaves. Let &;;

be the composite isomorphism Oy, | Ay =50 Ay =50 A ] Ay We need to check the compatibility
conditions. It is clear that &; = id. Let Ay, := A; N A; N A, = A;j N Aji. It is easy to observe

that A;j; = Spec R;j1, where Ryj, 1= (Si;,iR[:no, ...,xn]>0, Sijk is the multiplicative set generated by

x;, Tj, ). Then we simply have

Cikla,,, = Oay |A¢jk = OAijk = &k © &ijla

ijk ijk

Therefore there exists a unique sheaf O[pwé on [P% such that O]pwé ] 4, = O4,. This makes P a well-defined

scheme. L/

ii) The ring homomorphism ¢ : R — S induces ¢ : R[y1, ..., yn] = S[y1, ..., yn] and hence a morphism of

n

schemes (Spec ¢, ¢7) : A% — A%. From (i) we have constructed P as U A;, where A; = A%, Similarly
. Sz‘:o

T = UA;, where A} = A%. Then we define f; by A} —— A% Peey AL —=— A, < P%. For

i=1
i # 7, it is clear that fi| ynar = filar. = filar. = filaraar- So by gluing lemma, we have a unique
i 7 3 , K J

morphism f : P& — P% such that f]A; = f;. ’ \/




m

iii) Since U is open in Spec R, there exists f1, ..., f;, € R such that U = U Dy,. The localisation R — Ry,
i=1

induces an embedding of schemes P%fi — [P by (ii). So we can view each ]P’Tf%fi as an open subscheme

m
of P%. We define P}, := U Pk . This is also an open subscheme of P%,. \/
i=1
iv) Let {Xj, ..., X;} be an affine open cover of X, so X; = Spec R; for some ring R;. Since X; N X is
open in X;, by (iii) we have defined P A X, @s an open subscheme of P’y . Now we can define P’y as
the push-out
7)1(1 J---uy [[W)l(m

where P’y and P}j are glued along P’ X \/

Let (f, f7): (X,0x) — (Y, Oy) be a morphism of schemes. Let {Y7,...,Y;,} be an affine open cover

of Y. For each i, X; := f~1(Y;) is open in X. So there exists affine open subsets X;1, ..., Xk, such that
k;

X, = U Xi;. Let X;; = Spec R;j, and Y; = SpecS;. Then f|Xij : Xi; — Y; is Spec);j : Spec Ry —
j=1

>~

Spec S; for some ring homomorphism ;; : S; = R;;. By (ii) v4; induces Jij : IP”;QJ_ = ]P”}%ij — P§ =

m k;

Py C Py. Since X = U U Xij, we can glue the morphisms ;; to obtain the morphism P% — Py..
i=1j=1

Details of checking compatibility are omitted. O

Question 2

Let (X,Ox) be a scheme and s € Ox(U). Show that {z € U: s, =0 € Ox} is open in U and need not be
closed; and {x € U: s(x) =0 € k(x)} is closed in U and need not be open.

[Hint. Look at affine varieties.]

Proof. Let A:={x €U: s, =0€ Ox}. For x € A, s, =0 implies that there exis@some open V 3 x such that
s=0on V. Then s, =0 for all y € V. Hence V' C A, and A is open in U.

Consider U = X = Specklz,y]/ (zy), where k is an algebraically closed field. (Geometrically this is the
union of two lines {x = 0} and {y = 0} in the affine plane A?.)\Then Ox(U) = k[z,y]/ (xy). Tt is easy
(either from algebra or geometry) to write down the prime spectrum:

Spec k[z,y]/ (xy) = {{0}, (x) , ()} U{(z,y —a) sa €k} U{(z —a,y) : a € k}

Let s = x € Ox(U). We claim that A is not closed. Suppose that it is closed. Then A = V(q) for some
q € X. Note that for p € X,

sp=0€0xy <= x,=0¢ (klz,y]/(zy))py <= Fu¢p:zu=0 \/

For p = {0}, y ¢ p and 2y = 0. Therefore x5, = 0 and hence {0} € A. Then A = {0} = X.

On the other hand, if zu = 0, we write u = > -, fi(z)y® and find that fo(z) = 0, so y divides/. Hence
u € (y). It follows that (y) ¢ A. This is a contradiction. We have shown that A is not closed.

Let B:={ze€U: s(x)#0 € k(x)}. If s =0, then B = & is trivially open in U. Suppose that s # 0.
For x € B, s(x) # 0 implies that s, ¢ m, where m, is the maximal ideal of Ox . Then f; is a unit in
Ox . and there is some g € Ox(U) with f; - g, = 1. Then f-g¢g =1 in some open W 3 z. For y € W,
fy-9y=1€ Ox,. Then f, is a unit in Ox, and f(y) # 0 € k(y). Hence y € B, and B is open in U\/



Consider U = X = Speck[t], where k is an algebraically closed field. Then Ox (U) = k[t]. Let s =t € k][t].
Note that for p € X, Ox p = k[t], has the maximal ideal p - k[t],. Then

s(p) =0 <= sp€p-kltly < sep <= () Cp < () =p

So B = {(t)}. We claim that this is not an open set. Suppose that it is open. Then there is q € X such
that V(q) = X \ {(¢)}. Then (z — 1) C q and (x + 1) C q implies that q = (1). But q ¢ X, contradiction.
Hence B is not open. Geometrically, this is the point of origin in the affine line A,lﬁ. ]

Question 3

i) Let Ry, Ry be rings. Use natural projections Ry x Ry — R; to show that Spec Ry [[ Spec Ry & Spec(R; X
R3). Show that Spec(R; x Ra) = {p, X Ro, R1 X p,: p1 € Spec Ry, pa € Spec Ra}.

ii) Let (X,Ox) be a scheme. U,V are disjoint affine open subsets of X. Show that U UV is affine.
iii) Show that (X, Ox) is irreducible <= all affine open subsets of X are irreducible.
|Hint. For <=, consider U Ui=X=C1UCy. IsU;NU; = @ possible?|
i
iv) Suppose that Ox (U) is an integral domain for all affine U C X. Show that X is integral.
[Hint. First show that X is irreducible. Then use Question 2.|
v) Show that X is integral <= X is irreducible and reduced.

[Hint. For (iv) and (v) use Sheet 1.|

Finally deduce that Spec R is integral <= R is an integral domain.

Proof. 1) Since Spec : CRing®® — Aff is an equivalence of catogory, it preserves products and coproducts. It is
immediate that Spec R; [ [ Spec Re = Spec(R; X Ra).

Suppose that p € Spec(R; x Rg). Since (0,0) = (1,0) - (0,1) € p and p is prime, then either (1,0) € p
or (0,1) € p. If (1,0) € p, then Ry x {0} C p. Note that Ry x {0} is an ideal of R; x Ry and the
quotient (R; x R2)/(Ry x {0}) = Ry. Then p/(R; x {0}) = po for some pa € Spec Ra. This shows
that p = Ry X po. If (0,1) € p, similarly we have p = p; x Ry for some p; € Spec R;. Hence

Spec(Ry1 X Ry) = {p1 X Ra: p1 € Spec R1} U{Ry X pa: pa € Spec Ra} \/

ii) Suppose that U = Spec R and V' = Spec S for some rings R, S. Since U NV = &, by (i) we have

SpecRH Spec S 2 U UV = Spec(R x 5)

W&f\%ence U UV is affine. (I don’t like this \coprod symbol. But \sqcup is not a good choice either...)
i

iii) “ 7. Suppose that U is a reducible affine open subset of X. Then U = U; U Us, where Uy, Us
are non-empty proper subsets which are closed in U. By definition of subspace of topology and some
set-theoretic massaging, U; and Us are also closed in X. Then X = (X NU;) U (X NUy) is reducible.

“ «<="" Suppose \t@lym/ all affine subsets of X are irreducible and X is reducible. If X is affine then the
result is obvious. “Otherwise, let {U1, ..., U, } be an affine open cover of X. And let X = X;U X2, where
X1, Xo are proper closed subsets. For each Uj, since U; = (X1 NU;) N (X2 NU;) and U is irreducible,
either U; N X1 = @ or U; N Xo = &. Since both X7, Xo are non-empty, without loss of generality we
assummﬂ X1 =9. So Uy NU; = @. Now by (ii), Uy UUs is affine. But

19\@@’1&7%@ ot U C\UC ~>C é@([
U ‘vl WG-M&&Z (/ i

/



we know that Uy U Us is disconnected, and hence is reducible. This contradicts our assumption. We
conclude that X is irreducible.

is irreducible by Question 3.(ii) of Sheet 1. Now by (iii) X is irreducible.

iv) For an affine open subset U C X such that U = Spec R, Ox(U) = R is aIii?egral domain. Hence U

Let V' be an arbitrary open subset of X. By first half of (iii) V is also irreducible. Suppose that
f,9 € Ox(V)\ {0} such that fg = 0. Let Vy := {x € V: f(z) =0} and V, := {x € V: g(x) = 0}.
Then V; UV, = V. By Question 2, V; and V, are closed in V. By irreducibility, we may assume that

domain, let f; € R; be the restriction of f on V;. Then f;(z) = f(z) = 0 for all x € V;. Note that
this implies that f; € p for all p € Spec R;. Hence f; = 0 because Nil(R;) = {0}/ In particular
fe = (fi)e = 0 for all z € V;. This holds for each 4, and by the covering, we have f, = 0 for all
x € V. Hence f =0 € Ox (V). This is a ¢ontradiction. We deduce that Ox (V') is an integral domain.
Therefore X is an integral scheme.

Vi = V. Let {Vi,...,V,} be an affine open cover of V. For V; = Spec R;, where ]j:f an integral
7

v) ¢ =" By definition integrality implies reducedness. Since X is integral, for any affine oper/ subset
U = Spec R, R is an integral domain. Hence U is irreducible. By (iii) X is irreducible.

“ <= " For any affine open subset U = Spec R, U is irreducible and reduced. Hence Ox(U) = R is
an integral domain. By (iv) X is integral.

We have Spec R is integral <= Spec R is irreducible and reduced <= R is an inetgral domaiv O

Question 4

Consider the scheme Y = Spec k[x,y]/(f) where f = y? — 22 — 2% and k is a field with char k # 2.

i) Show that Y is an integral scheme.

ii) Draw a picture in R? of the curve f = 0.

Now consider the functor of points hy (X) for the following test schemes X:

iii) Let X = Speck[z,y]/(f). Using the “natural choice” of o € hy (X), show that a~1(Y) is reducible.

2 2n)! 2 1 2 1
provided the fractions exist in k and r € Q. Z > < n) = (2n) and < n) ( " > |

|Hint. Newton binomial theorem:

r(r=1) 5 r(r=1)(r—2) 4

I+z) =14rz+ T3 % 9.3 x”+ - € kz,y]

n nin! nln+l \n+1/)n

iv) What would happen in (iii) for X = Spec Oy,y ? Comment in view of the picture in (ii).

Proof.

i) By Question 3, it suffices to prove that k[z,y]/ (f) is an integral domain. This is true if and only if
(f) is a prime ideal,
mathematics.

if and only if f is irreducible in k[z,y]. The remaining work is elementary school

Suppose that f = gh for non-constant g, h € k[x,y]. By considering f, g, h as polynomials in y and
comparing coefficients, we have g(z,y) = y — g(z) and h(z,y) = y — h(z) for some §, h € k[z]. Then
we have g(z) + ﬁ(a?) = 0 and ﬁ(m)ﬁ(:ﬁ) = —2%(x + 1). The first equality suggests that degg = deg ﬁ,
so that deg(gﬁ) is even, contradicting the second equality. Hence f is irreducible.

ii) Sketch of y? = 22 + 2% in R?:

J



iii)

iv)

LN
o

Let ¢: klz,y]/ (f) <= k[z,y]/ (f) be the canonical embedding. Then ¢ induces the morphism of schemes
a = Spect: X — Y. We need to show that a=}(Y) = X is reducible.

The phrasing of the question is confusing as the reducibility of o= (Y) = X has nothing to do with «. {Nf

By Question 3 of Sheet 1, it suffices to show that the nilradical N of k[x,y]/ (f) is not prime. First
we claim that there exists 77(z) € k[x] such that n(z)? = = + 1. To prove this, we observe that

1% (—1)n—1 (—1)n=L(2n)! 1 (1)1 /20 1
E S ) = TTem-1) = =
n! nno <2 m) nion [[en-1 n2n nl2n 2n — 1 92n <n ) m— 1

m=1

is an element of k, because char k # 2 and (2:) 2n171

€ Z. Then by the Newton’s binomial theorem,

o0 n—1
1 1
n(:n)zl—i—g n'H<2—m>xm€k[[x]]
n=1"" m=0
satisfies that n(x)? = 1 + 2. Then

f@)=y* —2*(@+1) =y* — 2”n(x)® = (y + 2n(z))(y — 2n(z)) € klz,y]

Second, we need the following lemma (Atiyah & MacDonald Ezercise 1.5.(i)): for any ring R, p € R[]
is a unit if and only if the constant term ag € R of p is a unit in R. The proof is straightforward and
we omit it. In particular, if ag is irreducible in R, then p is irreducible in R[z].

Third, we need the fact that k[x,y] is a unique factorisation domain. The proof is very lengthy and
we omit it.

With these results in hand, we can prove our claim that IV is not prime. Since the constant term of
n(x) is 1, n(z) is a unit in k[z]. We know that z is irreducible in k[z] ({(x) is the unique maximal ideal).
Then zn(x) is irreducible in k[z]. Note that y £ 2n(z) € k[z][y] has constant term zn(z) € k[z].
So y + xn(x) are irreducible in k[z][y] = k[z,y]. Since k[z,y] is a UFD, the ideals (y + xn(x)) are
prime. In the quotient ring k[z, y]/ (f), since (0) is not prime, (y &+ xn(x)) are minimal prime.

Finally, we claim that (y + xn(x)) # (y — zn(x)). Suppose not. Then there exists a unit u € k[, y]
such that y + zn(x) = u(y — zn(z)). Then (v — 1)y = (u+ )an(x). Sou—1 =wu+1= 0. Since
2 # 0 in k, this is impossible. We deduce that (y + zn(z)) and (y — axn(x)) are distinct in kfz,y].
Therefore they are distinct minimal prime ideals of k[z,y]/ (f). We conclude that N is not prime,
and a~}(Y) = X is reducible. jy

0 €Y is ambiguous. It could be the zero ideal (0) € Y, or could be the mazimal ideal corresponding to
the point (0,0) in A2, which is (z,y).



e For the firsr case, Oy, = (klx,y]/(f))) = Frac(klz,y]/(f)). So SpecOy, gy is the prime
spectrum of a field, and is a singleton as a set. The natural choice of a € hy(X) is a = Specy,
where ¢ : k[z,y]/ (f) — Oy, is the embedding into the field of fractions. X is trivially irreducible.

\% e For the second case, Oy, oy = (k[7,y]/ (f)) @,y is the localisation of an integral domain, which is
(7 again an integral domain. Then by Question 3, X = Spec Oy, is an integral scheme, and hence
is irreducible.

M N jS\O This suggests that the ring of formal power serietter reflects the local geometric
Q\Yg{ﬁ\ property of the affine variety at (0,0) than the stalk~Qsy-gt-asit captures the fact that the Varlety
is locally reducible as shown on the graph. \ (g @'Pj

M\é Q& ke,@ CJU\M(Q @R/\

X/gaﬂ\&z T§ A@> SO \*’8@.9 e (é%a&

Question 5

An element e is called idempotent if e* = e. In integral domam 1 are wde potents eisant empotent
= 1 — e is an idempotent.

Let X = Spec R.
i) Show that X = D, U D;_. for all idempotents e € R.

[Hint. What is e = e(p) € k(p)?]
Ezample. In 3.(i), Spec Ry x Ra = D(1,0y U D(g1) = Spec Ry U Spec Ra.

ii) Show that Dy N Dy =@ <= fg is nilpotent.
Example: DN Dy_. = & in (i).

iii) Show that U C X is open and closed <= there exists a unique idempotent e € R with U = D..
[Hint. U=V(I), V=X \U = V(J). Show that (IJ)N =0 for some N, hence 1 =12V € [N + JN ]

iv) Show that {connected component of p € X} = V((idempotents e € R with e(p) =0 € x(p))).

[Use the fact from topology: If a topological space X is compact, and that it has a basis of compact open
subsets, the intersection of any two of which is compact, then the connected component of v € X is

N {clopen U > x}.|

Finally deduce that Spec R is connected <= 0,1 are the only idempotents of R.

Proof. 1) To show that X = D, U D;_., it suffices to show that D, N D1_. = @ and D¢ N D§_, = @. Note that
D.={peX:e¢pland Di_.={pecX:1—-e¢p}
Suppose that p € X such that p € Do N Dy_.. Then e,1 —e &p. But then 0 =e —e? =e(1 —¢) ¢ p
since p is prime. This is impossible. So D, N D1_. = &.
Suppose that p € X such that p € DN DY .. Then e,1 —e € p. But then 1 =e+ (1 —e) € p. This
is impossible. So DS N D§_, = @.

ii) We have

DiNDy=0 <= —-dpeX: fépAgé¢p
< VpeX: fepVgep
< Vpe X: fgep
— fg € Nil(R)
<= fg is nilpotent.



P

iii) Since U is clopen, U = V(p) and U® = V(q) for some p,q € X. Spec R = V(p) U V(q) implies that

p+q= R and \/pq = /{0}. The first one implies that there exist f € p, g € q such that f+ ¢ =

1.

Then fg € pq C Nil(R) is nilpotent. There exists N € N such that (fg)"¥,= 0. On the other hand, we
have 1 = (f +¢)?N ¢ (f)N + <g>N. So there exist a,b € R such tha‘zl/z/csz +bg". Now let e = bg"

and 1 — e = af"¥. Then e(1 — e) = 0 and hence e is idempotent.

For a € X, we have
aeV(p) = pla = f€a = l—-e=af"c€a — e¢a — acD, \/\/

Hence U C D.. Similarly U¢ C D;_.. But X =UUU®= D, U D1_.. We must have U = D..

It remains to show that e is unique. Suppose that there is an idempotent e’ such that D, = D,.
Then De N Dy—¢ = DeN Dy = De1—ey = @ and similarly Dy (o) = . It follows that e(1 — ¢’)
and €'(1 — e) are nilpotent. But they are also idempotents. Hence\é,lf— e’) =€ (1 —e) =0. Finally,

e—e =e(l—¢€)—¢€(1—e)=0. The idempotent e is unique.

For the converse direction, X = D, LI D;_. implies that D, is clopen. /

iv) It is straightforward to check that X satisfies the condition in the given fact. So the connected

component Y of p € X is the intersection of clopen sets containing x. By (iii), we have

Y =({De:p€De}=(V{De:e¢p}=({Di—c:ecp}=[{V((e)): e €p} =V({e:e€p))

If Spec R is disconnected, then Spec R = U L'V for some non-empty clopen U,V C Spec R. Then U = D,

some idempotents e € R. Since U # & or Spec R, e # 0 or 1.

Conversely, suppose that e € R\ {0,1} is an idempotent. Then Spec R = D, U D;_. is disconnected.

Question 6

A family of schemes is a morphism f : X — B of schemes. Think of this as the collection of schemes

Xp =

f71(b) = Spec(K(b) xp X) (fibre product: on affines this is the tensor product of algebras). A family

of closed subschemes of Y over B is a closed subscheme

i)

ii)

iii)

X C YxB

~

\\\\\ lproject
B
Let B = Speckl[t] = A}. B* = Dy = Speck[t,t'] = A} \ {0}, and X* = V(2% —t?) C AL, =
Speck[t,t~1, x]. Calculate the closure X of X* C AL = Speckl[t,z] and the fibre Xo. (Think of Xo as
the “limit” of Xy, as b — 0.)

Repeat (i) for X* = V(zy —t) C A%, = Speckl[t,t1,z,y]. What pictures over k = R and k = C does
this correspond to? (Only consider closed points for the picture.)

For the family X = SpecZ[x,y]/(z? — y* — 5) — B = SpecZ (induced by obvious map on rings), what
are the fibres X(g), X(2), X(3), X(5)7

Show that this is a flat family (the notes will help). What happens if you replace 2 — % — 5 by
222 — 2y% — 67

O]



